Research Article A MIMO Reversed Antenna Array Design for gsm1800/td-scdma/lte/wi-max/wilan/wifi

Similar documents
Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

Research Article Wideband Dual-Element Antenna Array for MIMO Mobile Phone Applications

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Research Article A Compact Experimental Planar Antenna with a USB Connector for Mobile Phone Application

Research Article Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications

Research Article A Novel Metamaterial MIMO Antenna with High Isolation for WLAN Applications

Research Article A UWB Band-Pass Antenna with Triple-Notched Band Using Common Direction Rectangular Complementary Split-Ring Resonators

Research Article Quad Band Handset Antenna for LTE MIMO and WLAN Application

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Research Article Design and Optimization of LTE 1800 MIMO Antenna

Research Article Compact Multiantenna

A compact planar ultra-wideband handset antenna with L-Shaped extended ground stubs

A Novel Multiband MIMO Antenna for TD-LTE and WLAN Applications

Research Article Low-Profile Dual-Wideband MIMO Antenna with Low ECC for LTE and Wi-Fi Applications

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs

Research Article Suppression of Cross-Polarization of the Microstrip Integrated Balun-Fed Printed Dipole Antenna

Design of a Short/Open-Ended Slot Antenna with Capacitive Coupling Feed Strips for Hepta-Band Mobile Application

Research Article Design of a Compact Quad-Band Slot Antenna for Integrated Mobile Devices

A Compact Low-Profile and Quad-Band Antenna with Three Different Shaped Slots

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

Research Article CPW-Fed Slot Antenna for Wideband Applications

A Printed Wideband MIMO Antenna System for GSM1800/1900, UMTS, WLAN2450, LTE2300/2500, and GPS Applications

Research Article Embedded Spiral Microstrip Implantable Antenna

Research Article Yagi Array of Microstrip Quarter-Wave Patch Antennas with Microstrip Lines Coupling

Research Article Design of a Novel UWB Omnidirectional Antenna Using Particle Swarm Optimization

A Coupled-Fed Reconfigurable Antenna for Internal LTE Mobile Phone Applications

Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

A Broadband Omnidirectional Antenna Array for Base Station

Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points

Research Article Gain Enhancement of Low-Profile, Electrically Small Capacitive Feed Antennas Using Stacked Meander Lines

Miniature Multiband Antenna for WLAN and X-Band Satellite Communication Applications

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

Reduction of Mutual Coupling between Cavity-Backed Slot Antenna Elements

Research Article Small-Size Seven-Band WWAN/LTE Antenna with Distributed LC Resonant Circuit for Smartphone Application

Research Article A High Gain Omnidirectional Antenna Using Negative Permeability Metamaterial

A Dual-Band Two Order Filtering Antenna

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

Compact UWB MIMO Antenna with ACS-Fed Structure

Wen Jiang *, Tao Hong, and Chao Li National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi an, Shaanxi , P. R.

DUAL BAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

A Dual-Band MIMO Monopole Antenna System for Set Top Box and WLAN Chipsets

Research Article Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

Compact Triple-Band Monopole Antenna for WLAN/WiMAX-Band USB Dongle Applications

Compact UWB antenna with dual band-notches for WLAN and WiMAX applications

Research Article A Reconfigurable Coplanar Waveguide Bowtie Antenna Using an Integrated Ferroelectric Thin-Film Varactor

Research Article Integrated Filtering Microstrip Duplex Antenna Array with High Isolation

Design of a Compact and High Selectivity Tri-Band Bandpass Filter Using Asymmetric Stepped-impedance Resonators (SIRs)

DESIGN OF OMNIDIRECTIONAL HIGH-GAIN AN- TENNA WITH BROADBAND RADIANT LOAD IN C WAVE BAND

Four-Element Dual-Band MIMO Antenna System for Mobile Phones

Research Article Design of Compact 4 4 UWB-MIMO Antenna with WLAN Band Rejection

NOVEL PLANAR MULTIMODE BANDPASS FILTERS WITH RADIAL-LINE STUBS

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

A Broadband Planar Quasi-Yagi Antenna with a Modified Bow-Tie Driver for Multi-Band 3G/4G Applications

Research Article Triband Omnidirectional Circularly Polarized Dielectric Resonator Antenna with Top-Loaded Alford Loop

A MINIATURIZED UWB BPF BASED ON NOVEL SCRLH TRANSMISSION LINE STRUCTURE

COMPACT DUAL-MODE TRI-BAND TRANSVERSAL MICROSTRIP BANDPASS FILTER

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

Design of Internal Dual Band Printed Monopole Antenna Based on Peano-type Fractal Geometry for WLAN USB Dongle

COMPACT BANDPASS FILTER WITH WIDE STOP- BAND USING RECTANGULAR STRIPS, ASYMMETRIC OPEN-STUBS AND L SLOT LINES

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

Research Article Low-Profile Repeater Antenna with Parasitic Elements for On-On-Off WBAN Applications

Minimization of Mutual Coupling Using Neutralization Line Technique for 2.4 GHz Wireless Applications

A multi-band printed monopole antenna

Research Article A Novel Subnanosecond Monocycle Pulse Generator for UWB Radar Applications

Compact Dual-Band MIMO Antenna with High Port Isolation for WLAN Applications

Progress In Electromagnetics Research C, Vol. 40, 1 13, 2013

A dual-band antenna for wireless USB dongle applications

Offset-fed UWB antenna with multi-slotted ground plane. Sun, YY; Islam, MT; Cheung, SW; Yuk, TI; Azim, R; Misran, N

A Compact Band-selective Filter and Antenna for UWB Application

Design of Compact Multiband Antenna for Wwan/Lte Mobile Phone Applications

A Multiband Four-Antenna System for the Mobile Phones Applications

A New UWB Antenna with Band-Notched Characteristic

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

Research Article BCB-Si Based Wide Band Millimeter Wave Antenna Fed by Substrate Integrated Waveguide

A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications

Research Article Design and Analysis of Printed Yagi-Uda Antenna and Two-Element Array for WLAN Applications

Compact 1 2 and 2 2 MIMO Antennas with Enhanced Isolation for Ultrawideband Application

Transcription:

Antennas and Propagation Volume 215, Article ID 8591, 6 pages http://dx.doi.org/1.1155/215/8591 Research Article A MIMO Reversed Antenna Array Design for gsm18/td-scdma/lte/wi-max/wilan/wifi Fang Xu 1 and Mu Ju 2 1 Tianjin University, Tianjin 372, China 2 Southeast University, Nanjing 211189, China Correspondence should be addressed to Fang Xu; xf1988@tju.edu.cn Received 3 July 215; Accepted 18 August 215 Academic Editor: Jaume Anguera Copyright 215 F. Xu and M. Ju. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A triband MIMO antenna used for gsm18/td-scdma/lte/wi-max/wilan/wifi has been proposed in this paper. The design with the size of 32 m 73.6 mm is fabricated on FR4 substrate (thickness is 1.6 mm). This antenna consists of two reversed monopole meandered radiators and defected ground structure which work together to achieve impedance match and enhance isolation for all operating bands. According to the subsequent measured results, the working frequency domains are at gsm18 (1.71 GHz 1.88 GHz), td-scdma (1.88 GHz 2.25 GHz), lte (2.1 2.35, 2.48 2.51), wi-max (3.5 GHz, 5.5 GHz), wilan (5.725 GHz 5.8 GHz), and wifi (5.8 GHz 5.88 GHz) approximately. Besides, the measured radiation patterns (gain total) are also well at these working frequency domains and the omnidirectional performance has been achieved for the reversed MIMO antenna array. Furthermore, the realized isolation is more than 15 db, 24.2 db, and 22 db at the first, the second, and the third working frequency band, respectively. 1. Introduction Multi-input, multioutput is a technology in wireless communication which can transmit information with high data rateandincreasechannelcapacitywiththesamechannel bandwidth. So the MIMO technology is very important for the next generation wireless communication. With the wireless technology development, the MIMO antenna has been required to have multiband performance, simple structure,relativesmallsize,lightweight,andlowcosttobe easily integrated with complex multifunction RF circuit. Recently, there are several research works focusing on the MIMO antennas, such as the MIMO antenna with H-shaped directive antenna [1], but it can only operate at one frequency band from 4.5 GHz to 6.2 GHz and the isolation is not good. In the literature [2, 3] the MIMO antennas show good performance on compact size. However, the isolation is relatively poor and there are few working coverages. Other MIMO antenna designs for handset application [4 6] are presented for excellent performance of isolation while the size is relatively big. For [7], a simpler MIMO antenna has been proposed whereas the achieved isolation is less than 12dB for most of the frequency domain and should be improved. The high-isolation (more than 17 db) and singleband MIMO antenna with wide coverage has been presented in [8]. Nevertheless, it is possible to be interfered by useless signal and the size is not suitable for handset application. In this paper, the novel tri-band MIMO design on the FR4 substrate has been presented.there are two reversed monopole radiators diagonally on the substrate for MIMO performance. The monopole radiator is proposed in my another paper which is now under review by microwave journal. There are two reversed monopole radiators located diagonally on the substrate for MIMO performance. This design can cover three frequency bands simultaneously based on the measured/simulated results and the isolation is also good compared to the listed references. Meanwhile, the planar area size is eligible for handset devices application. 2. Multiband Antenna Design As is shown in Figure 1 there are two layers for the MIMO antenna in this paper. The dendritic meandered microstrip is

2 Antennas and Propagation L f L 1 e L 4 W d L 2 L3 L 5 h g X Y L 6 c (a) Y X L 7 Interdigital slot-line (b) Figure 1: The proposed antenna in this paper. (a) The top view. (b) The bottom view. 5 1 33 3 Return loss (db) 1 15 2 25 3 35 4 1 2 3 4 5 6 7 8 Radiation pattern (polarization gain) 1 2 3 4 5 4 3 2 1 27 3 24 6 12 9 Frequency (GHz) Without interdigital slot-line With interdigital slot-line 1 21 18 15 Figure 2: The simulated results for the proposed antenna and design without interdigital slot-line. located on the top layer and the reversed interdigital slot-line can be seen from the bottom view. On the other hand, the size of this antenna is 32 mm 73.6 mm 1.6mmsothatthis Copol. with interdigital slot Cross pol. with interdigital slot Copol. without interdigital slot Cross pol. without interdigital slot Figure 3: The copolarization and cross polarization with interdigital slot-line and without interdigital slot-line (phi = 9) at 2.3 GHz.

Antennas and Propagation 3 (a) 1.429e + 3 9.3858e + 2 8.3429e + 2 7.31e + 2 6.2572e + 2 5.2144e + 2 4.1715e + 2 3.1287e + 2 2.858e + 2 1.43e + 2 1.3914e 2 (c) J surf (A/m) 4.529e + 2 4.526e + 2 3.623e + 2 3.152e + 2 2.717e + 2 2.2515e + 2 1.812e + 2 1.359e + 2 9.64e + 1 4.536e + 1 8.254e 3 J surf (A/m) (b) 1.1483e + 3 1.335e + 3 9.1869e + 2 8.387e + 2 6.895e + 2 5.7423e + 2 4.5942e + 2 3.446e + 2 2.2978e + 2 1.1496e + 2 1.4189e 1 J surf (A/m) Figure 4: The simulated electric current distribution of the MIMO antenna. (a) 2.3 GHz. (b) 3.45 GHz. (c) 5.4 GHz. Table 1: The detailed size of this design. L1 L2 L3 L4 L5 L6 L7 L W 2.2 5.8 4 8 9.5 2.2 11.6 73.6 32 design can be used for the wireless handset application. The detailed size of the antenna is presented in Table 1 (unit: mm). The substrate is FR4 (thickness is 1.6 mm) with a relative permittivity of 4.4 and loss tangent of.2. It can be easily knownthatthestructureissimplecomparedtoothermimo antennas with the same multiband function. The difficulty for MIMO multiband antenna design is to generate multipaths for resonating electric current at multifrequency bands. The two linear polarization radiators located diagonally at substratecangeneratethreeprimaryresonatingcurrentpaths below 6 GHz for the multiband performance. The first and second band are created by the top-side dendritic microstrip by realizing the impedance match. The interdigital slot-line can excite the third-band performance and enhance the impedance match at all bands which can be inferred from Figure 2. Besides, interdigital slot-line proposed in my other submitted paper mentioned in Introduction will provide the meandered path for electric current at the first band to increase the cross polarization ratio for diversion transmission/reception application in mobile communication (lte/tdscdma) which can be summarized from Figure 3. These can be also analyzed from Figure 4 where there is distributed resonating electric current around the interdigital slot-line at all bands especially for the first and third band. This demonstrates that the performance of antenna can be influenced and adjusted by the defected ground structure. The resonating electric current can flow on the meandered path imbedded in the interdigital slot-line at the first frequency domain so that the effective radiation length can be increased to.14λ and the polarization electromagnetic fields should be counteracted with each other due to the different current direction. For the second band, the electric current mainly appears on Path d to h (d, h are marked in Figure 1) that is as long as.132λ for radiation. When the frequency is moved to the third band electric current with about primary.161λ radiation length will not only activate on the top-side but also flow below the interdigital slot-line which shows the interdigital slot-line is important to achieve impedance match at this band for antenna too. Furthermore, the reversed structure will weaken the mutual coupling effect caused by the defected ground structure between the two monopole radiators. So the structure can enhance the mutual isolation of the two radiators. The return loss can be derived as the following equation: S 11 = Z Z in, (1) Z +Z in where Z is the port impedance and Z in is the equivalent inputimpedanceoftheantenna.whentheportimpedanceis matched to antenna impedance at some frequencies the signal will be transmitted/received with very weak reflection. As for this design, most of the electric current will flow through the corresponding three equivalent paths in the working frequency domains. So the impedance of the equivalent resonating path should be thought to be approximate to Z at corresponding frequencies (Z Z in ). The equivalent impedance of the top-side radiator which is the shunt and series connections of several microstrips on each path can be obtained based on the basic impedance formula of microstrip [1]: 87 5.98H Z microstrip ln ( ), (2) ε + 1.41.8W + L where ε is the dielectric constant of the substrate, H is the thickness, W is the width of microstrip, and L is the total length of microstrip.

4 Antennas and Propagation Figure 5: The fabricated MIMO antenna. Except for the microstrip part, the coupling capacitance which is influenced by defected ground structure and relative location of two radiators should also be considered into the whole path. The equivalent impedance of capacitance is 1 Z capacitance-equivalent = + 1, ω = 2πf, (3) jωc 1 jωc 2 where C 1 is the coupling capacitance between top-side microstrip and ground (influenced by interdigital slot) while C 2 is the coupling capacitance between two monopole radiators. According to the analysis above, impedance of each path should be expressed as sum of Z capacitance-equivalent and Z top-radiator. So the working frequencies can be calculated and adjusted through the top-side microstrip and DGS (defected ground structure) at bottom side and locations of two radiators. Consequently, the defected ground structure and the dendritic reverse radiators on top can work together to excite the corresponding frequency bands at 2.1 GHz/3.5 GHz/5.4 GHz in simulation results. Frequency response (db) 1 2 3 4 5 6 1 2 3 4 5 6 7 Frequency (GHz) Measured S 11 Measured S 21 Simulated S 11 Figure 6: The measured S 11, S 21 and simulated S 11. 3. Measured Results Analysis The fabricated antenna has been shown in Figure 5. As can be known the size of this two-layer planar MIMO antenna is 32 mm 73.6 mm 1.6 mm and it has been measured for return loss and radiation pattern but there is some discrepancy due to the inaccuracy of simulation and measurement, use of SMA connector, fabrication limitation, and some other random reasons. In addition, the comparison table between this design and some references is provided to prove the good performance of this design on relative compact size, multiband performance, high isolation level, and so on. The measured results tell us that the proposed design can work at gsm18 (1.71 GHz 1.88 GHz)/td-scdma (1.88 GHz 2.25 GHz)/lte (2.25 GHz 2.35 GHz)/wi-max (3.5 GHz, 5.5 GHz)/wiLan (5.725 GHz 5.8 GHz)/wifi (5.8 GHz 5.88 GHz) simultaneously. The simulation and measurement presented in Figure 6 indicate the isolationismorethan15db,24.2db,and22dbforthefirst, second, and third working frequency domain, respectively. Furthermore, the radiation pattern at three frequency bands is well qualified in Figure 7. The measured radiation pattern can verify the omnidirectional performance of the proposed MIMO antenna in the three frequency bands. Besides, the measured peak gain totals in Table 2 are all bigger than dbi which demonstrate that the radiation efficiency is greater than the ideal radiation antenna so the energy ( 2 db delivered to antenna in this experiment) should be radiated outwithrelativehighefficiency.atlast,thecomparison information between this paper and other references is presented in Table 2. It is easily inferred from the table that the antenna in this paper has advantages in gain total, relative compact size, multiband working performance, and relative high isolation level compared to previous works. Last but not least, the enveloped correlation can also be derived by [11] ρ e = S 11 S 12 +S 21 S 22 2 (1 S 11 2 S 21 2 )(1 S 22 2 S 12 2 ). (4)

Antennas and Propagation 5 1 1 2 3 4 5 4 3 2 1 1 27 3 24 33 21 18 3 15 6 12 9 1 1 2 3 4 5 4 3 2 1 1 27 3 24 33 21 18 3 15 6 12 9 (a) (b) 1 1 2 3 4 5 4 3 2 1 1 27 3 24 33 21 18 3 15 6 9 12 1 1 2 3 4 5 4 3 2 1 1 27 3 24 33 21 18 3 15 6 9 12 (c) (d) 1 1 2 3 4 5 4 3 2 1 1 27 3 24 33 21 18 3 15 6 12 9 (e) Figure 7: The measured radiation pattern of the MIMO antenna. (a) 1.98 GHz. (b) 2.14 GHz. (c) 3.5 GHz. (d) 5.75 GHz. (e) 5.85 GHz.

6 Antennas and Propagation Table 2: The comparison of the performances between this paper and some references. Refs Planar area size (mm mm) Measuredpeak gain (dbi) Isolation (db) This paper 32 73.6 (triband) 2.54 (1.81 GHz)/1.97 (1.98 GHz)/3.43 (2.14 GHz)/3.47 (3.5 GHz)/5.99 (5.75 GHz)/5.55 (5.85 GHz) 14.6 db (1st band)/ 24.2 db (2nd band)/ 22dB (3rd band) [1] 42 42 (single-band) 5.2 (5.45 GHz) 14 db (in working band) [4] 11 65 (single-band) 1.7 (1.9 GHz)/1.53 (2.1 GHz)/2.73 (2.45 GHz) 15dB (in working band) [7] 6 12 (dual-band) (.9 GHz)/4 (2.5 GHz) 12 db (1st band)/ 11 db (2nd band) [9] 35 112.5 (dual-band) 2.1 (.75 GHz)/6.3 (2.15 GHz) 9.5 db (1st band)/ 12dB (2nd band) The calculated enveloped correlation using measured data is less than.1 at all operating bands. This is very well for MIMO application. In a word, the measured results of this antenna show the qualified performance for most wireless terminus applications. 4. Conclusion In this paper, a novel MIMO antenna array with two monopole antennas for gsm18, td-scdma, wi-max, wilan, wifi is designed and fabricated. The antenna with three main electric current resonating paths consists of dendritic radiator on top and bottom-layer interdigital slot-line. The size of the proposed MIMO antenna is.21λ.48λ.1λ (λ is the wavelength at 1.98 GHz based on the experimental results) that is eligible for handset device application. The simulated and measured results also prove the design is feasible. Meanwhile, the peak gain and gain total is well which demonstrate the approximate omnidirectional performance and high radiation efficiency for the antenna. Finally, the structure of the designed MIMO array with three bands in this letter is simple and very easy to be implemented so that itcanbewidelyusedinwirelesscommunicationsystems. Disclosure Mu Ju is a coauthor. Conflict of Interests European Conference on Antennas and Propagation (EuCAP 13), pp. 723 725, April 213. [4] S. Shoaib, I. Shoaib, N. Shoaib, X. Chen, and C. G. Parini, MIMO antennas for mobile handsets, IEEE Antennas and Wireless Propagation Letters,vol.14,pp.799 82,215. [5] X. Chen, S. Shoaib, I. Shoaib et al., MIMO antennas for mobile handsets, in Proceedingsofthe3rdAsia-PacificConferenceon Antennas and Propagation (APCAP 14), pp. 412 414, July 214. [6] S. Shoaib, I. Shoaib, N. Shoaib, X. Chen, and C. G. Parini, Design and performance study of a dual-element multiband printed monopole antenna array for MIMO terminals, IEEE Antennas and Wireless Propagation Letters,vol.13,pp.329 332, 214. [7] Y.-L.Ban,Z.-X.Chen,Z.Chen,K.Kang,andJ.L.-W.Li, Decoupled hepta-band antenna array for WWAN/LTE smartphone applications, IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 999 12, 214. [8] M. Sonkki, D. Pfeil, V. Hovinen, and K. R. Dandekar, Wideband planar four-element linear antenna array, IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1663 1666, 214. [9] Y.-J. Ren, Ceramic based small LTE MIMO handset antenna, IEEE Transactions on Antennas and Propagation, vol.61,no.2, pp. 934 938, 213. [1] J. S. Hong, Microstrip Filters for RF/Microwave Applications, Wiley, 211. [11] A. Sanada, M. Kimura, I. Awai, C. Caloz, and T. Itoh, A planar zeroth-order resonator antenna using a left handed transmission line, in Proceedings of the 34th European Microwave Conference, pp. 1341 1344, October 24. The authors declare that there is no conflict of interests regarding the publication of this paper. References [1] Y. Luo, Q.-X. Chu, J.-F. Li, and Y.-T. Wu, A planar H- shaped directive antenna and its application in compact MIMO antenna, IEEE Transactions on Antennas and Propagation,vol. 61,no.9,pp.481 4814,213. [2] L.Liu,S.W.Cheung,andT.I.Yuk, CompactMIMOantenna for portable UWB applications with band-notched characteristic, IEEE Transactions on Antennas and Propagation,vol.63,no. 5, pp. 1917 1924, 215. [3] K.Kahng,I.Yang,S.Kahng,J.Anguera,andJ.Y.Lee, Design of four MIMO handset antennas, in Proceedings of the 7th

Rotating Machinery Engineering Volume 214 The Scientific World Journal Volume 214 Distributed Sensor Networks Sensors Volume 214 Volume 214 Volume 214 Control Science and Engineering Advances in Civil Engineering Volume 214 Volume 214 Submit your manuscripts at Electrical and Computer Engineering Robotics Volume 214 Volume 214 VLSI Design Advances in OptoElectronics Navigation and Observation Volume 214 Chemical Engineering Volume 214 Volume 214 Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Volume 214 Volume 214 Volume 214 Modelling & Simulation in Engineering Volume 214 Volume 214 Shock and Vibration Volume 214 Advances in Acoustics and Vibration Volume 214