Generalized Signal Alignment For MIMO Two-Way X Relay Channels

Similar documents
Minimum number of antennas and degrees of freedom of multiple-input multiple-output multi-user two-way relay X channels

On Fading Broadcast Channels with Partial Channel State Information at the Transmitter

Degrees of Freedom of Multi-hop MIMO Broadcast Networks with Delayed CSIT

MULTIPATH fading could severely degrade the performance

Degrees of Freedom of the MIMO X Channel

Cooperative Tx/Rx Caching in Interference Channels: A Storage-Latency Tradeoff Study

SPACE TIME coding for multiple transmit antennas has attracted

Joint Relaying and Network Coding in Wireless Networks

Communication over MIMO X Channel: Signalling and Performance Analysis

On the Capacity Region of the Vector Fading Broadcast Channel with no CSIT

When Network Coding and Dirty Paper Coding meet in a Cooperative Ad Hoc Network

Performance Enhancement of Interference Alignment Techniques for MIMO Multi Cell Networks

KURSOR Menuju Solusi Teknologi Informasi Vol. 9, No. 1, Juli 2017

On the Capacity Regions of Two-Way Diamond. Channels

The Degrees of Freedom of Full-Duplex. Bi-directional Interference Networks with and without a MIMO Relay

Relay Scheduling and Interference Cancellation for Quantize-Map-and-Forward Cooperative Relaying

Physical Layer Network Coding with Multiple Antennas

ISSN Vol.03,Issue.17 August-2014, Pages:

COMBINING GALOIS WITH COMPLEX FIELD CODING FOR HIGH-RATE SPACE-TIME COMMUNICATIONS. Renqiu Wang, Zhengdao Wang, and Georgios B.

On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels

Degrees of Freedom of MIMO Cellular Networks with Two Cells and Two Users Per Cell

Random Beamforming with Multi-beam Selection for MIMO Broadcast Channels

DoF Analysis in a Two-Layered Heterogeneous Wireless Interference Network

On the Performance of Cooperative Routing in Wireless Networks

How (Information Theoretically) Optimal Are Distributed Decisions?

MIMO Interference Management Using Precoding Design

Interference Alignment for Heterogeneous Full-duplex Cellular Networks

Lecture 4 Diversity and MIMO Communications

Source Transmit Antenna Selection for MIMO Decode-and-Forward Relay Networks

ORTHOGONAL space time block codes (OSTBC) from

THE emergence of multiuser transmission techniques for

3432 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 10, OCTOBER 2007

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques

Throughput Analysis of the Two-way Relay System with Network Coding and Energy Harvesting

TWO-WAY communication between two nodes was first

Stability Analysis for Network Coded Multicast Cell with Opportunistic Relay

Hamming Codes as Error-Reducing Codes

Interference: An Information Theoretic View

IN recent years, there has been great interest in the analysis

Capacity of Two-Way Linear Deterministic Diamond Channel

IN RECENT years, wireless multiple-input multiple-output

Diversity and Freedom: A Fundamental Tradeoff in Multiple Antenna Channels

Physical-Layer Network Coding Using GF(q) Forward Error Correction Codes

Degrees of Freedom in Multiuser MIMO

THE multi-way relay channel [4] is a fundamental building

Exploiting Interference through Cooperation and Cognition

Transmit Antenna Selection in Linear Receivers: a Geometrical Approach

Secure Degrees of Freedom of the Gaussian MIMO Wiretap and MIMO Broadcast Channels with Unknown Eavesdroppers

Multiple Antennas in Wireless Communications

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 6, JUNE

Linear Precoding for Multi-Pair Two-Way MIMO Relay Systems With Max-Min Fairness

Channel Estimation for MIMO-OFDM Systems Based on Data Nulling Superimposed Pilots

Power allocation for Block Diagonalization Multi-user MIMO downlink with fair user scheduling and unequal average SNR users

3766 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 6, JUNE 2012

Research Collection. Multi-layer coded direct sequence CDMA. Conference Paper. ETH Library

An Alamouti-based Hybrid-ARQ Scheme for MIMO Systems

REMOTE CONTROL OF TRANSMIT BEAMFORMING IN TDD/MIMO SYSTEMS

On the Value of Coherent and Coordinated Multi-point Transmission

On the Performance of Relay Stations with Multiple Antennas in the Two-Way Relay Channel

/11/$ IEEE

Lecture 8 Multi- User MIMO

End-to-End Known-Interference Cancellation (E2E-KIC) with Multi-Hop Interference

IN AN MIMO communication system, multiple transmission

On Multi-Server Coded Caching in the Low Memory Regime

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline

The Multi-way Relay Channel

Acentral problem in the design of wireless networks is how

Degrees of Freedom Region for the MIMO X Channel

Interference Alignment for Heterogeneous Full-Duplex Cellular Networks. Amr El-Keyi and Halim Yanikomeroglu

Information-Theoretic Study on Routing Path Selection in Two-Way Relay Networks

Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel

THIS paper addresses the interference channel with a

Performance Evaluation of V-Blast Mimo System in Fading Diversity Using Matched Filter

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE) Volume 3, Issue 11, November 2014

Interference Alignment with Incomplete CSIT Sharing

Low Complexity Power Allocation in Multiple-antenna Relay Networks

Interference Mitigation Through Limited Transmitter Cooperation I-Hsiang Wang, Student Member, IEEE, and David N. C.

Information flow over wireless networks: a deterministic approach

Impact of Receive Antenna Selection on Scheduling for Orthogonal Space Division Multiplexing

CHAPTER 8 MIMO. Xijun Wang

Cooperative versus Full-Duplex Communication in Cellular Networks: A Comparison of the Total Degrees of Freedom. Amr El-Keyi and Halim Yanikomeroglu

Beamforming in Interference Networks for Uniform Linear Arrays

Optimum Power Allocation in Cooperative Networks

Space-Division Relay: A High-Rate Cooperation Scheme for Fading Multiple-Access Channels

Asynchronous Space-Time Cooperative Communications in Sensor and Robotic Networks

On the Optimum Power Allocation in the One-Side Interference Channel with Relay

Joint Transmit and Receive Multi-user MIMO Decomposition Approach for the Downlink of Multi-user MIMO Systems

Multi-user Two-way Deterministic Modulo 2 Adder Channels When Adaptation Is Useless

Space-Time Physical-Layer Network Coding

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 1, JANUARY B. Related Works

On Differential Modulation in Downlink Multiuser MIMO Systems

MIMO Channel Capacity in Co-Channel Interference

Hybrid ARQ Scheme with Antenna Permutation for MIMO Systems in Slow Fading Channels

INTERNATIONAL JOURNALOF RESEARCH SCIENCE & MANAGEMENT

MATLAB Simulation for Fixed Gain Amplify and Forward MIMO Relaying System using OSTBC under Flat Fading Rayleigh Channel

Joint Transmitter-Receiver Adaptive Forward-Link DS-CDMA System

Interference Management in Wireless Networks

Rate-Splitting for Multigroup Multicast Beamforming in Multicarrier Systems

Embedded Orthogonal Space-Time Codes for High Rate and Low Decoding Complexity

Transcription:

Generalized Signal Alignment For IO Two-Way X Relay Channels Kangqi Liu, eixia Tao, Zhengzheng Xiang and Xin Long Dept. of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China Emails: {forever9719, mxtao, 7838, lx yokumen}@sjtu.edu.cn Abstract We study the degrees of freedom (DoF) of IO two-way X relay channels. Previous work studied the case N <, where N and denote the number of antennas at the relay and each source, respectively, and showed that the maximum DoF of N is achievable when N 8 by applying signal alignment (SA) for network coding and interference cancelation. This work considers the case N > where the performance is limited by the number of antennas at each source node and conventional SA is not feasible. We propose a generalized signal alignment (GSA) based transmission scheme. The key is to let the signals to be exchanged between every source node align in a transformed subspace, rather than the direct subspace, at the relay so as to form network-coded signals. This is realized by jointly designing the precoding matrices at all source nodes and the processing matrix at the relay. oreover, the aligned subspaces are orthogonal to each other. By applying the GSA, we show that the DoF upper bound 4 is achievable when N N 1 ( is even) or ( is odd). Numerical results also demonstrate that our proposed transmission scheme is feasible and effective. I. INTRODUCTION Wireless relay has been an important ingredient in both ad hoc and infrastructure-based wireless networks. It shows great promises in power reduction, coverage extension and throughput enhancement. In the simplest scenario, a relay node only serves a single user. This forms the classic one-way relaying and the relay strategies are maturing. With the rapid expansion of multi-user communications, a relay has become very much like a wireless gateway where multiple users communicate with each other via a common relay. A fundamental question that arises is what is the maximum number of data streams that can be transmitted and how to achieve it. This leads to the analysis of degrees of freedom (DoF) and also drives the development of more advanced relay strategies for efficient relay-assisted multi-user communication. The recently proposed two-way relaying is such an advanced relay method that offers high spectral efficiency in a system where two users exchange information with each other through a relay 1. The key idea is to apply physical layer network coding (PLNC) at the relay end 3. With PLNC, the maximum achievable DoF of the IO two-way relay channel is min{, N} 4, where and N denote the number of antennas at each source node and the relay, respectively. When This work is supported by the National 973 project under grant 01CB316100 and by the NSF of China under grants 61310 and 6139101. there are three or more users exchanging information with each other via a common relay, PLNC is not enough to achieve the DoF of the network. Based on the idea of interference alignment 6, another promising technique, signal alignment (SA) is firstly proposed in 7 to analyze the maximum achievable DoF for IO Y channel, where three users exchange independent messages with each other via a relay. By jointly designing the precoders at each source node, SA is able to align the signals from two different source nodes in a same subspace of the relay node. By doing so, the two data streams to be exchanged between a pair of source codes are combined into one network-coded symbol and thus the relay can forward more data streams simultaneously. It is proved that with SA for network-coding and network-coding aware interference nulling the theoretical upper bound 3 of DoF is achievable when N 3 8. Here, again, and N denote the number of antennas at each source node and the relay node, respectively. The extension to K-user IO Y Channels is considered in 9. In 10, SA is applied in IO two-way X relay channel, where there are two groups of source nodes and one relay node, and each of the two source nodes in one group exchange independent messages with the two source nodes in the other group via the relay node. It is shown that the DoF upper bound is min{, N}, and the upper bound N is achievable when N 8 by applying SA and interference cancelation. In this paper, we are interested in the ability of the DoF upper bound 4 for IO two-way X relay channel in the case N >, where the performance is limited only by the number of antennas at each source. It is worth mentioning that SA is not feasible under the antenna configuration N. The reason is as follows. Recall that SA condition is H 1,r v 1 = H,r v, (1) where H i is an N matrix (corresponding to the channel matrix from source i to relay) and v i is an 1 vector (corresponding to the beamforming vector of source i). The above alignment condition can be rewritten as v1 H 1,r H,r v = 0. () Clearly, for () to hold, one must N <, or equivalently > N.

To achieve the maximum DoF at N, we propose a new transmission scheme, named generalized signal alignment (GSA). Compared with the existing SA, the proposed GSA has the following major difference. The signals to be exchanged do not align directly in the subspace observed by the relay. Instead, they are aligned in a transformed subspace after certain processing at the relay, which is orthogonal to each other. This is done by jointly designing the precoding matrices at the source nodes and the processing matrix at the relay node. With the proposed GSA, we show that the total DoF upper bound 4 of IO two-way X relay channel is achievable when N N 1 ( is even) or ( is odd). The remainder of the paper is organized as follows. In Section II, we introduce the system model of the IO twoway X relay channel. In Section III, we introduce the GSA transmission scheme with a motivate example. In Section IV, we analyze the achievability of the DoF upper bound when < N. In Section V, we show our numerical results. Section VI presents concluding remarks. Notations: ( ) T, ( ) H and ( ) denote the transpose, Hermitian transpose and the oore-penrose pseudoinverse, respectively. ε stands for expectation. x means -norm of vector x. span(h) and null(h) stand for the column space and the null space of the matrix H, respectively. dim(h) denotes the dimension of the column space of H. x denotes normalization operation on vector x, i.e. x = x x. x denotes the largest integer no greater than x. x denotes the smallest integer no less than x. I is the identity matrix. II. SYSTE ODEL We consider the same IO two-way X relay channel as in 10 and shown in Fig. 1. It consists of two groups of source nodes, each equipped with antennas, and one relay node, equipped with N antennas. Each source node exchanges independent messages with each source node in the other group with the help of the relay. The independent message transmitted from source i to source j is denoted as W ij. At each time slot, the message is encoded into a d ij 1 symbol vector s ij, where d ij denotes the number of independent data flows from source i to source j. Taking source node 1 for example, the transmitted signal vector x 1 from source node 1 is given by x 1 = V 13 s 13 + V 14 s 14 = V 1 s 1, (3) where s 1 = s 13, s 14 T, V 1 = V 13, V 14, V 13 and V 14 are the d 13 and d 14 precoding matrices for the information symbols to be sent to source node 3 and 4, respectively. The communication of the total messages takes place in two phases: the multiple access (AC) phase and the broadcast (BC) phase. In the AC phase, all four source nodes transmit their signals to the relay. The received signal y r at the relay is given by y r = 4 H i,r x i + n r, (4) i=1 Fig. 1. IO Two-way X Relay Channel. where H i,r denotes the frequency-flat quasi-static N complex channel matrix from source node i to the relay and n r denotes the N 1 additive white Gaussian noise (AWGN) with variance σn. The entries of the channel matrix H i,r and those of the noise vector n r, are independent and identically distributed (i.i.d.) zero-mean complex Gaussian random variables with unit variance. Thus, each channel matrix is of full rank with probability 1. Upon receiving y r in (4), the relay processes these messages to obtain a mixed signal x r, and broadcasts to all the users. The received signal at source node i can be written as y i = G r,i x r + n i, () where G r,i denotes the frequency-flat quasi-static N complex channel matrix from relay to the source node i, and n i denotes the AWGN at the node i. Each user tries to obtain its desirable signal from its received signal using its own transmit signal as side information. III. GENERALIZED SIGNAL ALIGNENT In this section, we shall introduce the GSA-based transmission scheme for IO two-way X relay channel when < N. Note that for this case, the corresponding DoF upper bound is 4 10. As a motivating example, we consider a system where each source has = antennas and the relay has N = antennas. For this system, the proposed GSA-based transmission scheme achieves d 13 = d 14 = d 3 = d 4 = d 31 = d 3 = d 41 = d 4 = 1, yielding a total DoF of 8. A. AC phase In the AC phase, each source node transmits the precoded signals to the relay simultaneously. Let source node 1 transmits the data streams s 13 and s 14 by using beamforming vectors v 13 and v 14, respectively to source nodes 3 and 4. Similar notations are used for the other three nodes. Thus, there are totally 8 data streams arriving at the relay. We rewrite the

received signal (4) as y r = H 1,r H,r H 3,r H 4,r V 1 0 0 0 0 V 0 0 0 0 V 3 0 0 0 0 V 4 s 1 s s 3 s 4 + n r = HVs + n r, (6) where H is the 8 overall channel matrix, V is the 8 8 block-diagonal overall precoding matrix and s is the 8 1 transmitted signal vector for all the source nodes, given by s = s 13 s 14 s 3 s 4 s 31 s 3 s 41 s 4 T. (7) Since the relay has only antennas, it is impossible for it to decode all the 8 data streams. However, based on the idea of physical layer network coding, we only need to obtain the following network-coded symbol vector at the relay s = s 13 + s 31, s 14 + s 41, s 3 + s 3, s 4 + s 4 T. (8) Next, we show that there exist a precoding matrix V for the source nodes and a processing matrix A for the relay node such that the network-coded symbol vector in (7) can be obtained. To state it formally, we introduce the following theorem. Theorem 1: Given the received signal model in (6), there exists an 8 8 block-diagonal precoding matrix V and a 4 relay processing matrix A such that ŷ r = Ay r = AHVs + An r = s + An r. (9) Proof: Let a i denote the i-th row of A, for i = 1,, 4. Each a i can be thought as a combining vector for the transmitted signals of a source node pair. Specifically, we take a 1 for elaboration. We aim to design a 1 to align the transmitted signals from source pair (1,3) and cancel the undesired signals from source nodes and 4. Thus, we design a 1 such that it falls into the null space of H,r and H 4,r a T 1 Null H,r H 4,r T. (10) Since T H,r H 4,r is a 4 matrix, we can always find such a 1. Similarly, the other rows of A can be obtained as: a T Null H,r H 3,r T. (11) a T 3 Null H 1,r H 4,r T. (1) a T 4 Null H 1,r H 3,r T. (13) where a is for source pair (1,4), a 3 is for source pair (,3) and a 4 is for source pair (,4). Given the processing matrix A at the relay, the effective channel in the AC phase can be written as AH = c 11 c 1 0 0 c 1 c 16 0 0 c 1 c 0 0 0 0 c 7 c 8 0 0 c 33 c 34 c 3 c 36 0 0 0 0 c 43 c 44 0 0 c 47 c 48. (14) Fig.. The construction the processing matrix at relay. Define C i, i = 1,, 3, 4 as C 1 = c11 c 1, C c 1 c = c1 c C 3 = 16 c 3 c 36 c33 c 34, c 43 c 44 c7 c, C 4 = 8 c 47 c 48. (1) We can construct the precoding matrix for each source node as V i = C 1 i, i = 1,, 3, 4. (16) The above precoding matrix V i can be seen as a zeroforcing based precoder to cancel inter-stream interference between those signals not to be exchanged for each source node pair. For example, V 1 helps cancel the unwanted signal s 14 for source node pair (1, 3) and s 13 for source node pair (1, 4). Substituting (10) - (13) and (16) into (6), we can obtain (9). The theorem is thus proved. By jointly designing the precoding matrices at the source nodes and the processing matrix at the relay, our proposed GSA has successfully aligned the transmitted signals for each source node pair at the relay. The key steps of GSA are illustrated in Fig. and Fig. 3. Fig. shows that a T 1 falls into the null space of H,r and H 4,r. It is similar to other a i (i=, 3, 4) by (10) - (13). Fig. 3 shows the whole signal processing procedure to obtain the network-coded messages. Here, the signals received at relay after the effective channel AH is firstly given. Then the signals are rotated by V to be aligned in four orthogonal directions. B. BC Phase During the BC phase, the relay broadcasts an estimate of the four network coded symbols using the precoding matrix U = u 1,..., u 4. ore specifically, u 1, u, u 3, u 4 are for symbols s 13 + s 31, s 14 + s 41, s 3 + s 3, s 4 + s 4, respectively. Each beamformer is designed as below u 1 Null u 3 Null G r,4, u G Null r,4, u 4 Null. (17)

Fig. 3. Generalized signal alignment procedure. T Since GTr,j, GTr,k is a 4 matrix, we can always find these beamforming vectors to satisfy the above conditions. Plugging (17) into (), we can obtain the received signal for source node 1 as below y1 = Us + n1 = u1 (s13 + s31 ) + u (s14 + s41 ) + n1. (18) Since source node 1 knows s13 and s14, it can decode the desired signal from (18) after applying self-interference cancellation. In the same manner, the other source nodes can also obtain the signals intended for themselves. Thus, the total DoF of 8 is achieved, which is also the upper bound for the network when =, N =. C. Extension to =, N > When =, N >, we can always find the null space for ai (i=1,,3,4) by (10)-(13). The precoding matrix V then can be calculated by (16). It can be seen that ui exists by (17). Thus, we can apply our proposed GSA-based transmission scheme for IO two-way X relay channel to achieve the total DoF of 8. We omit the proof here. IV. ACHIEVABILITY OF T HE U PPER B OUND In this section, we will generalize the method in the previous section to arbitrary N, with < N and we will show that it can achieve the DoF upper bound 4 when N for even, and N 1 for odd. We first consider the case when is even. The proposed GSA-based transmission scheme achieves total DoF upper bound d13 = d14 = d3 = d4 = d31 = d3 = d41 = d4 =, yielding a total DoF of 4. Denote s = s113 +s131, s13 +s31,, s13 +s31, s114 +s141,, s14 + s41, s13 + s13,, s3 + s3, s14 + s14,, s4 + s4 T as the network-coded messages expected to obtain at the relay, where skij denotes the k-th data streams from source node i to source node j. Denoting Ai as the ( (i 1) + 1)-th to the ( i )-th row vectors of A, for i = 1,, 4. Each Ai can be thought as a combining matrix for the transmitted signals of a source node pair. Thus, we design Ai similar to (10) and (13) as the following: T AT1 Null H,r H4,r T AT Null H,r H3,r T AT3 Null H1,r H4,r T AT4 Null H1,r H3,r. (19) Here, A1 is for source pair (1,3), A is for source pair (1,4), A3 is for source pair (,3) and A4 is for source pair (,4). T We can see that ATi is an N matrix and Hj,r Hk,r T is a N matrix. The matrix Ai exists if and only if N N, which is equivalent to. After obtaining the matrix A, we can get the matrix V using the same method as (16) in Section III. Then we show the

existence of the precoding matrix U (N ). We can write U as U = U 1 U U 3 U 4, (0) where each U i is an N matrix and U 1 Null, U Null G r,4 U 3 Null G r,4, U 4 Null. (1) We can see that G r,j G r,k T is a N matrix. The matrix U i exists if and only if N, which is equivalent to N. Hence, we can apply GSA-based transmission scheme when is even and N. Similarly, we can achieve the upper bound of the DoF 4 by d 13 = d 4 = d 31 = d 4 = +1 and d 14 = d 3 = d 3 = d 41 = 1 when is odd. The corresponding matrices A and U exist if and only if N +1, which is equivalent to N 1. Note that the proposed GSA based transmission scheme can be applied to align signal pairs even when N >. In this case, A is an identity matrix, and GSA reduces to the conventional SA. Finally, we summarize the generalized signal alignment procedure in the following chart. Outline of Generalized Signal Alignment Step 1. construct the matrix H using the channel matrices H 1,r, H,r, H 3,r, H 4,r according to (6). Step. Design the relay processing matrix A according to (19). Step 3. Compute the effective channel in the AC phase AH and construct the source precoding matrix V according to (16). Step 4. Design the BC precoding matrix U with matrix G r,1, G r,,, G r,4 according to (1). V. NUERICAL RESULTS In this section, we provide numerical results to show the sum rate performance of the proposed scheme for the IO two-way X relay channel. The channel between each source node and the relay node is modeled as Rayleigh distribution with unit variance and it is independent for different node. The numerical results are illustrated with the ratio of the total transmitted signal power to the noise variance at each receive antenna and the total throughput of the channel. Each result is averaged over 10000 independent channel realizations. We now explain how we compute the sum rate for the IO two-way X relay channel when applying the GSA transmission scheme. GSA transmission scheme can be used in both amplify-andforward (AF) and decode-and-forward (DF) strategy. From (6) and (18), when we apply AF strategy, we can obtain y i = G r,i U(s + An r ) + n i. () Let R i denote the sum rate of the source node i. We calculate R 1 as a representative. First, we write the received signal of source node 1 with AF strategy as y 1 = G r,1 Us + G r,1 UAn r + n 1 = G r,1 U1 (s 13 + s 31 ) + U (s 14 + s 41 ) + G r,1 UAn r + n 1 }{{}}{{} Signal Noise = G r,1 s 1 + ñ 1. (3) Then we can calculate the sum rate R 1 in bits per channel use from source node 3 and source node 4 to source node 1 by (3) R 1 = log det(i + (ε(ñ 1 ñ H 1 )) 1 ε s 1 s H 1 G H r,1) (4) Similarly, we can calculate R, R 3, R 4 with the same method. Then total sum rate is given by R = 4 R i. () i=1 In Fig. 4, we plot the sum rate performance of the proposed generalized signal alignment transmission scheme at fixed N but varying ( < N/). In the figure, SNR denotes the total transmitted signal power from all the four source nodes to the noise variance at relay. We can observe that the increasing speed of sum-rate (the increase in bps/hz for every 3dB in SNR) matches with the theoretical DoF 4 very well when SNR is high enough. In Fig. and Fig. 6, we plot the sum rate performance of the proposed GSA transmission scheme at the antenna configurations of = N N 1 for even and = for odd, respectively. The upper bound of the DoF of 4 is also achieved. These results indicate that our proposed GSA transmission scheme is feasible and effective. VI. CONCLUSION In this paper, we have analyzed the achievability of the DoF upper bound for the IO two-way X relay channal when N. In the newly-proposed GSA transmission scheme, the processing matrix at the relay and the precoding matrix at the source nodes are designed jointly so that the signals to be exchanged between each source node pair are aligned at the relay. We showed that when N ( is even) or N 1 ( is odd), the upper bound of the total DoF 4 is achieved. Theoretical analysis and numerical results both show that the transmission scheme proposed is feasible and effective.

Fig. 4. Total DoF for the IO two-way X relay channel under generalized signal alignment transmission scheme. Fig. 6. Total DoF for the IO two-way X relay channel when = N 1. 8 N. Lee, J. Lee, and J. Chun, Degrees of freedom on the IO Y channel: signal space alignment for network coding, IEEE Transactions on Information Theory, vol. 6, no. 7, pp. 333 334, Jul. 010. 9 K. Lee, N. Lee, and I. Lee, Achievable degrees of freedom on K-user Y channels, IEEE Transactions on Wireless Communications, vol. 11, no. 3, pp. 110 119, ar. 01. 10 Z. Xiang,. Tao, J. o, and X. Wang, Degrees of freedom for IO two-way X relay channel, IEEE Transactions on Signal Processing, vol. 61, pp. 1711 170, 013. Fig.. Total DoF for the IO two-way X relay channel when = N. REFERENCES 1 B. Rankov and A.Wittneben, Spectral efficient protocols for halfduplex fading relay channels, IEEE Journal on Selected Areas in Communications, vol., no., Feb. 007. S. Zhang, S. Liew, and P. Lam, Physical layer network coding, in Proc. AC obicom, Sep. 006, pp. 63 68. 3 S. Katti, S. Gollakota, and D. Katabi, Embracing wireless interference: Analog network coding, in Proc. AC SIGCO, Sep. 007, pp. 397 408. 4 R. R. Vaze and R. W. Heath, Capacity scaling for IO two-way relaying, in IEEE International Symposium on Information Theory, Jun. 007, pp. 141 14. S. Jafar and S. Shamai, Degrees of freedom region of the IO X channel, IEEE Transactions on Information Theory, vol. 4, no. 1, pp. 11 170, Jan. 008. 6. addah-ali, A. otahari, and A. Khandani, Communication over IO X channels: Interference alignment, decomposition, and performance analysis, IEEE Transactions on Information Theory, vol. 4, no. 8, pp. 347 3470, Aug. 008. 7 N. Lee and J.-B. Lim, A novel signaling for communication on IO Y channel: Signal space alignment for network coding, IEEE International Symposium on Information Theory, pp. 89 896, 009.