Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Similar documents
Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article A UWB Band-Pass Antenna with Triple-Notched Band Using Common Direction Rectangular Complementary Split-Ring Resonators

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

NOVEL PLANAR INVERTED CONE RING MONOPOLE ANTENNA FOR UWB APPLICATIONS

Chapter 7 Design of the UWB Fractal Antenna

PRINTED BLUETOOTH AND UWB ANTENNA WITH DUAL BAND-NOTCHED FUNCTIONS

UWB ANTENNA WITH DUAL BAND REJECTION FOR WLAN/WIMAX BANDS USING CSRRs

Compact UWB antenna with dual band-notches for WLAN and WiMAX applications

Design of Integrated Triple Band Notched for Ultra-Wide Band Microstrip Antenna

Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Compact UWB Planar Antenna with Triple Band EMI Reduction Characteristics for WiMAX/WLAN/X-Band Satellite Downlink Frequency

Compact Ultra-Wideband Antenna With Dual Band Notched Characteristic

A Pattern Reconfigurable Antenna for WLAN and WiMAX Systems

ISSN: [Sherke* et al., 5(12): December, 2016] Impact Factor: 4.116

THE recent allocation of frequency band from 3.1 to

A New UWB Antenna with Band-Notched Characteristic

Offset-fed UWB antenna with multi-slotted ground plane. Sun, YY; Islam, MT; Cheung, SW; Yuk, TI; Azim, R; Misran, N

Single, Dual and Tri-Band-Notched Ultrawideband (UWB) Antenna Using Metallic Strips

Research Article CPW-Fed Slot Antenna for Wideband Applications

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

A Compact Wide slot antenna with dual bandnotch characteristic for Ultra Wideband Applications

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

DESIGN OF DUAL BAND NOTCHED ULTRA WIDEBAND ANTENNA USING (U-W) SHAPED SLOTS

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS

Implementation and investigation of circular slot UWB antenna with dual-band-notched characteristics

Research Article Quad Band Handset Antenna for LTE MIMO and WLAN Application

A New Compact Printed Triple Band-Notched UWB Antenna

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

A PRINTED DISCONE ULTRA-WIDEBAND ANTENNA WITH DUAL-BAND NOTCHED CHARACTERISTICS

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

CHAPTER 4 DESIGN OF BROADBAND MICROSTRIP ANTENNA USING PARASITIC STRIPS WITH BAND-NOTCH CHARACTERISTIC

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Application of protruded Γ-shaped strips at the feed-line of UWB microstrip antenna to create dual notched bands

Conclusion and Future Scope

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

Research Article Design of a Compact Quad-Band Slot Antenna for Integrated Mobile Devices

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

A COMPACT CPW-FED MONOPOLE ANTENNA WITH A U-SHAPED STRIP AND A PAIR OF L-SLITS GROUND FOR WLAN AND WIMAX APPLICATIONS

Ultra-Wideband Antenna Using Inverted L Shaped Slots for WLAN Rejection Characteristics

Ultra Wide Band Compact Antenna with Dual U- Shape Slots for Notch-Band Application

Small-Size Monopole Antenna with Dual Band-Stop Function for Ultra-Wideband Wireless Communications

DUAL BAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

CPW- fed Hexagonal Shaped Slot Antenna for UWB Applications

COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS

Loughborough Antennas And Propagation Conference, Lapc Conference Proceedings, 2009, p

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

Research Article Embedded Spiral Microstrip Implantable Antenna

Research Article Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF A NOVEL ULTRAWIDEBAND BUTTERFLY SHAPED PRINTED MONOPOLE ANTENNA WITH BANDSTOP FUNCTION

A NOVEL NOTCHED ULTRA WIDEBAND PATCH ANTENNA FOR MOBILE MICROCELLULAR NETWORK

A Compact Band-selective Filter and Antenna for UWB Application

Compact CPW UWB Pattern Diversity Antenna with Dual Band-notched Characteristics

DUAL TRIDENT UWB PLANAR ANTENNA WITH BAND NOTCH FOR WLAN

Design of a Wideband CPW Fed Monopole Antenna with Fractal Elements for Wireless Applications

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials Proceedings. Copyright IEEE.

Triple Band-Notched UWB Planar Monopole Antenna Using Triple-Mode Resonator

Research Article Design of a Compact Tuning Fork-Shaped Notched Ultrawideband Antenna for Wireless Communication Application

Efficient Design and Analysis of an Ultra Wideband Planar Antenna with band rejection in WLAN Frequencies

A COMPACT ULTRAWIDEBANDANTENNA WITH BAND- NOTCHES AT WIMAX AND WLAN BANDS

Research Article A Compact 5.5 GHz Band-Rejected UWB Antenna Using Complementary Split Ring Resonators

A MINIATURIZED INTERNAL WIDEBAND ANTENNA FOR WIRELESS USB DONGLE APPLICATION

Research Article A Compact Experimental Planar Antenna with a USB Connector for Mobile Phone Application

Design of UWB Monopole Antenna for Oil Pipeline Imaging

A Compact Triple Band Antenna for Bluetooth, WLAN and WiMAX Applications

A COMPACT MODIFIED DISC MONOPOLE ANTENNA FOR SUPER-WIDEBAND APPLICATIONS WITH ENHANCED GAIN

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

A Low-Cost Microstrip Antenna for 3G/WLAN/WiMAX and UWB Applications

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

HYBRID ARRAY ANTENNA FOR BROADBAND MILLIMETER-WAVE APPLICATIONS

Study of the Effect of Substrate Materials on the Performance of UWB Antenna

Progress In Electromagnetics Research B, Vol. 35, , 2011

Ultra-Wideband Monopole Antenna with Multiple Notch Characteristics

A CPW-FED ULTRA-WIDEBAND PLANAR INVERTED CONE ANTENNA

Progress In Electromagnetics Research C, Vol. 40, 1 13, 2013

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China

SMALL SEMI-CIRCLE-LIKE SLOT ANTENNA FOR ULTRA-WIDEBAND APPLICATIONS

Research Article Design of Compact 4 4 UWB-MIMO Antenna with WLAN Band Rejection

Design of CPW-Fed Slot Antenna with Rhombus Patch for IoT Applications

A COMPACT CPW-FED UWB SLOT ANTENNA WITH CROSS TUNING STUB

Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

Design and Application of Triple-Band Planar Dipole Antennas

Quasi Self Complementary (QSC) Ultra-Wide Band (UWB) Antenna Integrated with Bluetooth

Transcription:

e Scientific World Journal Volume 16, Article ID 356938, 7 pages http://dx.doi.org/1.1155/16/356938 Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection Avez Syed and Rabah W. Aldhaheri DepartmentofElectricalandComputerEngineering,KingAbdulazizUniversity,Jeddah1589,SaudiArabia Correspondence should be addressed to Rabah W. Aldhaheri; raldhaheri@kau.edu.sa Received 16 December 15; Accepted March 16 Academic Editor: Karim Kabalan Copyright 16 A. Syed and R. W. Aldhaheri. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A low-cost coplanar waveguide fed compact ultrawideband (UWB) antenna with band rejection characteristics for wireless local area network (WLAN) is proposed. The notch band characteristic is achieved by etching half wavelength C-shaped annular ring slot in the radiating patch. By properly choosing the radius and position of the slot, the notch band can be adjusted and controlled. With an overall size of 18.7 mm 17.6 mm, the antenna turns out to be one of the smallest UWB antennas with bandnotched characteristics. It has a wide fractional bandwidth of 13% (.9 13.7 GHz) with VSWR < and rejecting IEEE 8.11a and HIPERLAN/ frequency band of 5.1 5.9 GHz. Stable omnidirectional radiation patterns in the H plane with an average gain of. dbi are obtained. The band-notch mechanism of the proposed antenna is examined by HFSS simulator. A good agreement is found between measured and simulated results indicating that the proposed antenna is well suited for integration into portable devices for UWB applications. 1. Introduction In February, the Federal Communications Commission (FCC) has permitted the use of the frequency band of 3.1 to 1.6 GHz for unlicensed wireless communication [1]. Hence, the ultrawideband (UWB) technology is used in modern radio communication systems for transmitting data over transmission channels. The antennas are the key and challenging element of UWB systems which use 3.1 to 1.6 GHz frequency band. Therefore, more attention and research effort are made in designing UWB antenna as it provides higher and better data rate over a large bandwidth. However, in the designated bandwidth of UWB system, there are some other existing narrow band systems that occupy the UWB spectrum, such as WLAN IEEE 8.11a and HIPERLAN/ operating in the 5.15 5.85 GHz band. The interference fromsuchnarrowbandshinderstheperformanceofuwb systems. Hence, several UWB antennas with band notch function are developed by using conventional techniques to avoid interference in UWB communication systems [ 9]. Oneofthemethodsofachievingthebandstopcharacteristics is by inserting slots of various shapes and sizes into the radiating patch or the feed line or the ground plane [ 5]. A mushroom-type electromagnetic band gap (EBG) structures are used in [6] to prevent interference from unwanted narrowbands.in[7],thebandnotchcharacteristicsare obtained by using a slot type split ring resonator. The antenna reported in [8] consists of a square slot in the radiating patch. The WLAN notch operation is obtained by vertically placing the rectangular coupling strip in the centre of the slot patch. In [9], the band rejection is achieved by attaching two parasitic patches to the bottom layer of the antenna. However, most of these designs have a large size [ 9] and complex geometry [, 6, 9]. The antennas reported in [5, 7] fail to suppress the interference from the entire WLAN band (5.15 5.85 GHz). The proposed UWB antenna is smaller in size than the antennas reported in [3 9] with very simple geometry. In this paper, a low-cost, very simple, and compact CPW fed UWB antenna with band notch for WLAN is proposed. The proposed antenna operates from.9 to 13.7 GHz with a rejected frequency band of 5.1 5.9 GHz. The notch band function is obtained by etching a C-shaped annular ring slot in the radiating patch. The antenna parameters are optimized using the Ansoft HFSS electromagnetic simulator.

The Scientific World Journal The paper is organized as follows: Section gives the basic design of the proposed UWB antenna with band rejection. In Section 3, the parametric analysis is presented. Section presentsthesimulatedandmeasuredresultsandcomparison of the proposed antenna with other antennas in literature and finally Section 5 concludes the presented work. x y W s L 1. Antenna Structure and Design The geometry of the proposed WLAN band-notched UWB antenna is shown in Figure 1. The proposed antenna is printed on an inexpensive FR substrate with a dielectric permittivity of.. The thickness of the substrate is 1.5 mm and the overall dimension of the designed antenna is 18.7 mm 17.6 mm which is one of the smallest UWB antennas with band-notched characteristics. The compact small size with a metallic layer on one side of the substrate makes the antenna easily integrate with system circuits. The antenna consists of a bevel radiating patch and a modified ground plane, which are responsible for a large impedance bandwidth. The angle of the bevel is controlled by the dimension L 1.Hence,theentire band can be enhanced by adjusting the length L 1.Figure shows the return loss of the UWB antenna (without slot) for different values of L 1. As illustrated in Figure, by varying the length L 1, the impedance matching and the impedance bandwidth are affected for the entire frequency range. The length L 1 is optimized for 5.5 mm using HFSS and a change in this value leads to poor impedance matching. The stopband function is achieved by etching a C-shaped annular ring slot in the radiating patch. The annular slot has strong coupling with the radiating patch which helps to reject the WLAN band without any change in ultrawide bandwidth. The stopband frequency generated by the C-shaped slot canbeformulatedasfollows[13]: f stop = C L s ε eff, (1) where L s is the total length of the C-shaped slot, C is the speed of light, and ε eff is the effective dielectric constant which is given by (ε r + 1)/. Hereε r is the dielectric permittivity of the substrate. The total length of the slot is given by L s = πr + t s.thecentrerejectingfrequency,f stop = 5.5 GHz, is obtained when the total slot length is set to L s which is practically equal to.5λ gs.hereλ gs is guided wavelength and is equal to λ / ε eff,whereλ = C/f stop.a5ω coplanar waveguide (CPW) feed line is used to feed the radiating element. The Ansoft HFSS electromagnetic simulator has been used to simulate and optimize the proposed antenna structure. The optimized parameters are as follows: L = 18.7 mm, W = 17.6 mm, w f = 3 mm, L g =.85 mm, L 1 = 5.5 mm, g =.5 mm, d = 1.3 mm, a = 1. mm, b =.75 mm, t =.75 mm, s = 3.6 mm, and R =.95 mm. Figure 3 shows the return loss of the proposed antenna with and without a slot. It is seen that, without insertion of the slot, the proposed antenna covers entire UWB, while the inclusion of slot introduces a notched band within the pass band. The impedance characteristics of the proposed antenna with slot are similar to those of the antenna without a slot. Return loss (db) L 5 1 15 5 3 35 b t a P w f Figure 1: Geometry of the proposed antenna. 6 8 1 1 1 L 1 =.7 mm L 1 =.1mm L 1 =5.5mm Figure : Return loss of the UWB antenna (without slot) for different values of L 1. 3. Parametric Analysis Results shown in Figure indicate that the notch band characteristic is controllable by varying the radius R. It is observed that the centre frequency of the notch band moves to the lower frequency region when the radius R is varied from.55 mm to 3.35 mm. In this design, a better band stop feature is obtained at an optimized value of R =.95 mm which rejects the whole WLAN band. It is seen that the bandwidth of notch band is decreased when R is other than.95 mm. R g d L g

The Scientific World Journal 3 6 5 5 Return loss (db) 1 15 5 VSWR 3 3 1 35 3 5 6 7 8 9 1 11 1 13 1 With slot Without slot Figure 3: Return loss of the proposed antenna with and without slot. 3 5 6 7 8 9 1 11 1 13 1 s =. mm s=3.6mm (proposed) s=5.mm Figure5: Effect of parameter s on band notch function. 6 5 5 VSWR 3 VSWR 3 1 1 3 5 6 7 8 9 1 11 1 13 1 R =.55 mm R =.95 mm (proposed) R=3.35mm Figure: Effect of parameter R on band notch function. 5 6 7 8 p(5., 8.8) p(6., 8.8) p(7., 8.8) (proposed) p(7., 7.8) p(7., 9.8) Figure6:Effectoflocationofslotonbandnotchfunction. Figure 5 shows the effect of parameter, s, onbandnotch function. It is seen that the centre frequency of notch band is shifted towards higher frequency band as the value of s is increased from. mm to 5. mm. Hence, the parameter s is optimized to obtain better notch results. The optimized values of s and R at which the proposed antenna rejects the wholewlanbandwithexcellentnotchfeaturesare3.6mm and.95mm,respectively.theinclusionofslotjustcreates a notched band feature without affecting the impedance characteristics of the proposed antenna. The location of the C-shaped slot is controlled by the parameter p which is the centre of ring slot. The effect of varying the slot position (p) while keeping other parameters constant is presented in Figure 6. The proposed antenna coverstheentireuwbbandwidthirrespectiveofslotposition p. The parameter p affects only the notched band and hence for simplicity and better visuality only the variation in the notched band is shown in Figure 6. The better notch band characteristics are obtained when the slot is located at p(7., 8.8). It is observed that the notch bandwidth decreases with the change in the slot position from (7., 8.8) which in turn fails to reject the whole WLAN band (5.15 5.85 GHz).. Results and Discussions The Ansoft HFSS version 15 simulator is employed to simulate the proposed antenna. The antenna with the optimized

The Scientific World Journal (a) (b) Figure7:(a)LPKFmachine(S13)and(b)proposedantennaprototype. VSWR 7 6 5 3 1 3 5 6 7 8 9 1 11 1 13 1 Simulated Measured Figure 8: Simulated and measured VSWR curves. 1 69. 7.6 3.88.69 15.66 1.81 7.6 5.15 3.55.5 1.69 1.16.8.55 Figure 9: Surface current distribution on the antenna at 5.5 GHz. (A/m) parameters was fabricated using PCB LPKF (S13) prototyping machine, which is shown in Figure 7(a), and the performance was measured using Agilent N55A PNA network analyzer. The fabricated antenna prototype for experimental measurements is as shown in Figure 7(b). The simulated andmeasuredresultsofthevswrfortheproposeddesign are shown in Figure 8. Good agreement has been observed between the simulated and measured results. The measured result shows that the operating frequency band of the proposed antenna ranges from.9 GHz to 13.7 GHz (VSWR < ) which covers the entire UWB while rejecting the 5.1 5.9 GHz band. A slight deviation in results is mainly due to fabrication tolerance and the effect of SMA connector. To further investigate the band-notched function, the surface current distribution of the designed antenna at the centre rejected frequency has been simulated and shown in Figure 9. Itcanbeseenthatthecurrentconcentratedontheinner and outer edges of C slot at 5.5 GHz. Hence, attenuation is produced at the notch frequency which successfully rejects 5.1 5.9 GHz frequency band which in turn prevents the potential interference from WLAN band. The proposed UWB antenna with notch characteristics has very simple, compact size and is easy to fabricate on a lowcost substrate. The performance of proposed work in terms of the size of the antenna, impedance bandwidth, and notch characteristics is compared with other existing antennas in the literature [5, 6, 8, 1 1] as mentioned in Table 1. From the comparison, it can be concluded that the proposed antenna structure gives better impedance bandwidth and excellent

The Scientific World Journal 5 1 33 3 1 33 3 1 3 6 1 3 6 3 3 7 9 7 9 3 3 1 1 1 1 1 1 18 15 1 1 18 15 E plane, simulated E plane, measured H plane, simulated H plane, measured E plane, simulated E plane, measured H plane, simulated H plane, measured (a) (b) 1 33 3 1 33 3 1 3 6 1 3 6 3 3 7 9 7 9 3 3 1 1 1 1 1 1 18 15 1 1 18 15 E plane, simulated E plane, measured H plane, simulated H plane, measured E plane, simulated E plane, measured H plane, simulated H plane, measured (c) (d) Figure 1: Measured (dash line) and simulated (solid line) radiation patterns of the proposed antenna at (a) GHz, (b) 5.5 GHz, (c) 6. GHz, and (d) 1 GHz. notch characteristics with relatively very small and simple structure. The measured and simulated E plane and H plane radiation patterns of the proposed antenna at. GHz, 5.5 GHz, 6. GHz, and 1 GHz are presented in Figure 1. It is seen from the results that the antenna exhibits an omnidirectional and a stable radiation pattern in H plane. In E plane, the radiation patterns are slightly bidirectional with two nulls and the patterns are similar to that of the wideband monopole antenna. Overall the patterns are stable in the entire operation band making the antenna a strong candidate for UWB applications. Figure 11 presents the measured gain of the proposed antenna. The average antenna gain is about. dbi over most of the operating band. However, the antenna shows

6 The Scientific World Journal Table 1: Comparison of the proposed antenna with the existing antennas in literature. Here λ g is the guided wavelength at the first resonance. Reference number Dimensions Impedance bandwidth ( 1 db criteria) Notched band (GHz) [5] [6] [8] [1] [11] [1] Proposed antenna 35 mm 35 mm.73λ g.73λ g 117%.8 5.7 39 mm 35 mm.9λ g.8λ g 19% 5.15 5.85 35 mm 3 mm.75λ g.6λ g 11% 5.1 6.8 3 mm 39.3 mm.9λ g.6λ g 19% 5.15 5.85 36 mm 3 mm.66λ g.55λ g 13%.85 6. 35 mm 35 mm.83λ g.83λ g 19% 5. 6. 18.7 mm 17.6 mm.5λ g.λ g 13% 5.1 5.9 Measured gain (dbi) 1 8 6 6 8 3 5 6 7 8 9 1 11 1 13 Figure 11: Measured gain of the proposed antenna. a sharp gain decrease in 5.1 5.9 GHz band. This result shows that the antenna is successfully performed with the rejection in WLAN band. 5. Conclusions In this paper, a very simple, low-cost, and compact UWB antenna with band stop characteristics has been proposed andimplemented.thefabricatedprototypehasthefrequency band of.9 GHz to 13.7 GHz with a rejection band around 5.1 5.9 GHz, which is due to the cutting of a C-shaped slot in the radiating patch. The notch band can be tuned and adjusted by properly choosing the radius and the location of the slot. With a compact size of 18.7 mm 17.6 mm, it turnsouttobeoneofthesmallestuwbantennaswhichcan be easily integrated into system circuits. The low profile and stable radiation characteristics of the proposed antenna make it suitable for being used in UWB applications. Competing Interests The authors declare that they have no competing interests. References [1] First Report and Order, Revision of part 15 of the commission s rule regarding ultra-wideband transmission systems, Tech. Rep. ET 98-153, Federal Communications Commission, Washington, DC, USA,. [] M. Ojaroudi, G. Ghanbari, N. Ojaroudi, and C. Ghobadi, Small square monopole antenna for UWB applications with variable frequency band-notch function, IEEE Antennas and Wireless Propagation Letters,vol.8,pp.161 16,9. [3] X. Kang, H. Zhang, Z. Li et al., A band-notched UWB printed half elliptical ring monopole antenna, Progress in Electromagnetics Research C, vol. 35, pp. 3 33, 1. [] R. Fallahi, A.-A. Kalteh, and M. G. Roozbahani, A novel UWB elliptical slot antenna with band-notched characteristics, Progress in Electromagnetics Research,vol.8,pp.17 136,8. [5] J.-B. Jiang, Y. Song, Z.-H. Yan, X. Zhang, and W. Wu, Bandnotched UWB printed antenna with an inverted-l-slotted ground, Microwave and Optical Technology Letters, vol.51,no. 1, pp. 6 63, 9. [6] M. Yazdi and N. Komjani, Design of a band-notched UWB monopole antenna by means of an EBG structure, IEEE Antennas and Wireless Propagation Letters,vol.1,pp.17 173, 11. [7] J. Kim, C.-S. Cho, and J.-W. Lee, 5. GHz notched ultrawideband antenna using slot-type SRR, Electronics Letters,vol.,no.6,pp.315 316,6. [8] H.-W. Liu, C.-H. Ku, T.-S. Wang, and C.-F. Yang, Compact monopole antenna with band-notched characteristic for UWB applications, IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 397, 1. [9] K.-H. Kim, Y.-J. Cho, S.-H. Hwang, and S.-O. Park, Bandnotched UWB planar monopole antenna with two parasitic patches, Electronics Letters,vol.1,no.1,pp.783 785,5. [1]Y.F.Weng,S.W.Cheung,andT.I.Yuk, Compactultrawideband antennas with single band-notched characteristic

The Scientific World Journal 7 using simple ground stubs, Microwave and Optical Technology Letters,vol.53,no.3,pp.53 59,11. [11] C. Yoon, W.-J. Lee, W.-S. Kim, H.-C. Lee, and H.-D. Park, Compact band-notched ultra-wideband printed antenna using inverted L-slit, Microwave and Optical Technology Letters, vol. 5,no.1,pp.13 1,1. [1] Y.-C. Lin and K.-J. Hung, Compact ultra-wideband rectangular aperture antenna and band-notched designs, IEEE Transactions on Antennas and Propagations, vol.5,no.11,pp.375 381, 6. [13]T.DissanayakeandK.P.Esselle, Predictionofthenotch frequency of slot loaded printed UWB antennas, IEEE TransactionsonAntennasandPropagation,vol.55,no.11,pp.33 335, 7.

Rotating Machinery Engineering The Scientific World Journal Distributed Sensor Networks Sensors Control Science and Engineering Advances in Civil Engineering Submit your manuscripts at Electrical and Computer Engineering Robotics VLSI Design Advances in OptoElectronics Navigation and Observation Chemical Engineering Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Modelling & Simulation in Engineering Shock and Vibration Advances in Acoustics and Vibration