An Investigation of Power Converters Fed BLDC Motor for Adjustable Speed

Similar documents
Usha Nandhini.M #1, Kaliappan.S *2, Dr. R. Rajeswari #3 #1 PG Scholar, Department of EEE, Kumaraguru College of Technology, Coimbatore, India

AN EXPERIMENTAL INVESTIGATION OF PFC BLDC MOTOR DRIVE USING BRIDGELESS CUK DERIVED CONVERTER

An Adjustable-Speed PFC Bridgeless Single Switch SEPIC Converter-Fed BLDC Motor

REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER BLDC DRIVE

I. INTRODUCTION. 10

ADVANCES in NATURAL and APPLIED SCIENCES

Power Factor Correction for Chopper Fed BLDC Motor

BLDC Motor Speed Control and PFC Using Isolated Zeta Converter

A Power Factor Corrected Bridgeless Type III Cuk Derived Converter fed BLDC Motor Drive

Improved Power Quality Bridgeless Isolated Cuk Converter Fed BLDC Motor Drive

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

International Journal of Scientific Research and Reviews

A Cost Effective PFC Bridgeless Buck Boost Converter-Fed BLDC Motor Drive

PFC of VSI Based Bridgeless Canonical Switching Cell Converter Fed BLDC Motor Drive

Speed control of power factor corrected converter fed BLDC motor

Implementation Of Bl-Luo Converter Using FPGA

Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage

ISSN Vol.04,Issue.04 February-2015, Pages:

IMPLEMENTATION OF PFC CONVERTER BASED DIGITAL SPEED CONTROLLER FOR BLDC MOTOR DRIVES

ANALYSIS OF POWER QUALITY IMPROVEMENT OF BLDC MOTOR DRIVE USING CUK CONVERTER OPERATING IN DISCONTINUOUS CONDUCTION MODE

Simulation of Solar Powered PMBLDC Motor Drive

An Efficient Bridge-Less Power Factor Correction Tapped Inductor based SEPIC converter For BLDC Motor Application

Bridgeless PFC Cuk Derived Converter Fed BLDC Motor with PID and Fuzzy Logic Controller

ABSTRACT I. INTRODUCTION

DESIGN OF A VOLTAGE-CONTROLLED PFC CUK CONVERTER-BASED PMBLDCM DRIVE for FAN

EFFICIENCY OPTIMIZATION CONVERTER TO DRIVE BRUSHLESS DC MOTOR

Power quality improvement and ripple cancellation in zeta converters

Brushless DC Motor Drive using Modified Converter with Minimum Current Algorithm

Study on DC-DC Converters for a Pfc BLDC Motor Drive

Analysis of a Sensor Based BLDC Motor With Bridgeless SEPIC Converter For PFC And Speed Control

VIENNA RECTIFIER FED BLDC MOTOR

High Power Factor Bridgeless SEPIC Rectifier for Drive Applications

A Bridgeless High Gain Cuk Converter for Power Factor Correction and Reduction of Harmonic Distortion in BLDC Motor

HARDWARE IMPLEMENTATION OF PFC BUCK-BOOST CONVERTER DRIVEN PMBLDC MOTOR DRIVE FOR MINING APPLICATIONS

Webpage: Volume 3, Issue IV, April 2015 ISSN

Vienna Rectifier Fed BLDC Motor

Cuk Converter Fed BLDC Motor

Zeta Converter Fed Brushless DC Motor Drive for Power Factor Correction in Low Power Applications

Single Phase Induction Motor Drive using Modified SEPIC Converter and Three Phase Inverter

PFC CUK CONVERTER FOR BLDC MOTOR DRIVES

Simulation of Fuzzy Controller based Isolated Zeta Converter fed BLDC motor drive

Cuk Converter Fed BLDC Motor with a Sensorless Control Method

BLDC Motor Drive with Power Factor Correction Using PWM Rectifier

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications

Design and Implementation of the Bridgeless AC-DC Adapter for DC Power Applications

Comparative study on Bridge type Negative Luo converter fed BLDC motor drive.

BRIDGELESS SEPIC CONVERTER FOR POWER FACTOR IMPROVEMENT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Single Phase Bridgeless SEPIC Converter with High Power Factor

AN EFFICIENT CLOSED LOOP CONTROLLED BRIDGELESS CUK RECTIFIER FOR PFC APPLICATIONS

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

ADVANCES in NATURAL and APPLIED SCIENCES

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL

PERFORMANCE IMPROVEMENT OF CEILING FAN MOTOR USING VARIABLE FREQUENCY DRIVE WITH SEPIC CONVERTER

A BRUSHLESS DC MOTOR DRIVE WITH POWER FACTOR CORRECTION USING ISOLATED ZETA CONVERTER

A BRIDGELESS CUK CONVERTER BASED INDUCTION MOTOR DRIVE FOR PFC APPLICATIONS

Design And Implementation Of PFC CUK Converter-Based PMBLDCM Drive

Performance Improvement of Bridgeless Cuk Converter Using Hysteresis Controller

A CSC Converter fed Sensorless BLDC Motor Drive

Power Factor Correction Using Type 1 Bridgeless Luo Converter with Optimal Genetic Algorithm in BLDC Motor

Comparative Analysis of Bridgeless CUK and SEPIC Converter

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

A New Closed Loop AC-DC Pseudo boost Based Converter System for CFL

Double Boost SEPIC AC-DC Converter

Voltage-Control Based Pmbldcm By Using Cuk Converter With Pfc

Bridgeless Dual Buck-Boost Converter Fed BLDC Motor Drive with Power Factor Correction

BLIL PFC Boost Converter for Plug in Hybrid Electric Vehicle Battery Charger

DESIGN OF BRIDGELESS HIGH-POWER-FACTOR BUCK-CONVERTER OPERATING IN DISCONTINUOUS CAPACITOR VOLTAGE MODE.

A Voltage Quadruple DC-DC Converter with PFC

Real Implementation of a Single Sensor based PFC with Novel Converter Fed BLDC Motor Drive

Efficiency Optimized Brushless DC Motor Drive. based on Input Current Harmonic Elimination

A Unique SEPIC converter based Power Factor Correction method with a DCM Detection Technique

Performance Enhancement of Sensorless Control of Z-Source Inverter Fed BLDC Motor

SINGLE PHASE BRIDGELESS PFC FOR PI CONTROLLED THREE PHASE INDUCTION MOTOR DRIVE

New Efficient Bridgeless Cuk Rectifiers for PFC Application on d.c machine

Single Phase Cuk Rectifier To Get Positive Output Voltage And Reduced Total Harmonic Distortion.

Mechatronics, Electrical Power, and Vehicular Technology

A New Single Switch Bridgeless SEPIC PFC Converter with Low Cost, Low THD and High PF

A NEW C-DUMP CONVERTER WITH POWER FACTOR CORRECTION FEATURE FOR BLDC DRIVE

A FLEXIBLE-SPEED CONTROL OF BLDC MOTOR DRIVE WITH FUZZY BASED PFC BRIDGELESS BUCK BOOST CONVERTER

A Predictive Control Strategy for Power Factor Correction

ZCS BRIDGELESS BOOST PFC RECTIFIER Anna Joy 1, Neena Mani 2, Acy M Kottalil 3 1 PG student,

POWER QUALITY ENHANCEMENT USING BRIDGELESS CONVERTER BASED ON MULTIPLE OUTPUT SMPS

Swinburne Research Bank

Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques

An AC-DC SEPIC CONVERTER FOR LIGHT EMITTING DIODE WITH CLASS E RESONANCE

Power Factor Correction of Three Phase Induction Motor

ISSN Vol.04,Issue.13, September-2016, Pages:

Coupled Inductor Based Single Phase CUK Rectifier Module for Active Power Factor Correction

Low Cost Power Converter with Improved Performance for Switched Reluctance Motor Drives

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): & Impact Factor: Special Issue, NCFTCCPS -

A NEW SINGLE STAGE THREE LEVEL ISOLATED PFC CONVERTER FOR LOW POWER APPLICATIONS

Hardware Implementation of Two-Phase Bridgeless Interleaved Boost Converter for Power Factor Correction

Renewable Energy Based Interleaved Boost Converter

Simulation of Fuzzy Controller Based PFC Cuk Converter Fed BLDC Motor Drive

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE

Transcription:

Circuits and Systems, 2016, 7, 1369-1378 Published Online June 2016 in SciRes. http://www.scirp.org/journal/cs http://dx.doi.org/10.4236/cs.2016.78120 An Investigation of Power Converters Fed BLDC Motor for Adjustable Speed Subramaniam Kaliappan 1, Dr. Ramachandran Rajeswari 2 1 Department of Electrical and Electronics Engineering, Kumaraguru College of Technology, Coimbatore, India 2 Department of Electrical and Electronics Engineering, Government College of Technology, Coimbatore, India Received 7 April 2016; accepted 22 April 2016; published 9 June 2016 Copyright 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract This paper reports the converter topologies which are employed for better Power Factor Correction at the input side. The Power Factor Correction is an important factor when considering the Power Quality. Based on the converter topologies, the Bridgeless converters are preferred in order to reduce the number of switching devices, losses associated with it and improve the Power Quality further more. This paper investigates about the Power Factor performances and conduction losses of the Bridgeless Power Factor Corrector Converters which see through the benefits and limitations by analyzing the Bridgeless Buck-Boost Converter, Bridgeless SEPIC converter and Bridgeless CUK converter. The resultant voltage is fed to the BLDC motor which is rapidly replacing the Induction motor for its better operating characteristics. These strategies are being analyzed using the MATLAB/Simulink software and the results are verified through the experimental analysis. The converter choice is preferred through the performance characteristics and Power Factor Correction at the supply. The Power Factor obtained should be within the acceptable limits under IEC 61000-3-2 standards. Keywords BLDC Motor, Power Factor Correction, Power Quality, PFC Converters 1. Introduction There are two factors that provide the quantitative measure for the quality of power supply in an electrical network. They are the Power Factor and Total Harmonic Distortion (THD). The Power Factor (PF) of the system predominantly decides the amount of useful power to be consumed by an electric network [1]. The reward of Power Factor Correction includes less energy and distortion losses, reduced losses in the system at the time of distribution, improved voltage regulation and can supply the power demand. This paper deals with the Power How to cite this paper: Kaliappan, S. and Rajeswari, Dr.R. (2016) An Investigation of Power Converters Fed BLDC Motor for Adjustable Speed. Circuits and Systems, 7, 1369-1378. http://dx.doi.org/10.4236/cs.2016.78120

Factor Correction thereby improving the Power Quality at ac mains. The input bridge rectifier in the conventional Power Factor Corrector converters reduces the efficiency of the converter. In order to reduce the losses associated with the rectifier, the rapidly developing power electronic strategies are employed [2] [3]. Some of the limitations are Stresses across the switch, since a single switch for both the period of conduction, conduction losses, etc. The Bridgeless Buck-Boost converter has two semiconductor switches for both the current direction. Each switch is turned on for the each half cycle. The first switch conducts for the positive half cycle whose PWM signals for both the switches are same [4]-[7]. This converter has better performance than the other two PFC converters. Thereby the efficiency is also increased which results in the unity power factor at the supply which is under the Power Quality standards. The output voltage from the inverter is fed to the BLDC motor, which has obtained its place for its noiseless operation, less maintenance and greater flux density. The motor is electronically commutated using the power electronic switches [8] [9]. Based on the drawbacks of the conventional converters the Bridgeless converters are proposed to overcome all these criteria. This paper investigates the Bridgeless Cuk, Bridgeless SEPIC, Bridgeless Buck-Boost converters. These converters individually perform well with improved power factor but have some merits and demerits when comparing each other converters [10]-[12]. The conduction losses and the thermal stress across the switch get reduced and thereby increase the efficiency of the converter. It requires a additional gate drive transformer, similarly the capacitance and inductance are also needed for further reduction in the stress across the switch. This is the drawback in this converter topology. The Bridgeless Cuk converter as stated above has the same advantages and further adds the zero current turn on and zero current turn off. This reduces the difficulty of the controller. The only drawback in PFC Cuk converter is floating switch and step up voltage more than 2. Hence achieving the Unity Power Factor through this converter is little difficult. The AC-DC Bridgeless SEPIC converter is employed with two switches which replaces the diodes in the input bridge rectifier. The absence of Diode Bridge Rectifier and each diode for each current flow path reduces the conduction losses and improves the efficiency of the converter. The Hall sensors are employed in order to locate the position of the rotor. The current to the motor is fed to the controller. The PIC controller is used for its good performance [13] [14]. 2. CUK Converter Fed BLDC Motor Figure 1 shows the block diagram of CUK converter fed BLDC motor. The proposed PFC CUK converter based VSI fed BLDC motor has been designed and simulated in MATLAB/Simulink. This method of speed (N) control utilize the controlling the DC link voltage. The CUK converter produces less ripple current with less number of switching devices. The estimated performance has been achieved for wider ranges of speed control and variation of supply voltage. The obtained Power Factor 0.85 and the current THD 3.09% are within the acceptable Power Quality limits of IEC 61000-3-2 is shown in Table 1. Still the stress across the switch can be further reduced and the performance can be improved. 3. Bridgeless Buck-Boost Converter Fed BLDC Motor The Bridgeless Buck-Boost Converter fed BLDC motor is simulated in MATLAB/Simulink. The THD of supply Figure 1. Block diagram of CUK converter fed BLDC motor. 1370

current at ac mains with output power for the proposed scheme of the Bridgeless (BL) buck-boost converter fed BLDC motor drive is achieved within the IEC 61000-3-2 limits. The assessment is based on the control requirement and losses in the PFC converter and VSI-fed BLDC motor is shown in Figure 2. The speed (N) remains constant even with the change in voltage. The attained current Total Harmonic Distortion (T.H.D) is 2.89% is shown in Table 2. The simulation results the Power Factor (PF) in 0.95 which is closer to the Unity Power factor, doesn t cause Power Quality issues at ac mains. 4. Bridgeless SEPIC Converter Fed BLDC Motor The Bridgeless SEPIC converter fed BLDC motor is simulated in MATLAB/Simulink. The THD of source current at ac mains with output power for the proposed scheme of the BL SEPIC Ripple Free converter fed BLDC motor drive is obtained within the IEC 61000-3-2 limits. The assessment is based on the control requirement and losses in the PFC converter and VSI-fed BLDC motor is shown in Figure 3. The speed remains constant even with the change in voltage. The attained current Total Harmonic Distortion (T.H.D) is 1.94% is shown in Table 3. The simulation gives the Power Factor in 0.99 which is closer to the Unity Power factor, doesn t cause Power Quality issues at ac mains. 5. Block Diagram Figure 4 shows the block diagram of proposed system. The speed of BLDC motor is directly relative to the DC Table 1. Performance of PFC cuk converter-fed BLDC Motor drive under speed control. S. No V dc N (RPM) THD of I in (%) I in (%) PF Load (NM) 1 50 600 3.62 14 0.73 5 2 100 980 3.45 14 0.87 4 3 150 1200 3.23 14 0.92 3 4 200 2900 3.19 14 0.95 2 5 250 3700 3.09 14 0.95 1 Table 2. Performance of PFC BL buck-boost converter fed BLDC motor drive under speed control. S. No V dc N (RPM) THD of I in (%) I in (%) Power Factor(PF) Load (NM) 1 50 680 3.37 14 0.88 5 2 100 1020 3.03 14 0.92 4 3 150 1480 3.14 14 0.93 3 4 200 3040 3.07 14 0.95 2 5 250 3900 2.89 14 0.95 1 Figure 2. Block diagram of buck-boost converter fed BLDC motor. 1371

Figure 3. Block Diagram of proposed Bridgeless SEPIC converter fed BLDC motor. Figure 4. Block diagram of proposed system. Table 3. Performance of PFC BL SEPIC converter-fed BLDC motor drive under speed control. S. No V dc N (RPM) THD of I in (%) I in (%) PF Load (NM) 1 50 720 3.37 12 0.97 5 2 100 1200 3.03 12 0.98 4 3 150 1850 2.71 12 0.98 3 4 200 3200 2.44 12 0.99 2 5 250 3990 1.94 12 0.99 1 link voltage. Pulse period is directly proportional to the rate of the POT input. When the rate of input is low, pulse will be thin and the converter output voltage is small. When the value of input is high, pulse will be thick and the converter output voltage is high. When the DC link voltage of the converter is varied the speed of the motor is varied without human intervention with high power factor. The motor utilizes the given DC power resourcefully. The controller generates 8 PWM pulses for the VSI and the converter. PWM control fine-tunes the duty ratio of the BLDC motor. The average DC value of the signal can be varied by 1372

S. Kaliappan, Dr. R. Rajeswari changing the duty cycle. The PWM pulse is used to activate the MOSFET switches of the voltage source inverter (VSI). The Hall Sensor is used to discover the rotor position of the motor. Based on this the VSI switches will be given with PWM pulses. For every position of the rotor, different MOSFET switches are given with PWM pulse. Speed of the motor is presented on the LCD, which is varied based on the POT voltage is shown in Figure 4. 6. Simulation Results and Discussion The performances of the system with various Supply voltages (shown in Figure 5) are tabulated in Table 2. The operation of the system with various speeds is listed in Table 3. During simulating the proposed system, the Speed variation is smooth and required speed is obtained and maintained as shown in Figure 6. Figure 7 shows the DC link voltage is varied continuously according to the required speed. The variation of speed and harmonic spectra is shown in Figure 7 and Figure 8. The Bridgeless SEPIC converter has a switch for both the positive and negative half cycle. 7. Hardware Implementation of Bridgeless SEPIC Converter Fed BLDC Motor The proposed system has Bridgeless SEPIC converter for the ripple free input current. The output of the converter is given to the Voltage Source Inverter. The VSI has six MOSFET switches for its operation. The output of the VSI is fed to the BLDC motor. The rotor position of the BLDC motor is measured by the Hall Effect Sensors. Based on the Hall Sensor signal the PWM pulse is produced by the PIC microcontroller. The speed of the motor is varied by the POT and it is displayed in the LCD Display. The DSO is used to capture the results experimentally and verify it with the simulation result. The DSO is used to obtain the waveform a result at the various place of the experimental setup is shown in Figure 9. The resultant waveforms are compared with the MATLAB/Simulink results. The motor specifications are shown in Table 4. The stress in the switch is little high when comparing the gate pulses, PWM pulses other converters comparisons and hardware result which is shown in Figures 10-14. Figure 5. Source voltage and current. 1373

Figure 6. Speed regulation (rpm). Figure 7. DC link voltage. 1374

8. Conclusion This investigation describes the significant difference between the PFC converters and their operating strategies. The converter features like conduction losses, stress across the semiconductor switches, Power Factor and Total Harmonic Distortion are checked using the MATLAB/Simulink platform and verified experimentally. The performance and efficiency of the three ac-dc converter vary according to the design. On simulating the circuit, the Buck-Boost converter reduces the stress across the switches but in order to reduce the stresses, the capacitance and inductance must be added which makes the circuit complex. The Cuk converter has the advantage of zero current turn on and zero current turn off. But the drawback is the floating switch and the step up voltage Table 4. Motor Specifications. S. No Parameters Specification 1 Rated current 3.5 A 2 Rated torque 0.588 Nm. 3 Rated speed 4000 rpm. 4 Number of pole-pairs 6 Figure 8. Harmonic spectra. Figure 9. Gate pulses to the different switches. 1375

Figure 10. PWM pulses to the VSI. Figure 11. Output from the DC link voltage (Vdc). Figure 12. Comparison chart of different converters PF vs output voltage. 1376

Figure 13. Comparison chart of different converters speed vs output voltage. Figure 14. Hardware setup of proposed system. rises to 2. While comparing these PFC converters, the Bridgeless SEPIC converter reduces the conduction losses, improves the Power Factor and the Harmonic Distortion are within the IEC 61000 3-2 limits. These features are verified experimentally and the Bridgeless SEPIC converter is economical on investigating the other ac-dc converters. References [1] Fardoun, A.A., Ismail, E.H., Sabzali, A.J. and Al-Saffar, M.A. (2012) New Efficient Bridgless Cuk Rectifiers for PFC Applications. IEEE Transactions on Power Electronics, 27, 3292-3301. http://dx.doi.org/10.1109/tpel.2011.2182662 [2] Wei, H. and Batarseh, I. (1998) Comparison of Basic Converter Topologies for Power Factor Correction. Proceedings of IEEE 98 Southeastcon, Orlando, 24-26 April 1998, 348-353. http://dx.doi.org/10.1109/secon.1998.673368 1377

[3] Singh, B., Singh, B.N., Chandra, A., Al-Haddad, K., Pandey, A. and Kothari, D.P. (2003) A Review of Single-Phase Improved Power Quality Ac Dc Converters. IEEE Transactions on Industrial Electronics, 50, 962-981. http://dx.doi.org/10.1109/tie.2004.825341 [4] Chen, J., Maksimovic, D. and Erickson, R.W. (2006) Analysis and Design of a Low-Stress Buck-Boost Converter in Universal Input PFC Applications. IEEE Transactions on Power Electronics, 21, 320-329. http://dx.doi.org/10.1109/tpel.2005.869744 [5] Gopalarathnam, T. and Toliyat, H.A. (2003) A New Topology for Unipolar Brushless Dc Motor Drive with High Power Factor. IEEE Transactions on Power Electronics, 18, 1397-1404. http://dx.doi.org/10.1109/tpel.2003.818873 [6] Shao, J. (2006) An Improved Microprocessor-Based Sensor Less Brushless DC (BLDC) Motor Drive for Automotive Applications. IEEE Transactions on Industrial Electronics, 42, 1216-1221. http://dx.doi.org/10.1109/tia.2006.880888 [7] Yang, J.-W. and Do, H.-L. (2013) Bridgeless SEPIC Converter with a Ripple-Free Input Current. IEEE Transactions on Power Electronics, 28, 3388-3393. http://dx.doi.org/10.1109/tpel.2012.2226607 [8] Singh, S. and Singh, B. (2012) A Voltage-Controlled PFC Cuk Converter-Based BLDCM Drive for Air-Conditioner. IEEE Transactions on Industry Applications, 48, 832-838. http://dx.doi.org/10.1109/tia.2011.2182329 [9] Singh, S. and Singh, B. (2011) Power Quality Improved PMBLDCM Drive for Adjustable Speed Application with Reduced Sensor Buck-Boost PFC Converter. The 4th ICETET Proceedings, 18, 180-184. http://dx.doi.org/10.1109/icetet.2009.111 [10] Wu, T.-F. and Chen, Y.-K. (1998) Modeling PWM DC/DC Converters out of Basic Converter Units. IEEE Transactions on Power Electronics, 13, 870-881. http://dx.doi.org/10.1109/63.712294 [11] Bist, V. and Singh, B. (2014) A Adjustable-Speed PFC Bridgeless Buck-Boost Converter-Fed BLDC Motor Drive. IEEE Transactions on Industrial Electronics, 61, 2665-2677. http://dx.doi.org/10.1109/tie.2013.2274424 [12] Bist, V. and Singh, B. (2015) PFC Cuk Converter Fed BLDC Motor Drive. IEEE Transactions on Industrial Electronics, 30, 871-887. http://dx.doi.org/10.1109/tie.2014.2384001 [13] Chen, Y. and Dai, W.-P. (2013) Classification and Comparison of BPFC Techniques. Przegląd Elektrotechniczny, 89, 179-186. http://pe.org.pl/articles/2013/2a/39.pdf [14] Jang, Y. and Jovanovic, M.M. (2011) Bridgeless High-Power-Factor Buck Converter. IEEE Transactions on Power Electronics, 26, 602-611. http://dx.doi.org/10.1109/tpel.2010.2068060 1378