Application of Affine Projection Algorithm in Adaptive Noise Cancellation

Similar documents
Implementation of Optimized Proportionate Adaptive Algorithm for Acoustic Echo Cancellation in Speech Signals

Performance Analysis of gradient decent adaptive filters for noise cancellation in Signal Processing

A Three-Microphone Adaptive Noise Canceller for Minimizing Reverberation and Signal Distortion

Acoustic Echo Cancellation: Dual Architecture Implementation

Speech Enhancement Based On Noise Reduction

Research of an improved variable step size and forgetting echo cancellation algorithm 1

Analysis of LMS Algorithm in Wavelet Domain

Architecture design for Adaptive Noise Cancellation

Study of Different Adaptive Filter Algorithms for Noise Cancellation in Real-Time Environment

Acoustic Echo Cancellation using LMS Algorithm

A VSSLMS ALGORITHM BASED ON ERROR AUTOCORRELATION

Performance Analysis of Feedforward Adaptive Noise Canceller Using Nfxlms Algorithm

A variable step-size LMS adaptive filtering algorithm for speech denoising in VoIP

Performance Comparison of ZF, LMS and RLS Algorithms for Linear Adaptive Equalizer

DESIGN AND IMPLEMENTATION OF ADAPTIVE ECHO CANCELLER BASED LMS & NLMS ALGORITHM

Modified Least Mean Square Adaptive Noise Reduction algorithm for Tamil Speech Signal under Noisy Environments

Impulsive Noise Reduction Method Based on Clipping and Adaptive Filters in AWGN Channel

An Effective Implementation of Noise Cancellation for Audio Enhancement using Adaptive Filtering Algorithm

Area Optimized Adaptive Noise Cancellation System Using FPGA for Ultrasonic NDE Applications

On Regularization in Adaptive Filtering Jacob Benesty, Constantin Paleologu, Member, IEEE, and Silviu Ciochină, Member, IEEE

Audio Restoration Based on DSP Tools

Performance Enhancement of Adaptive Acoustic Echo Canceller Using a New Time Varying Step Size LMS Algorithm (NVSSLMS)

Comparative Study of Different Algorithms for the Design of Adaptive Filter for Noise Cancellation

ROBUST echo cancellation requires a method for adjusting

Performance Optimization in Wireless Channel Using Adaptive Fractional Space CMA

FPGA Implementation Of LMS Algorithm For Audio Applications

Power Line Interference Removal from ECG Signal using Adaptive Filter

Speech Enhancement in Noisy Environment using Kalman Filter

Hardware Implementation of Adaptive Algorithms for Noise Cancellation

Performance Analysis of Acoustic Echo Cancellation Techniques

Adaptive Systems Homework Assignment 3

A Novel Hybrid Technique for Acoustic Echo Cancellation and Noise reduction Using LMS Filter and ANFIS Based Nonlinear Filter

Optimal Adaptive Filtering Technique for Tamil Speech Enhancement

Acoustic Echo Cancellation for Noisy Signals

A New Least Mean Squares Adaptive Algorithm over Distributed Networks Based on Incremental Strategy

Online Version Only. Book made by this file is ILLEGAL. 2. Mathematical Description

IMPULSE NOISE CANCELLATION ON POWER LINES

Multirate Algorithm for Acoustic Echo Cancellation

Acoustic echo cancellers for mobile devices

Speech Enhancement in Presence of Noise using Spectral Subtraction and Wiener Filter

Noise Reduction Technique for ECG Signals Using Adaptive Filters

A Comparison of the Convolutive Model and Real Recording for Using in Acoustic Echo Cancellation

Noise Cancellation using Least Mean Square Algorithm

Narrow-Band Interference Rejection in DS/CDMA Systems Using Adaptive (QRD-LSL)-Based Nonlinear ACM Interpolators

Active Noise Cancellation in Audio Signal Processing

Design and Implementation on a Sub-band based Acoustic Echo Cancellation Approach

Application of Adaptive Spectral-line Enhancer in Bioradar

Analysis on Extraction of Modulated Signal Using Adaptive Filtering Algorithms against Ambient Noises in Underwater Communication

University Ibn Tofail, B.P. 133, Kenitra, Morocco. University Moulay Ismail, B.P Meknes, Morocco

MATLAB SIMULATOR FOR ADAPTIVE FILTERS

Modeling and Analysis of an Adaptive Filter for a DSP Based Programmable Hearing Aid Using Normalize Least Mean Square Algorithm

A New Method For Active Noise Control Systems With Online Acoustic Feedback Path Modeling

A Diffusion Strategy for the Multichannel Active Noise Control System in Distributed Network

Adaptive Noise Reduction Algorithm for Speech Enhancement

Keywords: Adaptive filtering, LMS algorithm, Noise cancellation, VHDL Design, Signal to noise ratio (SNR), Convergence Speed.

SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS

Analysis of LMS and NLMS Adaptive Beamforming Algorithms

ESE531 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing

VLSI Implementation of Separating Fetal ECG Using Adaptive Line Enhancer

AN INSIGHT INTO ADAPTIVE NOISE CANCELLATION AND COMPARISON OF ALGORITHMS

Acoustic Echo Reduction Using Adaptive Filter: A Literature Review

Study of the General Kalman Filter for Echo Cancellation

Multi Modulus Blind Equalizations for Quadrature Amplitude Modulation

Adaptive Kalman Filter based Channel Equalizer

LMS and RLS based Adaptive Filter Design for Different Signals

Performance Evaluation of Adaptive Filters for Noise Cancellation

Jaswant 1, Sanjeev Dhull 2 1 Research Scholar, Electronics and Communication, GJUS & T, Hisar, Haryana, India; is the corr-esponding author.

ABSOLUTE AVERAGE ERROR BASED ADJUSTED STEP SIZE LMS ALGORITHM FOR ADAPTIVE NOISE CANCELLER

The Hybrid Simplified Kalman Filter for Adaptive Feedback Cancellation

Adaptive Line Enhancer (ALE)

Comparison of LMS and NLMS algorithm with the using of 4 Linear Microphone Array for Speech Enhancement

Speech Enhancement Using Beamforming Dr. G. Ramesh Babu 1, D. Lavanya 2, B. Yamuna 2, H. Divya 2, B. Shiva Kumar 2, B.

Faculty of science, Ibn Tofail Kenitra University, Morocco Faculty of Science, Moulay Ismail University, Meknès, Morocco

MINUET: MUSICAL INTERFERENCE UNMIXING ESTIMATION TECHNIQUE

Shweta Kumari, 2 Priyanka Jaiswal, 3 Dr. Manish Jain 1,2

Speech Enhancement using Wiener filtering

Index Terms. Adaptive filters, Reconfigurable filter, circuit optimization, fixed-point arithmetic, least mean square (LMS) algorithms. 1.

Design and Evaluation of Modified Adaptive Block Normalized Algorithm for Acoustic Echo Cancellation in Hands-Free Communications

Design and Implementation of Adaptive Echo Canceller Based LMS & NLMS Algorithm

MITIGATING INTERFERENCE TO GPS OPERATION USING VARIABLE FORGETTING FACTOR BASED RECURSIVE LEAST SQUARES ESTIMATION

Comprehensive Performance Analysis of Non Blind LMS Beamforming Algorithm using a Prefilter

A Dual-Mode Algorithm for CMA Blind Equalizer of Asymmetric QAM Signal

Enhancement of Speech Signal Based on Improved Minima Controlled Recursive Averaging and Independent Component Analysis

Fixed Point Lms Adaptive Filter Using Partial Product Generator

ECG Signal Denoising Using Digital Filter and Adaptive Filter

Fig(1). Basic diagram of smart antenna

THE problem of acoustic echo cancellation (AEC) was

Noise Cancellation in DSSS by Using Adaptive LMS Filter in Fractional Domine Methods

works must be obtained from the IEE

VLSI Circuit Design for Noise Cancellation in Ear Headphones

(i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods

Implementation of Adaptive Filters on TMS320C6713 using LabVIEW A Case Study

Disturbance Rejection Using Self-Tuning ARMARKOV Adaptive Control with Simultaneous Identification

Computer exercise 3: Normalized Least Mean Square

Title. Author(s)Sugiyama, Akihiko; Kato, Masanori; Serizawa, Masahir. Issue Date Doc URL. Type. Note. File Information

NOISE ESTIMATION IN A SINGLE CHANNEL

IMPLEMENTATION CONSIDERATIONS FOR FPGA-BASED ADAPTIVE TRANSVERSAL FILTER DESIGNS

RECURSIVE BLIND IDENTIFICATION AND EQUALIZATION OF FIR CHANNELS FOR CHAOTIC COMMUNICATION SYSTEMS

Adaptive Multitone Noise Cancellation from Speech Signals

INSTANTANEOUS FREQUENCY ESTIMATION FOR A SINUSOIDAL SIGNAL COMBINING DESA-2 AND NOTCH FILTER. Yosuke SUGIURA, Keisuke USUKURA, Naoyuki AIKAWA

Transcription:

ISSN: 78-8 Vol. 3 Issue, January - Application of Affine Projection Algorithm in Adaptive Noise Cancellation Rajul Goyal Dr. Girish Parmar Pankaj Shukla EC Deptt.,DTE Jodhpur EC Deptt., RTU Kota EC Deptt., RTU Kota Abstract This paper presents the application of two classes of Affine Projection Algorithm (APA) for Adaptive Noise Cancellation. The output results are compared on the basis of signal to noise ratio (SNR) and spectrum of the. The two classes of Affine Projection Algorithm used to adapt the noise, involve Conventional APA and Adaptive Step Size APA. Computer Simulations for various classes of APA are carried out using Matlab. For colored input and correlated data, APA family is suitable to accelerate the convergence of Least Mean Squares (LMS) Algorithm at a computational cost. In adaptive step size APA, step size is adapted on the basis of absolute mean value of error vector. Keywords APA, adaptive filter, adaptive step size, performance.. Introduction Adaptive Noise Cancellation is a technique of estimating additive noise or interference through an Adaptive Filter and then subtracting this estimated noise from the corrupted signal to get the actual signal. In Adaptive filters an impulse response or transfer function can be adjusted or changed over time according to an optimizing algorithm to match desired system characteristics. They do not require complete a priori knowledge of the statistics of the signals to be filtered. In this paper we present various classes of APA as optimizing algorithm for adaptive filter. APA is a useful family of adaptive filters whose main purpose is to speed the convergence of LMS-type filters, especially for correlated data, at a computational cost that is still comparable so that of LMS []. APA is a generalization of the well known normalized least mean square (NLMS) adaptive filtering algorithm. Under this interpretation, each tap weight vector update of NLMS is viewed as a one dimensional affine projection. In APA the projections are made in multiple dimensions []. The APA class of algorithms provides an improvement in convergence rate over NLMS, especially for colored input signals. The APA provides a way to increase the convergence rate without compromising too much on misadjustment [3]. The difference between the normalized LMS (NLMS) and the APA is that the NLMS updates the weights based only on the current regressor, while the APA updates the weights based on the K most recent regressors and observations []. An APA with a constant step-size parameter has to compromise between the performance's criteria of fast convergence rate, and low misadjustment. Therefore, a variable step-size APA represents a more reliable solution [5]. Adjusting step size instead of fixed step size has a powerful effect on the performance of the system and the structure of the adaptive filter will not be changed, also this technique requires fewer overheads in computations [6]. Here, in this brief, noise of a corrupted varying sinusoidal signal is cancelled using the two classes of APA in adaptive filter. SNR of the output signal for the both algorithms are compared by varying number of iterations and projection order. This paper is organized as follows. Section describes the model of adaptive noise canceller used throughout the paper. Various classes of APA are discussed in section 3. Simulation results are given in section and conclusion is in section 5.. System Model The system model used for adaptive noise cancellation throughout this paper is as shown in figure. IJERTV3IS6 78

ISSN: 78-8 Vol. 3 Issue, January - Figure. System Model This model can be described as follows: s(n) is the actual signal from the signal source at the primary input. In this paper a sinusoidal signal of varying is taken as actual signal. v(n) is the noise signal at primary input. Here, it is taken as white guassian noise passed through an autoregressive process. This noise signal v(n) is added to the s(n) resulting in a desired signal d(n). u(n) is a noise at the reference input correlated with v(n) applied as an excitation to the adaptive filer. In this brief, it is taken as a white guassian noise passed through a moving average process. Both the noises are uncorrelated with s(n), so that, E s n v(n) = () and E s n u(n) = () w(z) is the tap weight vector of adaptive filter. y(n) is the output of adaptive filter. This output is subtracted from desired signal resulting in an error signal e(n). 3. Affine Projection Algorithm APA is used to maintain the rate of convergence constant, independently of the angle between the input vector u(n) & unit delayed vector u(n-). It is based on affine projections of most recent K data vectors, and is the basis for the algorithm that converge rapidly for autoregressive (AR) processes of order less than or equal to K. The instantaneous error of APA is a vector. APA variables are defined as follows: Where, again u(n) = [u(n),...,u(n-l+)] T is the excitation vector. The adaptive tap weight vector is w(n) = [w (n),...,w L- (n-)] T, where w i (n) is the i th coefficient at sample period n. e(n) = [e (n),e (n),...e K- (n)] T is the K length vector consisting of signal and residual noise. The N length desired response vector, d(n) = [d(n),d(n-),...,d(n-k+)] T, where, d(n) = s(n)+v(n) consisting of actual signal and unknown noise. K defines the rank of affine projections in the solution space and it is called as the projection order of APA. L is the length of the adaptive filter. I is K by K identity matrix. Here, the delta is employed to avoid the inversion of possibly rank deficient matrix A T (n)a(n). Moreover, it plays an important role in the convergence rate and the steady state misalignment of the conventional APA. µ is adaptation constant in the range µ and δ is the regularization factor (delta). Filter structure is taken as finite impulse response (FIR). These variables are used for both the classes of APA throughout this brief. 3. Conventional APA The main purpose of APA is to speed the convergence especially for correlated data. The flowchart for APA is as shown below: In APA the projection order (K), the step size µ (< µ ) and delta govern the rate of convergence and the steady state misalignment i.e. performance of the conventional APA. The excitation noise signal matrix for adaptive filter, A(n), is L by N and has the structure, A(n) = [u(n),u(n-),...,u(n-k+)] (3) IJERTV3IS6 78

ISSN: 78-8 Vol. 3 Issue, January - Flowchart. Adaptive Step Size APA Flowchart. Affine Projection Algorithm 3. Adaptive Step Size APA Instead of fixed value in this algorithm at the beginning, step size takes a large value and then decays gradually until it reaches a selected minimum value in the rest of the iterations. The time varying step size is adjusted according to absolute mean value of the current and the previous estimation error s vector. Current value of step size also depends on its previous value. Flowchart for the algorithm is as follows: Here, µ() is taken as µ max and < δ <.. Simulation Results Both the APA algorithms are simulated using Matlab software and results are shown in graphical and tabular form. IJERTV3IS6 78

ISSN: 78-8 Vol. 3 Issue, January -. APA Table. Data for Conventional APA amplitude - N µ δ K L SNR in db Gain (b)- I/P (a) O/P (b) (a) - 6 8 6 8 time in seconds Figure. Time Response of noisy and.. -.99.8 6.7.. -.99 3.93 5.93..3.. -.99.8 6.7... 8 -.99.78 3.77. 3 5 6 7 8 Figure. Freq. Response of noisy and 5.. 8 -.99.7 3.6.. 8 -.99 6. 8.39.. 8 -.99 6. 8. MSE 3 6 8 6 8 number of iterations.. -.7.9 5.8.. 8 -.7.5.96..8.6 Figure 3. MSE v/s no. of iterations. Adaptive Step Size APA Value of delta and µ max is initialized at. and. respectively.... 3 5 6 7 8 Figure. Freq. Response of Adaptive Filter IJERTV3IS6 783

ISSN: 78-8 Vol. 3 Issue, January - Table. Data For Adaptive Step Size APA amplitude - N Final µ K L SNR in db Gain (b)-(a) - 6 8 6 8 time in seconds Figure 5. Time Response of noisy and I/P (a) O/P (b).35.3.5..5..5.7 6 -.99 5. 7..7 -.99 3.6 5.63.7 8 -.99 5.57 7.57 3 5 6 7 8 Figure 6. Freq. Response of noisy and MSE 5 3.75 8 -.99 6.5 8.53.7 -.99 5.9 7.9.7 -.7 3.9 5.63.7 -.7.76 3.7 6 8 6 8 number of iterations.87 8 -.7 3.8 5.53. Figure 7. MSE v/s no. of iterations.87 8 -.7 5.36 7.7..8.6. 3 5 6 7 8 Figure 8. Freq. Response of Adaptive Filter. Conclusions Table shows that K, µ and δ govern the convergence rate of APA. The noise components are more suppressed in adaptive step size APA (fig. & 6). Table concludes that by controlling step size better SNR can be obtained. The mean square error in figure 7 is reduced for less number of iterations resulting in increased speed of convergence. Hence the overall performance and stability of adaptive filter using ASSAPA is improved. IJERTV3IS6 78

ISSN: 78-8 Vol. 3 Issue, January - 5. References [] K. Ozeki and T. Umeda, An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties. Electron.Commun. Jpn., vol. 67-A, no. 5, pp. 9-7, 98. [] S. Gay and S. Thavathia, The fast affine projection algorithm, in Proc. IEEE ICASSP 995, Detroit, U.S.A., vol. 5, pp. 33-36, May 995. [3] S.G. Sankaran and A. A. (Louis) Beex, Convergence Analysis Results for the Class of Affine Projection Algorithms, in Proc. IEEE, ISCAS 999, vol. 3, pp. 5-5, July 999. [] A. H. Sayed, Fundamentals of Adaptive Filtering. New York: Wiley, 3. [5] C. Paleologu, S. Ciochina, and J. Benesty, A Variable Step-Size Affine Projection Algorithm Designed for Acoustic Echo Cancellation", in IEEE Transactions on Audio, Speech, and Language Processing, Vol. 6, No. 8, November, 8. [6] Thamer M. Jamel, Absolute Mean Error Based Adaptive Step Size Affine Projection Algorithm for Adaptive Filtering Systems, 3 rd IEEE IC onsignal Processing Systems (ICSPS ), Yantai, China, Aug. 7-8,. [7] H. Rey. L. R. Vega, S. Tressens, and J. Benesty, variable explicit regularization in affine projection algorithm: Robustness issue and optimal choice. IEEE Trans. Signal Process., vol. 55, no. 5, pp. 96-9, May 7. [8] A. Carini and G. L. Sicuranza, Optimal regularization parameter of the multichannel filtered-x affine projection algorithm, IEEE Trans. Signal Process., vol. 55, no., pp. 88-895, Oct. 7. [9] Y. S. Choi, H. C. Shin, and W. J. Song, Adaptive regularization matrix for affine projection algorithm, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 5, no., pp. 87 9, Dec. 7. IJERTV3IS6 785