Demands for High-efficiency Magnetics in GaN Power Electronics

Similar documents
Full Bridge LLC ZVS Resonant Converter Based on Gen2 SiC Power MOSFET

GaN in Practical Applications

PRELIMINARY. VDSS (V) 600 V(TR)DSS (V) 750 RDS(on)eff (mω) max* 60. QRR (nc) typ 120. QG (nc) typ 22 PRELIMINARY

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 85. QRR (nc) typ 90. QG (nc) typ 10

VDSS (V) 900. V(TR)DSS (V) 1000 RDS(on)eff (mω) max* 205. QRR (nc) typ 49. QG (nc) typ 10

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 47. QG (nc) typ 10

Wide Band-Gap (SiC and GaN) Devices Characteristics and Applications. Richard McMahon University of Cambridge

Improvements of LLC Resonant Converter

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 60. QRR (nc) typ 136. QG (nc) typ 28 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

VDSS (V) 650. V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 52. QG (nc) typ 6.2

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 130. QRR (nc) typ 54. QG (nc) typ 14 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 52. QG (nc) typ 6.2 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 130. QRR (nc) typ 54. QG (nc) typ 10

Designing a 99% Efficient Totem Pole PFC with GaN. Serkan Dusmez, Systems and applications engineer

High voltage GaN cascode switches shift power supply design trends. Eric Persson Executive Director, GaN Applications and Marketing

Designing reliable and high density power solutions with GaN. Created by: Masoud Beheshti Presented by: Paul L Brohlin

Design and implementation of a LLC-ZCS Converter for Hybrid/Electric Vehicles

Power of GaN. Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies

HCD80R600R 800V N-Channel Super Junction MOSFET

Application Note 0011

Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger

Advanced Silicon Devices Applications and Technology Trends

Application Note 0009

Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO

HCA60R080FT (Fast Recovery Diode Type) 600V N-Channel Super Junction MOSFET

Get Your GaN PhD in Less Than 60 Minutes!

Improving Totem-Pole PFC and On Board Charger performance with next generation components

HCS90R1K5R 900V N-Channel Super Junction MOSFET

HCS80R850R 800V N-Channel Super Junction MOSFET

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance

Monolithic integration of GaN power transistors integrated with gate drivers

TPH3205WSB. 650V Cascode GaN FET in TO-247 (source tab)

Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design procedure and concern

HCA80R250T 800V N-Channel Super Junction MOSFET

HCS65R110FE (Fast Recovery Diode Type) 650V N-Channel Super Junction MOSFET

HCI70R500E 700V N-Channel Super Junction MOSFET

High-Power-Density 400VDC-19VDC LLC Solution with GaN HEMTs

A Novel Concept in Integrating PFC and DC/DC Converters *

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 63. Qrr (nc) typ 136. * Dynamic R(on)

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 60. Qrr (nc) typ 136. Qg (nc) typ 28. * Dynamic RDS(on)

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 130. Qrr (nc) typ 54. * Dynamic R(on)

Designing Reliable and High-Density Power Solutions with GaN

Si, SiC and GaN Power Devices: An Unbiased View on Key Performance Indicators

Utilizing GaN transistors in 48V communications DC-DC converter design

HCD80R1K4E 800V N-Channel Super Junction MOSFET

TPH3212PS. 650V Cascode GaN FET in TO-220 (source tab)

HCD80R650E 800V N-Channel Super Junction MOSFET

HCS80R1K4E 800V N-Channel Super Junction MOSFET

GaN on Silicon Technology: Devices and Applications

HCS70R350E 700V N-Channel Super Junction MOSFET

GaN Based Power Conversion: Moving On! Tim McDonald APEC Key Component Technologies for Power Electronics in Electric Drive Vehicles

Performance Evaluation of GaN based PFC Boost Rectifiers

HCS80R380R 800V N-Channel Super Junction MOSFET

Using the Latest Wolfspeed C3M TM SiC MOSFETs to Simplify Design for Level 3 DC Fast Chargers

Making Reliable and High-Density GaN Solutions a Reality

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 180. Qrr (nc) typ 54. * Dynamic R(on)

Evaluation and Applications of 600V/650V Enhancement-Mode GaN Devices

Latest fast diode technology tailored to soft switching applications

Hysteresis loss in high voltage MOSFETs: Findings and effects for high frequency AC-DC converters. Bernard Keogh

HCS70R1K6 700V N-Channel Super Junction MOSFET

Practical Design Considerations for a 3.3kW Bridgeless Totem-pole PFC Using GaN FETs. Jim Honea Transphorm Inc

Digital Control for Power Electronics 2.0

The First Step to Success Selecting the Optimal Topology Brian King

High Frequency GaN-Based Power Conversion Stages

Future Power Architectures for Servers and Proposed Technologies

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength

APT1003RBLL APT1003RSLL

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES

GaN Transistors for Efficient Power Conversion

Today: DCDC additional topics

High-Voltage (600 V) GaN Power Devices: Status and Benefits Power Electronics Conference 2017 Munich Airport Hilton, December 05, 2017

SSP20N60S / SSF20N60S 600V N-Channel MOSFET

The Quest for High Power Density

Semiconductor Power Electronics Technology

APT5010B2FLL APT5010LFLL 500V 46A 0.100

Appendix: Power Loss Calculation

PARALLELING of converter power stages is a wellknown

Ultra-Low Loss 600V 1200V GaN Power Transistors for

APT30M30B2FLL APT30M30LFLL

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

Reference Design. TDTTP3300-RD 3.3kW Bridgeless Totem-pole PFC. Test Report

INSULATED gate bipolar transistors (IGBT s) are widely

SiC Transistor Basics: FAQs

GaAs PowerStages for Very High Frequency Power Supplies. Greg Miller Sr. VP - Engineering Sarda Technologies

GS66502B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

T C =25 unless otherwise specified. Symbol Parameter Value Units V DSS Drain-Source Voltage 40 V

MOSFET = 0V, I D. Volts R DS(on) (V GS = 10V, 17.5A) = 500V, V GS = 0V) = 0V, T C = 400V, V GS = 0V) = ±30V, V DS. = 1mA)

100V ENHANCEMENT MODE HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) Michele Rossitto. Marketing Director MOSFETs and Power ICs

APT8052BLL APT8052SLL

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GaN Power IC Enable Next Generation Power

Constant Current Switching Regulator for White LED

HCD6N70S / HCU6N70S 700V N-Channel Super Junction MOSFET

HRLD150N10K / HRLU150N10K 100V N-Channel Trench MOSFET

GS66508T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

Symbol Parameter Typical

GS66508T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

Application Note, V1.1, Apr CoolMOS TM. AN-CoolMOS-08 SMPS Topologies Overview. Power Management & Supply. Never stop thinking.

GS66506T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

Server Power System for Highest Efficiency and Density: Practical Approach Step by Step

Transcription:

APEC 2014, Fort Worth, Texas, March 16-20, 2014, IS2.5.3 Demands for High-efficiency Magnetics in GaN Power Electronics Yifeng Wu, Transphorm Inc.

Table of Contents 1. 1 st generation 600V GaN-on-Si HEMT properties and performance 2. GaN HEMT high-frequency application examples 3. General-understanding of magnetics scaling 4. Issues overlooked in high-frequency scaling i) Thermal ii) dc conduction iii) ac loss due to skin effect 5. Summary 2

600V GaN Switch Products By Transphorm 0.15W/600V in TO220 & PQFN, S-tab & D-tab 0.29W/600V in TO220 & PQFN, S-tab & D-tab Applications evaluation boards: All-in-one power supply Totem Pole PFC dc-ac inverter Bridge converter

1 st Gen 600V GaN-on-Si HEMT Compared to Si Super Junction MOSFET Devices Parameters On resistance (W) Gate charge (nc) Output charge (nc) Energy related Coss (pf) Reverse recovery charge (mc) FOM1A FOM1B FOM2 Symble Rds, on Qg Qoss Coer Qrr Ron*Qg Ron*Qoss Ron*Qrr GaN HEMT TPH3006 GaN Gen1 0.15 6.2 52.8 56 0.054 0.93 7.9 8 Si CoolMOS 60R199CP SJ Si Gen5 0.18 32 86.4 69 5.5 5.76 15.6 990 Si CoolMOS 60R190C6 SJ Si Gen6 0.17 63 127.68 56 6.9 10.71 21.7 1173 Si CoolMOS 65R2250C7 SJ Si Gen7 0.199 20 126.32 29 6 3.98 25.1 1194 Si CoolMOS 20N60CFD SJ Si for Low Qrr 0.19 95 76.8 83 1 18.05 14.6 190 1 st generation GaN is already superior to Si GaN still has ample potential to improved

GaN Hard-switched Boost Converter DC-DC Boost Converter Converter Schematics Converter Implementation I in L 1 V in C 1 PWM/ Driver D 1 C 2 I out V out R L GaN Diode Quiet Tab TM GaN HEMT Text-book simple implementation. No gate drive compensation network. No snubber. No Insulation shim b/t tab & heat-sink. Fast & low ringing waveforms for low switching loss. L1 5 5

Performance of GaN vs. Si Switch in Boost Converter F=500kHz, 230V:400V Loss breakdown at 1.5kW FET Switch Diode & Inductor Total loss Si (W) 29 9+4 42 GaN (W) 13 9+4 26 Reduction (%) 55.2% 0.0% 38.1% Up to 38% overall-loss reduction 55% reduction in device loss Inductor loss: 9.5% of Si converter loss 15.4% of GaN converter loss

Resonant Circuits Example LLC DC Converter Vin S2 Cr Lr T SR1 S1 L m N 1 I o V o 1 R L SR2 Parameters Value Parameter Value Vin(V) 400 Vo(V)/Io max (A) 12/25 Lm(uH) 100 Lr(uH) 5.05 Cr(nF) 15 Fr(kHz) 530 Td(ns) 120 Fs(kHz) 470 Low residue charge for GaN allows for a fast reset time & a much reduced recirculation energy Courtesy: Work done by Virginia Tech.

Vs(V) Ipr(A) Vs(V) Ipr(A) Vs(V) Ipr(A) Vs(V) Ipr(A) Waveforms of GaN vs. Si in LLC dc-dc Converter CoolMOS 450 2 400 350 Vs (V) Ip (A) 1.6 1.2 300 0.8 250 0.4 200 0 150-0.4 100-0.8 50-1.2 0-1.6-50 -2-0.2 1.8 3.8 5.8 7.8 9.8 t (ms) GaN 450 2 400 350 Vs (V) Ip (A) 1.6 1.2 300 0.8 250 0.4 200 0 150-0.4 100-0.8 50-1.2 0-1.6-50 -2-0.2 1.8 3.8 5.8 7.8 9.8 t (ms) 450 400 350 300 250 200 150 100 50 0-50 DT t (ms) Vs (V) Ip (A) 1.6 1.8 2 2.2 2.4 2.6 2.8 2 1.6 1.2 0.8 0.4 0-0.4-0.8-1.2-1.6-2 450 400 350 300 250 200 150 100 50 0-50 Vs (V) Ip (A) 2 1.6 1.2 0.8 0.4 0-0.4-0.8-1.2 DT -1.6-2 0 0.2 0.4 0.6 0.8 1 1.2 t (ms) Si shows large DT: less time for energy transfer: more loss

Performance of High-frequency LLC-DC Converter (open loop) Efficiency 0.985 0.975 0.965 0.955 Measured Efficiency at 500kHz 0.945 0.935 0.925 0.915 0.905 TPH3006 STB11NM60 0.895 0.885 0 5 10 15 20 25 30 Output Current at 12 volts (A) 500kHz for compact power supply design. Peak efficiency gain by GaN is ~ 0.9% at mid load Low-load efficiency advantage is extra high (2-4%) Transformer loss becomes very significant at high frequencies Courtesy: Work done by Virginia Tech.

Evidence of Major Power Loss Components (LLC Resonant Converter) LV sync rec. Transformer HV GaN switches A compact LLC dc-dc (390V:12V) converter P OUT =250W, Eff =96.5% in open air (peak Eff.=97.7% at 125W) Component temperature: transformer=92.9 o C, GaN HEMTs=65 o C, Sync rec MOSFETs=75 o C, Transformer dissipation: >65% of total loss

Table of Contents 1. 1 st Generation 600V GaN-on-Si HEMT properties and performance 2. GaN HEMT high-frequency application examples 3. General-understanding of Magnetics scaling 4. Issues overlooked in high-frequency scaling i) Thermal ii) dc conduction iii) ac loss due to skin effect 5. Summary 11

Generally Accepted Magnetic Core Scaling Rule Assuming constant core loss 8x volume reduction from 200kHz to 1.6MHz By David Reusch and Fred C. Lee, Virginia Tech, APEC 2012

Simplified Magnetic Core Scaling: Fixed Core Energy Density At 100kHz d 1 IR 1 Argument: Constant power storage density per cycle PWM f 2 /f 1 =8 ac current DI 2 /DI 1 =1 Inductance L 2 /L 1 =1/8 Core volume V m2 /V m1 =1/8 Power loss Pl 2 /Pl 1 =1 At 800kHz 1/8 Volume reduction

Magnetic Core Scaling Problem #1: Thermal At 100kHz d 1 At 800kHz 1/8 Volume reduction IR 1 Argument: Thermal resistance is inversely related to surface area Surface area A s2 /A s1 =1/4 Core temp. DT core2 /DT core2 =4 4x high temperature rise!

Magnetic Core Scaling Problem #2: dc Conduction Loss At 100kHz d 1 At 800kHz 1/8 Volume reduction IR 1 Argument: Ohm s law Wire length l2/l1=1/2 Wire dia. d 2 /d 1 =1/2 Wire cross section a 2 /a 1 =1/4 dc resistance R dc2 /R dc1 =2 2x dc conduction loss!

Magnetic Core Scaling Problem #2: ac Skin Loss At 100kHz d 1 At 800kHz 1/8 Volume reduction IR 1 Argument: High-freq. skin effect Skin depth d 2 /d 1 =1/2.8 wire periphery p 2 /p 1 =1/2 ac resistance R ac2 /R ac1 =2.8 2.8x ac conduction loss!

Summary 1) Better power switches reduce device losses; magnetics become a bottle neck 2) 600V GaN-on-Si HEMTs push PWM to higher frequencies allowing much size reduction of power systems 2) Although magnetic core scaling expects proportional size reduction with increase in PWM freq., there are multiple hidden issues: i) Core surface temperature is much higher ii) dc conduction loss does not conserve iii) ac skin loss is also increased 3) Magnetic material innovation and design optimization are required to minimize above problems i) Magnetic material with low inherent loss at HF ii) Uniform flux winding design iii) Conductor reforming for best spatial utilization 4) Material saving by higher PWM is an never-ending push for a sustainable economy 17