Influence of artificial mouth s directivity in determining Speech Transmission Index

Similar documents
EFFECT OF ARTIFICIAL MOUTH SIZE ON SPEECH TRANSMISSION INDEX. Ken Stewart and Densil Cabrera

Implementation of a new metric for assessing and optimising speech intelligibility inside cars

Audio Engineering Society. Convention Paper. Presented at the 115th Convention 2003 October New York, New York

Convention Paper Presented at the 130th Convention 2011 May London, UK

Convention e-brief 310

INTERNATIONAL STANDARD

Polar Measurements of Harmonic and Multitone Distortion of Direct Radiating and Horn Loaded Transducers

DESIGN OF VOICE ALARM SYSTEMS FOR TRAFFIC TUNNELS: OPTIMISATION OF SPEECH INTELLIGIBILITY

Binaural auralization based on spherical-harmonics beamforming

PRODUCT DATA. DIRAC Room Acoustics Software Type Photo courtesy of Muziekcentrum Frits Philips, Eindhoven, The Netherlands

Measuring procedures for the environmental parameters: Acoustic comfort

Part V: Requirements and Test Methods for Magnetic Output From Handset Telephones for Hearing Aid Coupling and for Receive Volume Control

Audio Engineering Society. Convention Paper. Presented at the 122nd Convention 2007 May 5 8 Vienna, Austria

6-channel recording/reproduction system for 3-dimensional auralization of sound fields

Convention Paper 6274 Presented at the 117th Convention 2004 October San Francisco, CA, USA

Silence Sweep: a novel method for measuring electro-acoustical devices

Convention Paper Presented at the 138th Convention 2015 May 7 10 Warsaw, Poland

Application Note 3PASS and its Application in Handset and Hands-Free Testing

Audio Engineering Society Convention Paper Presented at the 110th Convention 2001 May Amsterdam, The Netherlands

IS SII BETTER THAN STI AT RECOGNISING THE EFFECTS OF POOR TONAL BALANCE ON INTELLIGIBILITY?

ODEON APPLICATION NOTE Calculation of Speech Transmission Index in rooms

INTERNATIONAL STANDARD

Convention Paper 7024 Presented at the 122th Convention 2007 May 5 8 Vienna, Austria

COMPARATIVE ANALYSIS OF ON-SITE STIPA MEASUREMENTS WITH EASE PREDICTED STI RESULTS FOR A SOUND SYSTEM IN A RAILWAY STATION CONCOURSE

APPLICATION NOTE MAKING GOOD MEASUREMENTS LEARNING TO RECOGNIZE AND AVOID DISTORTION SOUNDSCAPES. by Langston Holland -

Fractional Octave Analysis and Acoustic Applications

group D DSA250 Specifications 2-WAY FULL-RANGE DIGITALLY STEERABLE ARRAY See TABULAR DATA notes for details CONFIGURATION Subsystem Features

THE USE OF VOLUME VELOCITY SOURCE IN TRANSFER MEASUREMENTS

SERIES P: TERMINALS AND SUBJECTIVE AND OBJECTIVE ASSESSMENT METHODS Voice terminal characteristics

Audio Engineering Society. Convention Paper. Presented at the 129th Convention 2010 November 4 7 San Francisco, CA, USA. Why Ambisonics Does Work

Simulation of realistic background noise using multiple loudspeakers

Airborne Sound Insulation

INTERIM EUROPEAN I-ETS TELECOMMUNICATION January 1996 STANDARD

Envelopment and Small Room Acoustics

Part V: Requirements and Test Methods for Magnetic Output from Handset Telephones for Hearing Aid Coupling and for Receive Volume Control

RECOMMENDATION ITU-R BR.1384 *, ** Parameters for international exchange of multi-channel sound recordings ***

Measuring impulse responses containing complete spatial information ABSTRACT

Audio Engineering Society. Convention Paper. Presented at the 131st Convention 2011 October New York, NY, USA

Convention Paper 6230

INTERIM EUROPEAN I-ETS TELECOMMUNICATION December 1994 STANDARD

3GPP TS V ( )

PRODUCT DATA USES. BENEFITS Normal incidence parameters are determined Fast and accurate measurements. Type 4206A. Type Type 4206T 50 Hz 1.

Public Address Systems

SOPA version 2. Revised July SOPA project. September 21, Introduction 2. 2 Basic concept 3. 3 Capturing spatial audio 4

DESIGN OF ROOMS FOR MULTICHANNEL AUDIO MONITORING

XLA 3200 Line Array Loudspeakers

Digitally controlled Active Noise Reduction with integrated Speech Communication

Surround: The Current Technological Situation. David Griesinger Lexicon 3 Oak Park Bedford, MA

Psychoacoustic Cues in Room Size Perception

Application Note: Headphone Electroacoustic Measurements

Audio Engineering Society. Convention Paper. Presented at the 119th Convention 2005 October 7 10 New York, New York USA

Characterization of medical devices electromagnetic immunity to environmental RF fields.

New acoustical techniques for measuring spatial properties in concert halls

PRODUCT DATA. DIRAC Room Acoustics Software Type 7841

Speech Intelligibility

Audio Engineering Society Convention Paper Presented at the 110th Convention 2001 May Amsterdam, The Netherlands

THE ATTENUATION OF NOISE ENTERING BUILDINGS USING QUARTER- WAVE RESONATORS: RESULTS FROM A FULL SCALE PROTOTYPE. C.D.Field and F.R.

AXIHORN CP5TB: HF module for the high definition active loudspeaker system "NIDA Mk1"

A Virtual Car: Prediction of Sound and Vibration in an Interactive Simulation Environment

Improving the Effectiveness of Communication Headsets with Active Noise Reduction: Influence of Control Structure

NEW MEASUREMENT TECHNIQUE FOR 3D SOUND CHARACTERIZATION IN THEATRES

Convention Paper Presented at the 112th Convention 2002 May Munich, Germany

IMPULSE RESPONSE MEASUREMENT WITH SINE SWEEPS AND AMPLITUDE MODULATION SCHEMES. Q. Meng, D. Sen, S. Wang and L. Hayes

Implementation of cross-talk canceling filters with warped structures - Subjective evaluation of the loudspeaker reproduction of stereo recordings

Audio Engineering Society. Convention Paper. Presented at the 128th Convention 2010 May London, UK

3GPP TS V ( )

Practical Limitations of Wideband Terminals

EUROPEAN pr I-ETS TELECOMMUNICATION June 1996 STANDARD

Gerhard Schmidt / Tim Haulick Recent Tends for Improving Automotive Speech Enhancement Systems. Geneva, 5-7 March 2008

Measurement Procedure & Test Equipment Used

Impulse response. Frequency response

Spatial Audio Reproduction: Towards Individualized Binaural Sound

Adaptive Personal Tuning of Sound in Mobile Computers

Part V: Requirements and Test Methods for Magnetic Output from Handset Telephones for Hearing Aid Coupling

ETSI TS V1.1.1 ( ) Technical Specification

Telecom. Sound Scenarios. Devices. Speech Quality Communication Quality Analysis. Speech Intelligibility. Accessories Analysis Methods.

Ave output power ANT 1(dBm) Ave output power ANT 2 (dbm)

Method of acoustical estimation of an auditorium

PERCEIVED ROOM SIZE AND SOURCE DISTANCE IN FIVE SIMULATED CONCERT AUDITORIA

SOUND FIELD MEASUREMENTS INSIDE A REVERBERANT ROOM BY MEANS OF A NEW 3D METHOD AND COMPARISON WITH FEM MODEL

Holland, KR, Newell, PR, Castro, SV and Fazenda, BM

Development of Automotive Time Domain Custom-Fit Speaker

Since the advent of the sine wave oscillator

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 VIRTUAL AUDIO REPRODUCED IN A HEADREST

Multiple Sound Sources Localization Using Energetic Analysis Method

79 First Avenue Mob: FIVE DOCK NSW 2046 VENTILATED ACOUSTIC ENCLOSURE NOISE EMISSION ASSESSMENT ACOUSTIC SERVICES & ADVICE

Mei Wu Acoustics. By Mei Wu and James Black

ROOM SHAPE AND SIZE ESTIMATION USING DIRECTIONAL IMPULSE RESPONSE MEASUREMENTS

Non-intrusive intelligibility prediction for Mandarin speech in noise. Creative Commons: Attribution 3.0 Hong Kong License

Subject: Pappy s Grill and Sports Bar DJ System Acoustical Isolation Study

Auditory Localization

Automotive Speech Intelligibility Measurements

EUROPEAN ETS TELECOMMUNICATION December 1994 STANDARD

Sound system equipment Part 16: Objective rating of speech intelligibility by speech transmission index

From Binaural Technology to Virtual Reality

Loudspeaker Data Sheet

Non-linear Digital Audio Processor for dedicated loudspeaker systems

ECMA TR/105. A Shaped Noise File Representative of Speech. 1 st Edition / December Reference number ECMA TR/12:2009

Transfer Function (TRF)

Improving room acoustics at low frequencies with multiple loudspeakers and time based room correction

Transcription:

Audio Engineering Society Convention Paper Presented at the 119th Convention 2005 October 7 10 New York, New York USA This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42 nd Street, New York, New York 10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering Society. Influence of artificial mouth s directivity in determining Speech Transmission Index Fabio Bozzoli 1, Paolo Bilzi 2, and Angelo Farina 3 1 Industrial Engineering Dept., University of Parma, Italy bozzoli@ied.unipr.it 2 Industrial Engineering Dept., University of Parma, Italy paolo.bilzi@studenti.unipr.it 3 Industrial Engineering Dept., University of Parma, Italy farina@unipr.it ABSTRACT In room acoustics, one of the most used parameters for evaluating the speech intelligibility is the Speech Transmission Index (STI). The experimental evaluation of this STI generally employs an artificial speaker (binaural head) and listener (artificial mouth). In this study, the influence on the measurements of the emission directivity of the artificial mouth was investigated for different acoustic environments and we have found that, in many cases (i.e. big rooms or systems of telecommunications) the results is not sensitive to modifications of the directivity; on the contrary, inside cars, the shape of the whole balloon of directivity is important for determining correct and comparable values and the different mouth studied gives really different results in the same situation. 1. INTRODUCTION The optimal listening conditions are very important in assessing the "comfort" of a space: intelligibility is certainly the most important when verbal communication becomes central. For example in a classroom, listening correctly to the teacher is the basic acoustical requirement. The parameter that is able to consider all these effects is the Speech Transmission Index: the methods for determining it, exposed in the IEC standard n.60268-16:2003 [1], are based on the reduction of the modulation index of a test signal simulating the speech characteristic of a real talker, when emitted in an acoustic environment. The test signal consists of a noise carrier with a speechspread frequency spectrum and a sinusoidal intensity modulation at frequency F (see Figure 1), it is transmitted by a sound source situated at the talker s position to a binaural dummy head at any listener s position.

1/F 1/F Intensity Acoustic system Ii(1+mi cos 2π F (t)) time I0(1+m0 cos 2π F (t+τ)) time Figure 1 - Modulated signal emitted by the artificial mouth (left) and received at the listener position (right), showing a smaller modulation at the receiver. The reduction in the modulation index is quantified by the modulation transfer function m(f) which is determined by : m o m (F) = (1) m i Figure 2 - Brüel & Kjær mouth simulator type 4230. The STI is derived from these modulation transfer functions, taking in account auditory masking, absolute hearing threshold, and the octave weighting factors given in [1]. STI goes from 1.0, when the intelligibility is optimal, to 0.0 when it s not possible to understand anything. This kind of measurement, in some uses, is connected to the directivity of the artificial mouth, which is employed. In this study, the influence on the measurements of the emission directivity of the artificial mouth was investigated for different acoustic environments. 2. MEASUREMENTS Figure 3 - Small loudspeaker built by Boston mounted on an artificial torso. 2.1. Artificial Mouths We have considered different artificial speakers and tested them in the anechoic room for evaluating their directivity. We have evaluated these three sources: 1) Brüel & Kjær mouth simulator type 4230; 2) small loudspeaker built by Boston mounted on an artificial torso; 3) wooden head built by Parma s University. Figure 4 - Wooden head built by Parma s University. Page 2 of 5

Inside an anechoic room we have employed MLS-based impulse response, which was repeated hundredths of times, rotating the transducer by means of an automated turning table. It has been exposed in [2]. The results can be easily transformed in frequency response spectra by means of an FFT: consequently, it is possible to get the frequency response for any angle of emission or listening, and to plot polar pictures of the response in a given frequency band. All these sources fit ITU recommendations [3], that define directivity only in few frontal positions. When comparing the directivity measurements obtained with the artificial mouth to the actual directivities of humans [4], big discrepancies were highlighted, especially in the back locations. Here we report average directivities of real speaker and artificial ones in horizontal plane at various frequencies. Figure 6 - directivities of real speaker and artificial mouths at 1000 Hz, horizontal plane. Finally all these sources have been calibrated in anechoic room so that the spectrum generated in front of the artificial mouth, at 1m distance, complies with the specification of the IEC 60268-16 code,[3]. Figure 7 - directivities of real speaker and artificial mouths at 2000 Hz, horizontal plane. Figure 5 - Directivities of real speaker and artificial mouths at 500 Hz, horizontal plane. 2.2. Environments We have used the three different mouths for determining the STI in three different condition: A) a big classroom of 300 seats, with the speaker placed in teacher s position and listener in the middle of the room; Page 3 of 5

B) a small classroom of 60 seats, with the speaker placed in teacher s position and listener in the middle of the room; C) a D-segment three-door vehicle at 90 km/h, with the speaker in the driver positions and listener in the left back seat. Figure 10 D-segment three-door car. Figure 8 Big classroom. 2.3. STI To obtain the actual STI value, we have developed a method, fully explained in [2], based on measuring the Impulse Response in absence of background noise, making use of special techniques (for example MLS or Sweep signal) for maximizing signal to noise ratio. The STI are evaluated in the three situations with background noise. In rooms background noise has been recorded during a university lesson. In figure 11 the results are shown. Figure 9 Small classroom. Figure 11 STI values obtained in the three situations at the right ear. Page 4 of 5

3. CONCLUSIONS We have found that the measurement of STI, in many uses, is not strongly connected to the directivity of the artificial mouth, which is employed. For room acoustics applications, because of the substantial distance between speaker and receiver and the numerous reflections, the directivity of the artificial mouth doesn t influence too much the result; in fact in classrooms the STI varies of only 3% using different sources. [4] F. Bozzoli, M. Viktorovitch and A. Farina, Balloons of directivity of real and artificial mouth used in determining speech transmission index, Pre-prints of the 118th AES Convention, Barcelona, Spain, 28-31 May 2005. Equally, in telecommunication acoustics, the receiver microphone is so close to the mouth that only the frontal near field affects the global intelligibility. On the contrary, inside cars, the order of magnitude of the distance between the speaker and the listener is round one meter. Thus, only a small number of image sources are considerable and the signal emitted by the back of the speaker is as important as the signal stemming from the front; for all these reasons the whole balloon of directivity of the artificial mouth is important for a reliable assessment of the STI in the automotive field. We have noticed a STI variation of 40% changing sources. The key point is that there are no norms that define human directivity in all directions and it produces problems of reliability in using STI in Automotive applications. 4. ACKNOWLEDGEMENTS This work was supported by Rieter Automotive (Winterthur, Switzerland). 5. REFERENCES [1] CEI-IEC standard n. 60268-16, Sound System Equipments Objective rating of speech intelligibility by speech transmission index, July 2003. [2] A. Farina, F. Bozzoli, Measurement of the speech intelligibility inside cars, Pre-prints of the 113th AES Convention, Los Angeles, 5-8 October 2002. [3] ITU-T Recommendation P56, Telephone Transmission Quality Objective Measuring Apparatus, March 1996. Page 5 of 5