Research Article Realization of Negative Group Delay Network Using Defected Microstrip Structure

Similar documents
Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article Negative Group Delay Circuit Based on Microwave Recursive Filters

DEFECTED MICROSTRIP STRUCTURE BASED BANDPASS FILTER

IMPROVING FREQUENCY RESPONSE OF MICROSTRIP FILTERS USING DEFECTED GROUND AND DEFECTED MICROSTRIP STRUCTURES

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

NOVEL TWO-DIMENSIONAL (2-D) DEFECTED GROUND ARRAY FOR PLANAR CIRCUITS

Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

Research Article SAR Reduction Using Integration of PIFA and AMC Structure for Pentaband Mobile Terminals

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

Research Article A MIMO Reversed Antenna Array Design for gsm1800/td-scdma/lte/wi-max/wilan/wifi

Research Article Embedded Spiral Microstrip Implantable Antenna

A MINIATURIZED LOWPASS/BANDPASS FILTER US- ING DOUBLE ARROW HEAD DEFECTED GROUND STRUCTURE WITH CENTERED ETCHED ELLIPSE

Research Article CPW-Fed Slot Antenna for Wideband Applications

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Research Article A High Gain Omnidirectional Antenna Using Negative Permeability Metamaterial

S. Fallahzadeh and M. Tayarani Department of Electrical Engineering Iran University of Science and Technology (IUST) Tehran, Iran

Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

Research Article Quad Band Handset Antenna for LTE MIMO and WLAN Application

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

Miniaturization of Branch-Line Coupler Using Composite Right/Left-Handed Transmission Lines with Novel Meander-shaped-slots CSSRR

Research Article Design of a Novel UWB Omnidirectional Antenna Using Particle Swarm Optimization

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

Bandpass-Response Power Divider with High Isolation

COMPACT CPW-FED SLOT ANTENNA USING STEPPED IMPEDANCE SLOT RESONATORS HARMONIC SUPPRESSION

A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER

Research Article Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

Research Article Compact Multiantenna

A COMPACT DUAL-BAND POWER DIVIDER USING PLANAR ARTIFICIAL TRANSMISSION LINES FOR GSM/DCS APPLICATIONS

Research Article A Novel Subnanosecond Monocycle Pulse Generator for UWB Radar Applications

IT IS well known that typical properties of low-pass filters

Research Article Design of a Broadband Band-Pass Filter with Notch-Band Using New Models of Coupled Transmission Lines

Research Article Compact Wake-Up Module Design Based on an Energy-Harvesting Rectenna for Wireless Sensor Receivers

Study on Transmission Characteristic of Split-ring Resonator Defected Ground Structure

Research Article BCB-Si Based Wide Band Millimeter Wave Antenna Fed by Substrate Integrated Waveguide

Research Article A Dual Band Patch Antenna with a Pinwheel-Shaped Slots EBG Substrate

Research Article Novel Notched UWB Filter Using Stepped Impedance Stub Loaded Microstrip Resonator and Spurlines

NOVEL IN-LINE MICROSTRIP COUPLED-LINE BAND- STOP FILTER WITH SHARP SKIRT SELECTIVITY

Design of a Short/Open-Ended Slot Antenna with Capacitive Coupling Feed Strips for Hepta-Band Mobile Application

BROADBAND ASYMMETRICAL MULTI-SECTION COU- PLED LINE WILKINSON POWER DIVIDER WITH UN- EQUAL POWER DIVIDING RATIO

Research Article Compact Two-Section Half-Wave Balun Based on Planar Artificial Transmission Lines

Research Article Design and Optimization of a Millimetre Wave Compact Folded Magic-T

Broadband Substrate to Substrate Interconnection

Design of a Quasi- elliptic Lowpass Filter using A New Defected Ground Structure and Capacitively Loaded Microstrip Line

A 6 : 1 UNEQUAL WILKINSON POWER DIVIDER WITH EBG CPW

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

A New Defected Ground Structure for Different Microstrip Circuit Applications

Research Article Wideband Dual-Element Antenna Array for MIMO Mobile Phone Applications

MICROSTRIP PHASE INVERTER USING INTERDIGI- TAL STRIP LINES AND DEFECTED GROUND

Research Article Integrated Filtering Microstrip Duplex Antenna Array with High Isolation

Research Article A Novel SIW H-Plane Horn Antenna Based on Parabolic Reflector

Research Article Quadrature Oscillators Using Operational Amplifiers

A MINIATURIZED UWB BPF BASED ON NOVEL SCRLH TRANSMISSION LINE STRUCTURE

COMPACT ULTRA-WIDEBAND BANDPASS FILTER WITH DEFECTED GROUND STRUCTURE

Improvement of Stopband Performance OF Microstrip Reconfigurable Band Pass Filter By Defected Ground Structure

QUADRI-FOLDED SUBSTRATE INTEGRATED WAVEG- UIDE CAVITY AND ITS MINIATURIZED BANDPASS FILTER APPLICATIONS

Research Article Study on Millimeter-Wave Vivaldi Rectenna and Arrays with High Conversion Efficiency

A Miniaturized Directional Coupler Using Complementary Split Ring Resonator and Dumbbell-Like Defected Ground Structure

Mutual Coupling Reduction of Micro strip antenna array by using the Electromagnetic Band Gap structures

Research Article Suppression of Cross-Polarization of the Microstrip Integrated Balun-Fed Printed Dipole Antenna

Design of Broadband Transition Structure from Microstrip to Slotline with Band Notched Characteristic

Broadband Circular Polarized Antenna Loaded with AMC Structure

SIZE REDUCTION AND HARMONIC SUPPRESSION OF RAT-RACE HYBRID COUPLER USING DEFECTED MICROSTRIP STRUCTURE

Design and Fabrication of Transmission line based Wideband band pass filter

DESIGN OF COMPACT MICROSTRIP LOW-PASS FIL- TER WITH ULTRA-WIDE STOPBAND USING SIRS

Research Article A 60 GHz Planar Diplexer Based on Substrate Integrated Waveguide Technology

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

Research Article Gain Enhancement of Low-Profile, Electrically Small Capacitive Feed Antennas Using Stacked Meander Lines

Research Article Low-Profile Repeater Antenna with Parasitic Elements for On-On-Off WBAN Applications

Enhanced Couplings in Broadband Planar Filters with Defected Ground Structures

Application Article Improved Low-Profile Helical Antenna Design for INMARSAT Applications

Research Article A Broadband Circularly Polarized Stacked Probe-Fed Patch Antenna for UHF RFID Applications

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS

Ultra Wideband Slotted Microstrip Patch Antenna for Downlink and Uplink Satellite Application in C band

A Compact Narrow-Band Bandstop Filter Using Spiral-Shaped Defected Microstrip Structure

Research Article Low-Profile Dual-Wideband MIMO Antenna with Low ECC for LTE and Wi-Fi Applications

DESIGN AND REALIZATION OF THREE-POLE BAND- PASS FILTER WITH SPURIOUS RESPONSE SUPPRES- SION USING DEFECTED GROUND STRUCTURES

A VARACTOR-TUNABLE HIGH IMPEDANCE SURFACE FOR ACTIVE METAMATERIAL ABSORBER

Research Article A Reconfigurable Coplanar Waveguide Bowtie Antenna Using an Integrated Ferroelectric Thin-Film Varactor

A Varactor-tunable Filter with Constant Bandwidth and Loss Compensation

A 10:1 UNEQUAL GYSEL POWER DIVIDER USING A CAPACITIVE LOADED TRANSMISSION LINE

Transcription:

Antennas and Propagation, Article ID 3696, 5 pages http://dx.doi.org/1.1155/14/3696 Research Article Realization of Negative Group Delay Network Using Defected Microstrip Structure Girdhari Chaudhary, 1 Yongchae Jeong, 1 and Jongsik Lim 1 Division of Electronics Engineering, IT Convergence Research Center, Chonbuk National University, Jeollabuk-do, Jeonju 561-756, Republic of Korea Department of Electrical Engineering, Soonchunhyang University, Chungnam, Asan 336-745, Republic of Korea Correspondence should be addressed to Yongchae Jeong; ycjeong@jbnu.ac.kr Received 3 December 13; Accepted 5 March 14; Published April 14 Academic Editor: Hon Tat Hui Copyright 14 Girdhari Chaudhary et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A design of negative group delay (NGD) networks using a U-shaped defected microstrip structure (DMS) and lumped elements is presented in this paper. The signal attenuation characteristics of DMS were utilized to get NGD time. The group delay (GD) time and signal attenuation of the proposed networks are controlled by an external resistor connected across the DMS slot. For experimental validation, a single-stage and cascaded two-stage NGD networks were designed and fabricated. From experimental results, the GD of.4 ± 1.1 ns with the maximum insertion loss of 37.4 db was obtained over bandwidth of 4 MHz. 1. Introduction In recent years, there has been an increasing amount of research on negative group delay (NGD) networks. The NGD is a counterintuitive phenomenon that relates time advancement to wave propagation [1 1]. This NGD phenomenon canbeobservedwithinthelimitedfrequencybandofsignal in certain media under signal attenuation condition. It has been implemented in electronic circuitry and applied to various practical applications in communication systems, such as shortening or reducing delay lines, efficiency enhancement of a feedforward linear amplifier, bandwidth enhancement of a feedback linear amplifier, and beam-squint minimization in phased array antenna systems [3 6, 11]. The group delay (GD) characteristics in circuit can be investigated by examining phase variation of forward transmitting scattering parameter. Using the deferential-phase GD (τ g )relation, τ g = dφ dω, (1) the presence of NGD in circuit is equivalent to an increasing phase (positive phase slope) with frequencies. The various kinds of NGD network based on active/ passive RLC resonators have been theoretically and experimentally validated in the previous studies [ 1]. However, none of previous works were implemented transmission-type configuration NGD network using a parallel RLC resonator with a distributed transmission line because of implementation difficulty. Recently, there is a growing interest on the periodic structures such as microstrip photonic bandgap (PBG), defected ground structure (DGS), and defected microstrip structure (DMS) which provide the signal attenuation characteristic at certain resonant frequency and are applied successfully in various applications [, ]. The DMS is a patterned structure etched on the signal strip instead of the ground plane. However, none of previous works were focused to design NGD network using DMS. In this paper, the attenuation characteristics of DMS are utilized to design and investigate NGD networks. First, the U-shaped DMS is investigated, and the equivalent lumped elements are extracted using the equivalent circuit model. Secondly, the external capacitor is connected across the DMS slot to get the required operating resonant frequency. Then,

Antennas and Propagation I 1 RF in 5 Ω 9 hybrid DMS-NGD DMS-NGD 9 hybrid 5 Ω RF out I w 1 C exe I R exe I 3 g w DMS Z C exe C L R R exe Z (c) I 4 I C exe1 g C exe w 1 I w d R exe1 R exe I 3 (d) Figure 1: Proposed NGD networks: configuration of balanced-type structure, single-stage DMS-NGD network, (c) equivalent circuit of a single-stage DMS-NGD network, and (d) cascaded two-stage network. the required amount of NGD time at the operating frequency is obtained by connecting the external resistor.. Design and Implementation The configuration of the proposed NGD network is shown in Figure 1 which consists of two 9 hybrid couplers anddms-ngdnetworks.thebalanced-typehybridstructure aims to improve the return loss characteristics of the transmission-type configuration NGD network. The layout of the DMS-NGD network is shown in Figure 1 consisting of an external lumped capacitor (C exe ) and a resistor (R exe ) connected across the DMS slot. The equivalent circuit model of DMS can be expressed as a parallel RLC circuit as shown in Figure 1(c) and the equivalent lumped elements of DMS are extracted by performing an EM simulation [13]whichare given as,, and (c) C= f c 4πZ (f f c ), L= 1 4π f C, 1 S R=Z 1 (f ), (c) S 1 (f ) where f c, f,ands 1 are 3 db cut-off frequency, resonant frequency, and transmission coefficient at the resonant frequency obtained from EM simulation, respectively. The externally connected C exe and R exe areinparallelwith the RLC equivalent circuit of DMS as shown in Figure 1(c). The added C exe is used to obtain the required resonant frequency and GD time, whereas R exe is used to get the required value of transmission characteristics at the resonant frequency. From the equivalent circuit of proposed structure shown in Figure 1(c), the GD and signal attenuation (S 1 ) at theresonantfrequencycanbecalculatedas(3a)and(3b) τ f=f = 1 d S 1 π df = R t C t Z +R t S 1 f=f = Z Z +R t, (3a) (3b) where Z is termination port impedance and the values of C t and R t are given as (4a)and(4b) C t =C+C exe, R t = RR exe R+R exe. (4a) (4b) From (3a) and(4a) and(4b), it is clear that the GD time is controlled by R exe and C t. To verify the design concept of the proposed NGD network, firstly, the U-shaped DMS is simulated with a full-wave solver Ansoft HFSSv13 with the following dimensions: w =.4, l =, w 1 =4, l 1 =16, l =6., l 3 =.,andg =.4 (all units are in mm). The simulation is performed using a substrate RT/duroid 5 with dielectric constant (ε r ) of. and thickness (h) of 31 mils. Figure shows the simulated resonance characteristics of U-shaped DMS where 3 db cut-off and resonant frequencies are at 5.66 GHz and 7.56 GHz. Therefore, the extracted values of equivalent circuit of DMS are given as C =.356 pf, L = 1.39 nh, and R = 3.5119 kω, respectively.sincethe capacitance of DMS only is not enough to get the required resonant frequency of.14 GHz; therefore, by connecting C exe = 4.15 pf, the resonant frequency is moved toward lower frequency around.14 GHz as shown in Figure. Similarly,

Antennas and Propagation 3 1 1 3 1 3 4 5 6 7 9 1 Circuit sim DMS with C exe DMS only DMS with C exe and R exe Circuit sim with C exe and R exe Figure : Full-wave and circuit simulated transmission response of U-shapedDMSwithexternallumpedelements. 1 1..1.1.14.16.1. EM sim with R exe = 1 Ω EM sim with R exe = 6 Ω EM sim with Circuit sim R exe =33Ω Figure 3: Simulated group delay and insertion loss characteristics of the proposed NGD network. 1.9.1.11.1.13.14.15.16.17.1 1.9.1.11.1.13.14.15.16.17.1 Sim Meas Return loss,s 11,S (db) 1 1 3.9.1.11.1.13.14.15.16.17.1 S 11 S Figure 4: Single-stage NGD networks: simulated and measured group delay and magnitude characteristics and measured return loss characteristics. the transmission coefficient (S 1 ) is controlled by connecting R exe = 1.1 kω. Figure 3 showsthesimulationresultsofngdnetwork under different R exe. The circuit simulation results have a good agreement with EM-simulation results. From this figure, it is shown that the GD amount is controlled by R exe. From the simulation, the GD of.5 ns with insertion loss 19.4 db was obtained at center frequency.14 GHz. 3. Simulation and Measurement Results The goal was to design the GD of 7ns for the wideband code division multiple access (WCDMA) downlink band operating at the center frequency.14 GHz. For this purpose, thengdnetworkusingdmsissimulatedandfabricated. The physical dimensions of U-shaped DMS are same as previous. Figure 4 shows the simulation and measurement results of single-stage NGD networks (with and without balanced structure). The measurement results have a good agreement with the EM-simulation results. In this measurement, C exe = 4.14 pf and R exe = 1.1 kω are used. From the measurement, it is found that the GD of.53 ns with the maximum signal attenuation of 19.97 db at the center frequency of.14 GHz in case of balanced type. The comparison results of return loss characteristics are shown in Figure 4. As seen from this figure, return loss characteristics are around 1.4 db in case of without balanced structure. Therefore, the balanced-type structure was used in order to improve the return loss (S 11 and S ) characteristics. The input and output return loss (S 11 and S )characteristics of balanced- type NGD network are better than 3.5 db. As seen from Figure 4, the NGD bandwidth is small which prevents to be used in practical applications. Therefore, the NGD bandwidth enhancement is required. For

4 Antennas and Propagation 1 1..1.1.14.16.1. 1 3 1..1.1.14.16.1. Return loss,s 11,S (db) 1 1 3 Sim Meas S 11 S 3..1.1.14.16.1. Figure 5: Two-stage DMS-NGD networks: simulated and measured group delay and magnitude characteristics and measured return loss characteristics. this purpose, the two-unit NGD network cells operating at center frequencies of.1 GHz and.15 GHz, respectively, are cascaded as shown in Figure 1(d). The physical dimensions of the unit cell DMS-NGD network are the same as described previously, except for the separation distance between the unit cells, which is given as 5.4 mm. The values of C exe1 = 4.16 pf, R exe1 = 1.1 kω, C exe = 4.1 pf, and R exe = 1.1 kω are used to achieve the desired operating center frequency and GD time, respectively. Figure 5 shows the simulation and measurement results of balanced-type two-stage NGD networks. The measurement results are in good agreement with the simulation results. From the measurements, it was found that the GD time was.4 ± 1.1 ns over an operating bandwidth of 4MHzincaseofbalanced-type.Themeasuredmaximum signal attenuation at.15 GHz was around 37.4 db. As seen from Figures 4 and 5, the NGD bandwidth of balanced-type NGD networks have slightly decreased as Table 1: Performance comparison of proposed NGD networks with conventional. f o (GHz) GD max (ns) S 1max (db) NGD BW (MHz) NGD BW product Return loss (db) [7] 1..3 1.6 X X 1 [9].31 1.5.9 1.1 15 [1].454 1.5.3 13.156 15 [3, 4, 11].14 9..4 3.7 < [1] 4.5.5 1. 3.15 X [] 3.55 3. 37.16.34 X This work.15. 37.4 4.3 < 19 Active NGD network. Phase, S 1 (deg) Phase, S 1 (deg) 1 6 4 -..1.1.14.16.1. 1 5 5 1 1-stage 15..1.1.14.16.1. -stage Figure 6: Measured phase characteristics of balanced type NGD networks. compared to without balanced structure because it should be compensated positive group delay of two 9 hybrid couplers by designing NGD networks for higher value of NGD time than actual required value. As NGD time is increased, the NGD bandwidth decrease as well as increase the signal attenuation. The return loss characteristics of cascaded twostagengdnetworksareshowninfigure 5.Thereturnloss characteristics are around 1 db in case of without balanced structure whereas these characteristics are better than 19 db in case of balanced type. Figure6 shows the measured phase characteristics of single and cascaded two-stage balanced type NGD networks. As seen in the figures, the slope of the transmission phase is positive in a certain region of the frequency, which signifies the presence of the NGD in the proposed circuit. The signal

Antennas and Propagation 5 Acknowledgments This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (13666). Figure 7: Photographs of fabricated circuits: single-stage and cascaded two-stage circuits. attenuations can be compensated by using general purpose gain amplifiers. The photographs of fabricated circuit are shown in Figure 7. The performance comparison of the proposed network with conventional circuits is given in Table 1. As seen from this table, the proposed NGD network provides the highest NGD-bandwidth among conventional circuits. 4. Conclusion In this paper, the demonstration of planar balanced-type negative group delay networks using a defected microstrip structure and lumped elements is presented. By taking advantage of the attenuation characteristics of the defected microstrip structure and connecting an external resistor and capacitor, the desired negative group delay and operating center frequency were obtained. The negative group delay is independently controlled by an external resistor. The proposed negative group delay network has compact size that is easy to implement. Therefore, it is expected to be applicable in communication systems such as minimizing the antenna correlation between adjacent antennas in multipleinput-multiple-output (MIMO) systems. It could also be applied in realization of non-foster elements as well as electromagnetics application such as enhancing bandwidth of artificial magnetic conductors (AMCs). Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. References [1] M. Kitano, T. Nakanishi, and K. Sugiyama, Negative group delay and superluminal propagation: an electronic circuit approach, IEEE Journal on Selected Topics in Quantum Electronics, vol.9,no.1,pp.43 51,3. [] G. Chaudhary, J. Jeong, P. Kim, Y. Jeong, and J. Lim, Compact negative group delay circuit using defected ground structure, in Proceedings of the IEEE Asia-Pacific Microwave Conference, pp. 4,November13. [3] H. Choi, Y. Jeong, C. D. Kim, and J. S. Kenney, Efficiency enhancement of feedforward amplifiers by employing a negative group-delay circuit, IEEE Transactions on Microwave Theory and Techniques, vol. 5, no. 5, pp. 1116 115, 1. [4] Y. Jeong, H. Choi, and C. D. Kim, Experimental verification for time advancement of negative group delay in RF electronic circuits, Electronics Letters,vol.46, no.4,pp.36 37, 1. [5] S.-S. Oh and L. Shafai, Compensated circuit with characteristics of lossless double negative materials and its application to array antennas, IET Microwaves, Antennas and Propagation, vol. 1, no. 1, pp. 9 3, 7. [6] B. Ravelo, M. le Roy, and A. Pérennec, Application of negative group delay active circuits to the design of broadband and constant phase shifters, Microwave and Optical Technology Letters, vol. 5, no. 1, pp. 37 3,. [7] B. Ravelo, A. Pérennec, M. L. Roy, and Y. G. Boucher, Active microwave circuit with negative group delay, IEEE Microwave and Wireless Components Letters, vol.17,no.1,pp.61 63, 7. [] D. Ahn, J.-S. Park, C.-S. Kim, J. Kim, Y. Qian, and T. Itoh, A design of the low-pass filter using the novel microstrip defected ground structure, IEEE Transactions on Microwave Theory and Techniques,vol.49,no.1,pp.6 93,1. [9] M. Kandic and G. E. Bridges, Bilateral gain-compensated negative group delay circuit, IEEE Microwave and Wireless Components Letters, vol. 1, no. 6, pp. 3 31, 11. [1] M. Kandic and G. E. Bridges, Asymptotic limits of negative group delay in active resonator-based distributed circuits, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.5, no., pp. 177 1735, 11. [11] H. Choi, Y. Jeong, C. D. Kim, and J. S. Kenney, Bandwidth enhancement of an analog feedback amplifier by employing anegativegroupdelaycircuit, Progress in Electromagnetics Research, vol. 15, pp. 53 7, 1. [1]C.D.BroomfieldandJ.K.A.Everard, Broadbandnegative group delay networks for compensation of microwave oscillators and filters, Electronics Letters, vol. 36, no. 3, pp. 1931 1933,. [13] J. A. Tirado-Méndez, H. Jardón-Aguilar, F. Iturbide-Sánchez, I. Garcia-Ruiz, V. Molina-Lopez, and R. Acevo-Herrera, A proposed defected microstrip structure (DMS) behavior for reducing rectangular patch antenna size, Microwave and Optical Technology Letters,vol.43,no.6,pp.41 44,4.

Rotating Machinery Engineering The Scientific World Journal Distributed Sensor Networks Sensors Control Science and Engineering Advances in Civil Engineering Submit your manuscripts at Electrical and Computer Engineering Robotics VLSI Design Advances in OptoElectronics Navigation and Observation Chemical Engineering Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Modelling & Simulation in Engineering Shock and Vibration Advances in Acoustics and Vibration