RF LDMOS Wideband Integrated Power Amplifiers

Similar documents
RF Power Field Effect Transistor Array N-Channel Enhancement-Mode Lateral MOSFET

RF LDMOS Wideband 2-Stage Power Amplifiers

Characteristic Symbol Value Unit Thermal Resistance, Junction-to-Case R θjc 6 C/W

Gallium Arsenide PHEMT RF Power Field Effect Transistor

LIFETIME BUY LAST ORDER 3 OCT 08 LAST SHIP 14 MAY 09. RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET MRF374A

Characteristic Symbol Value Unit Thermal Resistance, Junction to Case. Test Conditions

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9236MN. Freescale Semiconductor. Technical Data

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9838. Freescale Semiconductor. Technical Data MHL9838. Rev.

921 MHz-960 MHz SiFET RF Integrated Power Amplifier

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions MRF9085SR3/MRF9085LSR3

ARCHIVE INFORMATION. PCS Band RF Linear LDMOS Amplifier MHL Freescale Semiconductor. Technical Data MHL Rev. 4, 1/2005

ARCHIVE INFORMATION MW4IC2230MBR1 MW4IC2230GMBR1. Freescale Semiconductor. Technical Data. Document Number: MW4IC2230 Rev.

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9318. Freescale Semiconductor. Technical Data MHL9318. Rev.

RF LDMOS Wideband Integrated Power Amplifiers

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

P D Storage Temperature Range T stg - 65 to +175 C Operating Junction Temperature T J 200 C

Watts W/ C Storage Temperature Range T stg 65 to +200 C Operating Junction Temperature T J 200 C. Test Conditions

RF LDMOS Wideband 2-Stage Power Amplifiers

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS (1) Drain Source Breakdown V

Heterostructure Field Effect Transistor (GaAs HFET) Broadband High Linearity Amplifier

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

LIFETIME BUY LAST ORDER 1 JUL 11 LAST SHIP 30 JUN MHz -960 MHz SiFET RF Integrated Power Amplifier MHVIC910HNR2. Freescale Semiconductor

ARCHIVE INFORMATION. RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET MRF21120R6. Freescale Semiconductor.

RF LDMOS Wideband Integrated Power Amplifier MHVIC2115R2. Freescale Semiconductor, I. The Wideband IC Line SEMICONDUCTOR TECHNICAL DATA

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

Characteristic Symbol Value (1,2) Unit Thermal Resistance, Junction to Case Case Temperature 80 C, 20 W CW

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) ON CHARACTERISTICS Gate Threshold Voltage (V DS = 10 Vdc, I D = 100 µa) Chara

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifiers

CMOS Micro-Power Comparator plus Voltage Follower

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

ARCHIVE INFORMATION. RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET MRF377 MRF377R3 MRF377R5. Freescale Semiconductor

Figure 1. MRF6S27015NR1(GNR1) Test Circuit Schematic

Table 5. Electrical Characteristics (T A = 25 C unless otherwise noted)

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

ARCHIVE INFORMATION. RF Power Field -Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET MRF372R3 MRF372R5. Freescale Semiconductor

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET

Rating Symbol Value Unit Drain Source Voltage V DSS 65 Vdc Gate Source Voltage V GS ±20 Vdc Total Device T C = 25 C Derate above 25 C

Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family

P D Storage Temperature Range T stg - 65 to +150 C Operating Junction Temperature T J 150 C

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

Low Voltage 1:18 Clock Distribution Chip

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

Freescale Semiconductor, I

V GS(th) Vdc. V GS(Q) 2.6 Vdc. V GG(Q) Vdc. V DS(on) Vdc

P D Storage Temperature Range T stg - 65 to +150 C Operating Junction Temperature T J 200 C

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

Characteristic Symbol Value (1,2) Unit. Test Methodology. Human Body Model (per JESD22--A114) Machine Model (per EIA/JESD22--A115)

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF LDMOS Wideband Integrated Power Amplifiers. Freescale Semiconductor, I MW5IC2030MBR1 MW5IC2030GMBR1. The Wideband IC Line

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

Watts W/ C Storage Temperature Range Tstg 65 to +150 C Operating Junction Temperature TJ 200 C

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Collector Emitter Breakdown

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

Low-Power CMOS Ionization Smoke Detector IC

Quiescent Current Control for the RF Integrated Circuit Device Family

RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET

Characteristic Symbol Value (2,3) Unit

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

Characteristic Symbol Value (2,3) Unit

PD Storage Temperature Range Tstg 65 to +200 C Operating Junction Temperature TJ 200 C

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifier

Freescale Semiconductor, I

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Emitter Base Break

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifier

Rating Symbol Value Unit Drain Source Voltage VDSS 65 Vdc Gate Source Voltage VGS ±20 Vdc Total Device TC = 25 C Derate above 25 C

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

P D Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C

Characteristic Symbol Value (2,3) Unit. Test Methodology

ARCHIVE INFORMATION. RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFETs MRF6P3300HR3 MRF6P3300HR5. Freescale Semiconductor

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

Rating Symbol Value Unit Drain-Source Voltage V DSS 40 Vdc Gate-Source Voltage V GS ± 20 Vdc Total Device T C = 25 C Derate above 25 C

Transcription:

Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MW4IC00 wideband integrated circuit is designed for use as a distortion signature device in analog predistortion systems. It uses Freescale s newest High Voltage (26 to 28 Volts) LDMOS IC technology. Its wideband On Chip design makes it usable from 800 MHz to 270 MHz. The linearity performances cover all modulations for cellular applications: GSM EDGE, TDMA, CDMA and W- CDMA. Typical CW Performance at 270 MHz, 28 Volts, I DQ = 2 ma Output Power 900 mw PEP Power Gain 3 db Efficiency 38% High Gain, High Efficiency and High Linearity Designed for Maximum Gain and Insertion Phase Flatness Excellent Thermal Stability Characterized with Series Equivalent Large- Signal Impedance Parameters N Suffix Indicates Lead- Free Terminations In Tape and Reel. R4 Suffix = 00 Units per 2 mm, 7 inch Reel. MW4IC00MR4 Rev. 3, /2005 MW4IC00NR4 MW4IC00MR4 800-270 MHz, 900 mw, 28 V W-CDMA RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS CASE 466-03, STYLE PLD-.5 PLASTIC Table. Maximum Ratings Rating Symbol Value Unit Drain-Source Voltage V DSS - 0.5, +65 Vdc Gate-Source Voltage V GS - 0.5, +5 Vdc Total Device Dissipation @ T C = 25 C Derate above 25 C P D 4.58 0.037 W W/ C Storage Temperature Range T stg - 65 to +50 C Operating Junction Temperature T J 50 C Table 2. Thermal Characteristics Characteristic Symbol Value Unit Thermal Resistance, Junction to Case @ 85 C R θjc 27.3 C/W Table 3. ESD Protection Characteristics Test Conditions Class Human Body Model Machine Model Charge Device Model 0 (Minimum) M (Minimum) C2 (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Rating Package Peak Temperature Unit Per JESD 22-A3, IPC/JEDEC J-STD-020 3 260 C NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed., Inc., 2005. All rights reserved.

Table 5. Electrical Characteristics (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Off Characteristics Zero Gate Voltage Drain Current (V DS = 65 Vdc, V GS = 0 Vdc) I DSS 0 µadc Zero Gate Voltage Drain Current (V DS = 28 Vdc, V GS = 0 Vdc) I DSS 0 µadc Gate-Source Leakage Current (V GS = 5 Vdc, V DS = 0 Vdc) On Characteristics Gate Threshold Voltage (V DS = 0 V, I D = 50 µa) Gate Quiescent Voltage (V DS = 28 V, I D = 0 ma) Drain-Source On-Voltage (V GS = 0 V, I D = 0.05 A) Forward Transconductance (V DS = 0 V, I D = 0. A) Dynamic Characteristics Output Capacitance (V DS = 28 Vdc ± 30 mv(rms)ac @ MHz, V GS = 0 Vdc) Reverse Transfer Capacitance (V DS = 28 Vdc ± 30 mv(rms)ac @ MHz, V GS = 0 Vdc) Functional Tests (In Freescale Test Fixture, 50 ohm system) Two-Tone Common Source Amplifier Power Gain (V DD = 28 Vdc, P out = 0.9 W PEP, I DQ = 2 ma, f = 270 MHz, Tone Spacing = 00 khz) Two-Tone Drain Efficiency (V DD = 28 Vdc, P out = 0.9 W PEP, I DQ = 2 ma, f = 270 MHz, Tone Spacing = 00 khz) Third Order Intermodulation Distortion (V DD = 28 Vdc, P out = 0.9 W PEP, I DQ = 2 ma, f = 270 MHz, Tone Spacing = 00 khz) Input Return Loss (V DD = 28 Vdc, P out = 0.9 W PEP, I DQ = 2 ma, f = 270 MHz, Tone Spacing = 00 khz) Output Power, db Compression Point, CW (V DD = 28 Vdc, I DQ = 2 ma, f = 270 MHz) Common-Source Amplifier Power Gain (V DD = 28 Vdc, P out = 0.9 W CW, I DQ = 2 ma, f = 270 MHz) Drain Efficiency (V DD = 28 Vdc, P out = 0.9 W CW, I DQ = 2 ma, f = 270 MHz) Input Return Loss (V DD = 28 Vdc, P out = 0.9 W CW, I DQ = 2 ma, f = 270 MHz) I GSS µadc V GS(th) 2 3 5 Vdc V GS(Q) 2 3.7 5 Vdc V DS(on) 0.48 0.9 Vdc g fs 0.05 S C oss 45 pf C rss 0.62 pf G ps 3 db η D 29 % IMD -28 dbc IRL -8 db PdB 0.85 W G ps 2 3 db η D 35 38 % IRL -0-6 db 2

V GG RF INPUT Z C9 C C3 C0 Z2 L C2 Z3 Z6 R Z4 R2 C4 Z5 DUT Z8 L2 Z7 Z9 Z0 Z Z2 Z3 C5 C7 C6 + C8 C C2 C3 V DD RF OUTPUT Z.33 x 0.044 Microstrip Z2 0.26 x 0.076 Microstrip Z3 0.065 x 0.75 Microstrip Z4 0.065 x 0.95 Microstrip Z5 0.680 x 0.45 Microstrip Z6, Z7.95 x 0.055 Microstrip Z8 0.20 x 0.4 Microstrip Z9 0.062 x 0.044 to 0.65 Taper Z0 0.082 x 0.65 Microstrip Z 0.075 x 0.044 Microstrip Z2 0.625 x 0.044 Microstrip Z3.375 x 0.044 Microstrip PCB Rogers RO4350, 0.020, ε r = 3.5 Figure. MW4IC00NR4(MR4) 900 MHz Test Circuit Schematic Table 6. MW4IC00NR4(MR4) 900 MHz Test Circuit Component Designations and Values Part Description Part Number Manufacturer C, C6 0. µf, 00 V Chip Capacitors C20C04K5RACTR Kemet C2, C3, C5, C7 43 pf, 500 V Chip Capacitors 00B430JP500X ATC C4 2 pf, 500 V Chip Capacitor 00B20JP500X ATC C8 22 µf, 35 V Tantalum Chip Capacitor T49X226K035AS Kemet C9 4.7 pf, 500 V Chip Capacitor 00B4R7CP500X ATC C0, C 0.6-4.5 pf, 500 V Variable Capacitors 2727SL Johanson C2 2.7 pf, 500 V Chip Capacitor 00B2R7CP500X ATC C3 3.3 pf, 500 V Chip Capacitor 00B3R3CP500X ATC L 5.6 nh Chip Inductor 0805 Series AVX L2 0 nh Chip Inductor 008 Series ATC R 00 Chip Resistor CRCW20600F00 Dale R2 20 Chip Resistor CRCW20620R0F00 Dale 3

V GG V DD C C2 C6 C7 C8 C9 C0 C3 L R C4 R2 L2 C5 C2 C C3 MW4IC00MR4 900 MHz Rev 2 Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product. Figure 2. MW4IC00NR4(MR4) 900 MHz Test Circuit Component Layout 4

TYPICAL CHARACTERISTICS - 900 MHz η D, DRAIN EFFICIENCY (%), G ps, POWER GAIN (db) 50 46 42 38 34 30 26 22 8 4 0 855 IRL η D IM3 G ps 860 865 870 875 880 f, FREQUENCY (MHz) V DS = 28 Vdc P out = 0.9 W (PEP) I DQ = 4 ma Two Tone Measurement 00 khz Tone Spacing 885 890 895 Figure 3. Two-Tone Performance versus Frequency 900 5 7 9 2 23 25 27 29 3 33 905 IRL, INPUT RETURN LOSS (db) G ps, POWER GAIN (db) 5 4 3 2 0 9 8 7 6 0 G ps PdB 60 55 50 45 40 35 30 V DS = 28 Vdc 25 4 ma I DQ = 4 ma 50 20 Two Tone Measurement f = 880 MHz 2 ma 00 khz Tone Spacing 5 55 0.2 0.4 0.6 0.8.0.2.4 0.0 0. 0 P out, OUTPUT POWER (WATTS) η D Figure 4. CW Performance versus Output Power η D, DRAIN EFFICIENCY (%) 25 45 I DQ = 8 ma 0 ma 8 ma 6 ma V DS = 28 Vdc f = 880 MHz f2 = 880. MHz Figure 5. Intermodulation Distortion versus Output Power 25 45 3rd Order V DS = 28 Vdc I DQ = 4 ma f = 880 MHz f2 = 880. MHz 50 55 0 MHz V DS = 28 Vdc 5th Order I DQ = 4 ma 60 45 MHz f = 880 MHz, Two Tone Measurement 65 Tone f2 = f + Tone Spacing 7th Order 00 khz Tone Spacing Spacing = 00 khz Two Tone Measurement 70 50 0.0 0. 0 0.0 0. 0 Figure 6. Intermodulation Distortion Products versus Output Power 25 Figure 7. Third Order Intermodulation Distortion versus Output Power 5

Z5 V GG RF INPUT + C Z C3 Z2 C2 Z3 Z4 R Z6 Z7 DUT Z8 Z9 Z2 C4 Z Z0 Z3 Z4 Z5 C5 + C6 V DD RF OUTPUT C7 Z Z2 Z3 Z4 Z5 Z6 Z7 Z8.08 x 0.044 Microstrip 0.495 x 0.296 Microstrip 0.893 x 0.500 Microstrip.340 x 0.022 Microstrip 0.92 x 0.022 Microstrip 0.24 x 0.500 Microstrip 0.076 x 0.50 Microstrip 0.294 x 0.50 Microstrip Z9 0.067 x 0.264 Microstrip Z0 0.457 x 0.492 Microstrip Z 0.79 x 0.022 Microstrip Z2.49 x 0.022 Microstrip Z3 0.677 x 0.434 Microstrip Z4 0.095 x 0.264 Microstrip Z5 0.772 x 0.044 Microstrip PCB Rogers RO4350, 0.020, ε r = 3.5 Figure 8. MW4IC00NR4(MR4) 990 MHz Test Circuit Schematic Table 7. MW4IC00NR4(MR4) 990 MHz Test Circuit Component Designations and Values Part Description Part Number Manufacturer C, C6 22 µf, 35 V Tantalum Capacitors T49X226K035AS Kemet C2, C4 0 pf, 500 V Chip Capacitors 00B00JCA500X ATC C3, C5 0 pf, 500 V Chip Capacitor 600S00JW ATC C7 0.6-4.5 pf, 500 V Variable Capacitor 2727SL Johanson R k Chip Resistor CRCW20602F00 Dale V GG V DD C C6 C2 C4 R C3 C5 C7 MW4IC00MR4 990 MHz Rev 3 6 Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product. Figure 9. MW4IC00NR4(MR4) 990 MHz Test Circuit Component Layout

TYPICAL CHARACTERISTICS - 990 MHz η D, DRAIN EFFICIENCY (%), G ps, POWER GAIN (db) 40 35 30 25 20 5 0 5 IRL η D G ps IMD 0 930 V DD = 28 Vdc, P out = 0.9 W (PEP), I DQ = 2 ma Two Tone Measurement, 00 khz Tone Spacing 940 950 960 970 980 f, FREQUENCY (MHz) Figure 0. Two-Tone Performance versus Frequency 4 7 20 23 26 29 32 990 IRL, INPUT RETURN LOSS (db) G ps, POWER GAIN (db) 4.4 4.0 3.6 3.2 2.8 2.4 0. G ps η D PdB V DD = 28 Vdc I DQ = 2 ma f = 990 MHz 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9.0..2 P out, OUTPUT POWER (WATTS) Figure. CW Performance versus Output Power 56 48 40 32 24 6.3 η D, DRAIN EFFICIENCY (%) 45 50 55 9.6 ma 60 0.0 I DQ = 20 ma 2 ma 0. 6 ma V DD = 28 Vdc f = 990 MHz, f2 = 990. MHz Two Tone Measurement 00 khz Tone Spacing Figure 2. Intermodulation Distortion versus Output Power 45 50 55 60 65 70 75 0.0 3rd Order 5th Order 7th Order OUTPUT POWER (WATTS) PEP Figure 3. Intermodulation Distortion Products versus Output Power THIRD ORDER INTERMODULATION (dbc) 0 MHz 50 MHz V DD = 28 Vdc I DQ = 2 ma V DD = 28 Vdc 55 f = 990 MHz I DQ = 2 ma, f = 990 MHz, f2 = 990. MHz f2 = f + Tone Spacing Two Tone Measurement, 00 khz Tone Spacing 60 00 khz Two Tone Measurement 0. 0.0 0. 45 Figure 4. Third Order Intermodulation Distortion versus Output Power 7

Z5 V GG RF INPUT + C Z C3 Z2 C2 Z3 Z4 R Z6 Z7 DUT Z8 Z9 Z2 C4 Z Z0 Z3 Z4 Z5 C5 + C6 V DD RF OUTPUT C7 Z Z2 Z3 Z4 Z5 Z6 Z7 Z8.267 x 0.044 Microstrip 0.058 x 0.044 Microstrip 0.758 x 0.256 Microstrip.073 x 0.022 Microstrip.36 x 0.022 Microstrip 0.205 x 0.332 Microstrip 0.09 x 0.50 Microstrip 0.20 x 0.50 Microstrip Z9 0.06 x 0.344 Microstrip Z0 0.783 x 0.500 Microstrip Z 0.847 x 0.022 Microstrip Z2.055 x 0.022 Microstrip Z3 0.29 x 0.387 Microstrip Z4 0.050 x 0.287 Microstrip Z5 0.950 x 0.044 Microstrip PCB Rogers RO4350, 0.020, ε r = 3.5 Figure 5. MW4IC00NR4(MR4) 270 MHz Test Circuit Schematic Table 8. MW4IC00NR4(MR4) 270 MHz Test Circuit Component Designations and Values Part Description Part Number Manufacturer C, C6 22 µf, 35 V Tantalum Capacitors T49X226K035AS Kemet C2, C4 0 pf, 500 V Chip Capacitors 00B00JCA500X ATC C3, C5 0 pf, 500 V Chip Capacitor 600S00JW ATC C7 0.6-4.5 pf, 500 V Variable Capacitor 2727SL Johanson R k Chip Resistor CRCW20602F00 Dale V GG V DD C C6 C2 C4 R C5 C3 C7 MW4IC00MR4 270 MHz Rev 3 Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product. Figure 6. MW4IC00NR4(MR4) 270 MHz Test Circuit Component Layout 8

TYPICAL CHARACTERISTICS - 270 MHz η D, DRAIN EFFICIENCY (%), G ps, POWER GAIN (db) 32 27 22 7 2 20 IRL η D IMD G ps 220 230 240 f, FREQUENCY (MHz) V DD = 28 Vdc P out = 0.9 W (PEP) I DQ = 2 ma Two Tone Measurement, 00 khz Tone Spacing 250 260 Figure 7. Two-Tone Performance versus Frequency 3 8 23 28 33 270 IRL, INPUT RETURN LOSS (db) G ps, POWER GAIN (db) 3.8 3.4 3.0 2.6 2.2 G ps η D PdB 60 V DD = 28 Vdc.8 I DQ = 2mA 0 45 f = 270 MHz 9.6 ma 2 ma.4 0 50 0. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9.0..2.3.4.5 0.0 0. Figure 8. CW Performance versus Output Power 50 40 30 20 η D, DRAIN EFFICIENCY (%) 20 25 V DD = 28 Vdc f = 270 MHz, f2 = 270. MHz Two Tone Measurement 00 khz Tone Spacing I DQ = 7.2 ma 20 ma 6 ma Figure 9. Intermodulation Distortion versus Output Power 20 25 45 V DD = 28 Vdc, I DQ = 2 ma, f = 270 MHz, f2 = 270. MHz Two Tone Measurement, 00 khz Tone Spacing 3rd Order 50 5th Order MHz 0 MHz 55 60 7th Order 65 00 khz 70 45 0.0 0. 0.0 0. Figure 20. Intermodulation Distortion Products versus Output Power THIRD ORDER INTERMODULATION (dbc) 20 25 V DD = 28 Vdc I DQ = 2 ma f = 270 MHz f2 = f + Tone Spacing Two Tone Measurement Figure 2. Third Order Intermodulation Distortion versus Output Power 9

f = 860 MHz f = 900 MHz Z o = 50 Ω f =860 MHz f = 900 MHz V DD = 28 V, I DQ = 4 ma, P out = 0.9 W PEP f MHz 860 865 870 875 880 Ω 27.853 + j5.908 28.67 + j6.078 29.458 + j6.285 30.306 + j6.422 3.223 + j6.567 Ω 5.492 + j63.669 5.592 + j68.687 5.788 + j69.799 5.835 + j70.863 5.975 + j7.920 885 32.94 + j6.660 6.094 + j73.09 890 33.228 + j6.656 6.286 + j74.59 895 34.293 + j6.624 6.344 + j75.236 900 35.424 + j6.508 6.628 + j76.283 = Test circuit impedance as measured from gate to ground. = Test circuit impedance as measured from drain to ground. Input Matching Network Device Under Test Output Matching Network Figure 22. Series Equivalent Source and Load Impedance 0

f = 920 MHz f = 2000 MHz f = 2000 MHz f = 280 MHz f = 200 MHz f = 280 MHz f = 920 MHz f = 200 MHz Z o = 50 Ω Z o = 50 Ω V DD = 28 V, I DQ = 2 ma, P out = 0.9 W PEP V DD = 28 V, I DQ = 2 ma, P out = 0.9 W PEP f MHz Ω Ω f MHz Ω Ω 920 4.238 + j5.42 7.764 + j28.829 200 2.667 + j2.903 5.892 + j26.374 930 4.322 + j5.362 8.056 + j29.352 20 2.67 + j3.070 6.092 + j26.739 940 4.490 + j5.466 8.436 + j29.727 220 2.664 + j3.224 6.28 + j27.094 950 960 4.605 + j5.7 4.752 + j5.904 8.809 + j30.249 9.83 + j30.763 970 4.905 + j6.050 9.598 + j3.23 980 5.07 + j6.236 0.030 + j3.690 990 5.262 + j6.446 0.546 + j32.237 2000 5.487 + j6.632.054 + j32.726 = Test circuit impedance as measured from gate to ground. = Test circuit impedance as measured from drain to ground. 230 240 2.694 + j3.43 2.703 + j3.5 6.540 + j27.50 6.748 + j27.795 250 2.702 + j3.700 6.996 + j28.82 260 2.745 + j3.952 7.300 + j28.678 270 2.754 + j4.026 7.562 + j28.987 280 2.784 + j4.206 7.862 + j29.4 = Test circuit impedance as measured from gate to ground. = Test circuit impedance as measured from drain to ground. Input Matching Network Device Under Test Output Matching Network Input Matching Network Device Under Test Output Matching Network Figure 23. Series Equivalent Source and Load Impedance

NOTES 2

NOTES 3

NOTES 4

PACKAGE DIMENSIONS A F 3 B ZONE V ZONE W D G Q 4 N K H ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ 4 3 ZONE X VIEW Y-Y S 2 2 R U C L 0.35 (0.89) X 45 5 P Y CASE 466-03 ISSUE C PLD-.5 PLASTIC Y STYLE : PIN. DRAIN 2. GATE 3. SOURCE 4. SOURCE 0 DRAFT E NOTES:. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y4.5M, 984. 2. CONTROLLING DIMENSION: INCH 3. RESIN BLEED/FLASH ALLOWABLE IN ZONE V, W, AND X. INCHES MILLIMETERS DIM MIN MAX MIN MAX A 0.255 0.265 6.48 6.73 B 0.225 0.235 5.72 5.97 C 0.065 0.072.65.83 D 0.30 0.50 3.30 3.8 E 0.02 0.026 0.53 0.66 F 0.026 0.044 0.66.2 G 0.050 0.070.27.78 H 0.045 0.063.4.60 J 0.60 0.80 4.06 4.57 K 0.273 0.285 6.93 7.24 L 0.245 0.255 6.22 6.48 N 0.230 0.240 5.84 6.0 P 0.000 0.008 0.00 0.20 Q 0.055 0.063.40.60 R 0.200 0.20 5.08 5.33 S 0.006 0.02 0.5 0.3 U 0.006 0.02 0.5 0.3 ZONE V 0.000 0.02 0.00 0.53 ZONE W 0.000 0.00 0.00 0.25 ZONE X 0.000 0.00 0.00 0.25 5

How to Reach Us: Home Page: www.freescale.com E-mail: support@freescale.com USA/Europe or Locations Not Listed: Technical Information Center, CH370 300 N. Alma School Road Chandler, Arizona 85224 +-800-52-6274 or +-480-768-230 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 8829 Muenchen, Germany +44 296 380 456 (English) +46 8 52200080 (English) +49 89 9203 559 (German) +33 69 35 48 48 (French) support@freescale.com Japan: Japan Ltd. Headquarters ARCO Tower 5F -8-, Shimo-Meguro, Meguro-ku, Tokyo 53-0064 Japan 020 904 or +8 3 5437 925 support.japan@freescale.com Asia/Pacific: Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Literature Distribution Center P.O. Box 5405 Denver, Colorado 8027-800-44-2447 or 303-675-240 Fax: 303-675-250 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. reserves the right to make changes without further notice to any products herein. makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters that may be provided in data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typicals, must be validated for each customer application by customer s technical experts. does not convey any license under its patent rights nor the rights of others. products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death may occur. Should Buyer purchase or use products for any such unintended or unauthorized application, Buyer shall indemnify and hold and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale and the Freescale logo are trademarks of, Inc. All other product or service names are the property of their respective owners., Inc. 2005. All rights reserved. Document Number: MW4IC00MR4 Rev. 3, /2005 6