Micro- & Nano-technologies pour applications hyperfréquence à Thales Research &Technology Afshin Ziaei, Sébastien Demoustier, Eric Minoux

Similar documents
High Power RF MEMS Switch Technology

CARBON BASED SMART SYSTEM FOR WIRELESS APPLICATION

SATURNE Microsystems Based on Wide Band Gap Materials for Future Space Transmitting Ultra Wideband Receiving Systems

III-Nitride microwave switches Grigory Simin

Design and Fabrication of Low-loss RF MEMS switches for a broadband reflectarray

Application Note 5525

38050 Povo Trento (Italy), Via Sommarive 14 TIME CHARACTERIZATION OF CAPACITIVE MEMS RF SWITCHES

INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT

CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION

Integration of Optoelectronic and RF Devices for Applications in Optical Interconnect and Wireless Communication

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet

Optically reconfigurable balanced dipole antenna

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS:

Ordering Information. Specifications. RF MEMS Switch 2SMES-01. Contact Ratings. Terminal Arrangement. Actuator Ratings

Limiter Diodes Features Description Chip Dimensions Model DOT Diameter (Typ.) Chip Number St l Style Inches 4 11

Study of MEMS Devices for Space Applications ~Study Status and Subject of RF-MEMS~

Figure 1 : Topologies of a capacitive switch The actuation voltage can be expressed as the following :

MICROWAVE ENGINEERING-II. Unit- I MICROWAVE MEASUREMENTS

MAAP Power Amplifier, 15 W GHz Rev. V1. Features. Functional Schematic. Description. Pin Configuration 2. Ordering Information

INF5490 RF MEMS. L7: RF MEMS switches, I. S2008, Oddvar Søråsen Department of Informatics, UoO

CMT2300AW Schematic and PCB Layout Design Guideline

High Power PIN Diodes

Introduction: Planar Transmission Lines

Near-Field Scanning. Searching for Root Causes

Parameter Frequency Typ Min (GHz)

LOW LOSS FERROELECTRIC BASED PHASE SHIFTER FOR HIGH POWER ANTENNA SCAN BEAM SYSTEM

GaAs MMIC devices are susceptible to Electrostatic Discharge. Use proper ESD precautions when handling these items.

MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications

Maxim Integrated Products 1

Signal Integrity Design of TSV-Based 3D IC

Signal Integrity Modeling and Measurement of TSV in 3D IC

High-performance and Low-cost Capacitive Switches for RF Applications

CHAPTER - 6 PIN DIODE CONTROL CIRCUITS FOR WIRELESS COMMUNICATIONS SYSTEMS

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches

7-12GHz LNA. GaAs Monolithic Microwave IC. S21 (db)

Application Note 5468

RF/Microwave Circuits I. Introduction Fall 2003

Application Note 1330

MASW P. SURMOUNT PIN Diode Switch Element with Thermal Terminal. Features. Description. Ordering Information 2.

AWS5504 GaAs IC Negative Control SPDT Reflective Switch DC-2.0 GHz Data Sheet - Rev 2.1

GaAs MMIC devices are susceptible to Electrostatic Discharge. Use proper ESD precautions when handling these items.

Parameter Frequency Typ (GHz) See page 7 for minimum performance specs of AMM7602UC connectorized modules. Description Green Status

GaAs MMIC devices are susceptible to Electrostatic Discharge. Use proper ESD precautions when handling these items.

Data Sheet. VMMK GHz Positive Gain Slope Low Noise Amplifier in SMT Package. Features. Description

EM Design of Broadband RF Multiport Toggle Switches

GHz Voltage Variable Attenuator (Absorptive)

Surface-mounted MEMS Switch

HMPP-386x Series MiniPak Surface Mount RF PIN Diodes

Maxim Integrated Products 1

RF MEMS Impedance Tuners for 6 24 GHz Applications

A RECONFIGURABLE HYBRID COUPLER CIRCUIT FOR AGILE POLARISATION ANTENNA

Modeling and Simulation of Via Conductor Losses in Co-fired Ceramic Substrates Used In Transmit/Receive Radar Modules

Micro- and nano-scale switches and tuning elements for microwave applications

Preliminary Product Overview

RF(Radio Frequency) MEMS (Micro Electro Mechanical

RF Test Accessories. Antenna Coupler. TC-93010C fitted with F930102A TC-93013A. Frequency Range : 820 ~ 960 MHz. Frequency Range : 0.

MPS S & MPS S CONTROL DEVICE MONOLITHIC SPST PIN RoHS Compliant

Preliminary. MM7100 High-Voltage SPST Digital-Micro-Switch. Product Overview PRELIMINARY DATA SHEET, SEE PAGE 11 FOR DETAILS

ISSCC 2006 / SESSION 10 / mm-wave AND BEYOND / 10.1

30dB P IN =25dBm. 0.50dB P IN =25dBm. 33dB P IN =25dBm. 21dB

A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver

Fourth Year Antenna Lab

MA4AGSW2. AlGaAs SP2T PIN Diode Switch. MA4AGSW2 Layout. Features. Description. Absolute Maximum Ratings TA = +25 C (Unless otherwise specified)

Data Sheet. VMMK GHz Directional Detector in SMT Package. Features. Description. Specifications (4 GHz, Vb = 1.5 V, Zin = Zout = 50 Ω)

Power Reduction in RF

Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors

Development of High C on C off Ratio RF MEMS Shunt Switches

Pin Connections and Package Marking. GUx

HMC-AUH232 MICROWAVE & OPTICAL DRIVER AMPLIFIERS - CHIP. GaAs HEMT MMIC MODULATOR DRIVER AMPLIFIER, DC - 43 GHz. Typical Applications.

An on-chip antenna integrated with a transceiver in 0.18-µm CMOS technology

FEATURES DESCRIPTION ABSOLUTE MAXIMUM RATINGS. T AMB = +25 C ( Unless otherwise specified )

Transmitarrays, reflectarrays and phase shifters for wireless communication systems. Pablo Padilla de la Torre Universidad de Granada

Design and Simulation of RF MEMS Capacitive type Shunt Switch & its Major Applications

W-band Mixer. GaAs Monolithic Microwave IC

RF Discrete Devices Designer Kit

Design and Fabrication of RF MEMS Switch by the CMOS Process

100 MHz to 4000 MHz RF/IF Digitally Controlled VGA ADL5240

Compact Multilayer Hybrid Coupler Based on Size Reduction Methods

CMT211xA Schematic and PCB Layout Design Guideline

Advanced Information: AI1714. DC-14GHz Voltage Variable Attenuator. GaAs Monolithic Microwave IC

GaAs MMIC devices are susceptible to Electrostatic Discharge. Use proper ESD precautions when handling these items.

High Isolation SPDT SWITCH

Broadband analog phase shifter based on multi-stage all-pass networks

Surface Mount SOT-363 (SC-70) Package. Pin Connections and Package Marking GND. V dd. Note: Package marking provides orientation and identification.

AT General Purpose, Low Current NPN Silicon Bipolar Transistor. Data Sheet

Spontaneous Hyper Emission: Title of Talk

EC 1402 Microwave Engineering

DC-12 GHz Tunable Passive Gain Equalizer

Advanced RF MEMS CAMBRIDGE UNIVERSITY PRESS. Edited by STEPAN LUCYSZYN. Imperial College London

SUPPLEMENTARY INFORMATION

Application Note No. 025

GHz 6-Bit Digital Attenuator

BROADBAND DISTRIBUTED AMPLIFIER

Data Sheet. VMMK GHz Directional Detector in SMT Package. Features. Description. Specifications (35 GHz, Vb = 1.5 V, Zin = Zout = 50 Ω)

Low Actuation Wideband RF MEMS Shunt Capacitive Switch

RF applications of PIN diodes

Parameter Min Typ Max Units Frequency Range

CHX2090-QDG RoHS COMPLIANT

Silicon PIN Limiter Diodes V 5.0

4.1.2 InAs nanowire circuits fabricated by field-assisted selfassembly on a host substrate

Transcription:

Micro- & Nano-technologies pour applications hyperfréquence à Thales Research &Technology Afshin Ziaei, Sébastien Demoustier, Eric Minoux

Outline Application hyperfréquence à THALES: Antenne à réseau réflecteur 1 This document and any data included are the property of Thales. They cannot be reproduced, disclosed or used without Thales' prior written approval. Micro-technologies: RF MEMS à THALES Micro-commutateur capacitif ZrO2-MEMS switch ZrO2-MEMS SPDT Power Handling and Life-time of PZT RF MEMS Nano-technologies for RF applications Nano-commutateurs Nano-antennes

top surface of the plane θ2 θ1 Reflect Array Antenna Source and/or Receiver 2

3 THALES Reflect Array Antenna

THALES Reflect Array Antenna Metallic Grid Epoxy radome 4 { ϕ Drivers... ϕ Drivers ϕ Drivers Multilayers electronic board MIRABEL (1998)

Wave-guide flange 5 Elementary phase shifter RF-DC decoupling capacitances PIN-diodes

MEMS for Power Switching SEM picture Si micro-machined, metal membrane Electrostatic actuation Capacitive switch using high K dielectric material for high Con/Coff ratio (~150) Series or shunt switch designs 6

MEMS for Power Switching MEMS technology used : Surface micro-machining Au 3.6 µm TiW / Al 0.7 µm Si 3 N 4 0.2 µm TiW/Au 0.6 µm SiO 2 2 µm Au CPW line W = 80 µm S = 120 µm Control electrode (TiW) Si HR or glass substrate Schematic of cross section (Shunt Switch) Holes are etched into the membrane in order to facilitate the membrane delivery 7

MEMS for Power Switching 120 µm 120 µm 80 µm 100 µm Control pad GND SGN GND 8

SEM pictures of fabricated switches Ground membrane command electrode gap signal RF in signal RF out membrane Ground Gap : g = 3 µm Membrane width : 100 µm Dielectric thickness : g 0 = 0.2 µm 9

10 SEM pictures of fabricated switches

11 Insertion losses (Membrane in up position) (20 GHz):S 12 : -0.15 db (40 GHz):S 12 : -0.2 db 0 0 5 10 15 20 25 30 35 40-0,05-0,1-0,15-0,2 Pertes A(dB) -0,25-0,3-0,35 F (GHz)

12 Isolation (Membrane in down position) 25 db à 40 GHz 0-5 0 5 10 15 20 25 30 35 40-10 -15-20 -25 Isolation (db) -30-35

Return losses S 11 Membrane in up position (The membrane is unactuated ) 0-5 -10-15 -20-25 -30-35 -40-45 (20 GHz):S 11 : 13 db (40 GHz):S 11 : 10 db 0 5 10 15 20 25 30 35 40 0-40 GHz measurements 0-5 -10-15 -20-25 -30-35 -40 S 11 Membrane in down position (The membrane is actuated) S11 (20 GHz):S 11 : 3 db (40 GHz):S 11 : 1 db 0 5 10 15 20 25 30 35 40 13

14 Thales results Results under 0dBm Key characteristics of TRT MEMS RF Switch Isolation 32 db (40 GHz) 18 db (20 GHz) Insertion losses 0.2 db (40 GHz) 0.1 db (20 GHz) Driving voltage 32-38 V C on 2-3 pf C off 30-40 ff R on < 2 Ohms Switching time < 5 µs K 81 N/m Mechanical resonance 214 khz

15 Line of command 120 plan de masse 80 120 120 plan de masse V1 V2 High resistivity resistors Series MEMS switches Conception ON state : Membrane in down position OFF state : Membrane in up position V1 C C on off =109

16 SEM pictures of fabricated switches

17 How do we improve switch performance? Ground Signal Ground Bridge or membrane Dielectric Rf-On state (membrane Up) Rf-Off state (membrane Down) Increasing switching ratio ( C C on off ) Increasing C down for a given C up

18 Influence of K on switch isolation Simulations HFSS Isolation (db) 0-5 -10-15 -20-25 -30-35 -40-45 -50-55 -60-65 0 5 10 15 20 25 30 35 40 f(ghz) 7 10 20 25 50 70 80 90 100 130 160 200 250 Much higher isolation in DOWN state than previous design Replace Si 3 N 4 with high dielectric constant ZrO 2 film

19 SEM pictures of fabricated ZrO2 capacitive switch

20 Switch measured characteristics: Insertion loss Shunt ZrO 2 switch characteristics in the UP state 0-0,05-0,1-0,15 Diélectrique ZrO2 (Er = 22) -0,2-0,25 petes d'insertion Insertion loss (db) -0,3-0,35 0 2 4 6 8 10 12 14 16 18 20 fréquence Frequency (GHz)

21 Switch measured characteristics: Return loss Shunt ZrO 2 switch characteristics in the UP state 0-10 -20-30 Diélectrique ZrO2 (Er = 22) -40 adaptation Return loss (db) -50-60 0 2 4 6 8 10 12 14 16 18 20 fréquence (GHz) Frequency (GHz)

22 Switch measured characteristics: Isolation Shunt ZrO 2 switch characteristics in the DOWN state 0-10 -20-30 Diélectrique ZrO2 (Er = 22) -40 Isolation isolation (db) -50-60 0 2 4 6 8 10 12 14 16 18 20 fréquence Frequency (GHz)

23 Switch measured characteristics: Return loss Shunt ZrO 2 switch characteristics in the DOWN state 0-0,1-0,2-0,3-0,4-0,5 Diélectrique ZrO2 (Er = 22) -0,6-0,7-0,8 Return loss (db) reflexion -0,9-1 0 2 4 6 8 10 12 14 16 18 20 fréquence (GHz) Frequency (GHz)

Signal OUT1 24 MEMS SPDT Switch (ZrO2) Signal IN Signal OUT2 Coplanar Waveguide

25 Signal OUT 3 MEMS SPDT Switch (ZrO2) Signal IN 1 On Off Signal OUT 2 THALES design, Serial-serial PZT-PZT

MEMS SPDT Switch (ZrO2) without packaging (X band) 0-0,2-0,4-0,6 Membrane down position (S 13 in the on state) -0,8-1 -1,2-1,4 S 13 Magnitude (db) -1,6-1,8 0-2 0 2 4 6 8 10 12 14 16 18 20-5 Frequency Fréquence (GHz) -10-15 -20 Magnitude (db) 1 3 2 S 33-25 26 S 33 in the on state (Membrane down position) -30 0 2 4 6 8 10 12 14 16 18 20 Frequency Fréquence (GHz)

27 MEMS SPDT Switch (ZrO2) without packaging (X band) 0-10 -20 Membrane up position (in the off state) -30-40 -50 S 12 Magnitude (db) 0-60 -0,02-70 -0,04 0 5 10 15 20 Frequency Fréquence (GHz) -0,06-0,08 Magnitude (db) 1 S 22 3 2-0,1-0,12 S 22 in the off state (Membrane up position) -0,14 0 2 4 6 8 10 12 14 16 18 20 Fréquence (GHz) Frequency (GHz)

MEMS SPDT Switch (ZrO2) without packaging (X band) 0-5 Membrane up position (in the off state) -10-15 S 11-20 0-25 -10 0 2 4 6 8 10 12 14 16 18 20-20 -30-40 -50-60 -70-80 -90-100 S 23 Magnitude (db) Magnitude (db) 3 2 1 Fréquence (GHz) Frequency (GHz) 0 2 4 6 8 10 12 14 16 18 20 Frequency Fréquence (GHz) 28

29 Power handling measurements (10 GHz) Power Handling of RF MEMS Capacitive shunt switches 10-12 GHz Synthesizer TWT-Amplifier DC Power supply Attenuator(1) Directional Coupler DC Bias Tee Spectrum Analyser Attenuator(2) RF Probe DUT Network Analyser Attenuator(4) Attenuator(3) RF Probe

30 Power Handling of RF MEMS Capacitive shunt switch PZT Shunt capacitive switch ISOLATION 30 db (10GHz) PERTES INSERTION 0.1dB (10GHz) TENSION D ACTIVATION 25~30Volts RAPPORT Con/Coff 150 GAP D AIR (entre membrane et diélectrique) 0.5 µm Al, 0.2µm TiW 2~2.5µm MEMBRANE 240µm x 100µm Cpw 80µm/120µm/80µm METALLISATION DE LA MEMBRANE CONSTANTE DIELECTRIQUE UTILISEE (PZT) 160~170 VSWR 1.2 Switching time 4 µs under 0dBm (10 GHz)

31 Power Handling of RF MEMS Capacitive shunt switch Measured down-state isolation versus input power at 10GHz -22-24 -26-28 Isolation (db) -30-32 0 5 10 15 20 25 30 35 40 45 Power In (dbm)

32 Power Handling of RF MEMS Capacitive shunt switch Measured up-state Insertion Loss versus input power at 10GHz 0-0,05-0,1-0,15 Insertion Loss (db) -0,2-0,25 0 5 10 15 20 25 30 35 40 45 Power In (dbm)

33 Lifetime measurements (10 GHz) High power RF lifetime of THALES MEMS switch at 10GHz TWT-Amplifier PC-Labview 10-12 GHz Synthesizer DC Power supply Attenuator(1) Directional Coupler DC Bias Tee Network Analyser Attenuator(2) RF Probe DUT Spectrum Analyser Attenuator(4) Attenuator(3) RF Probe Power Meter

34-0,06 RF lifetime of THALES MEMS switch at 10GHz Cold switching (37 dbm) Measured up-state Insertion Loss versus input power at 10GHz -0,07-0,08-0,09-0,1-0,11-0,12-0,13-0,14-0,15-0,16-0,17-0,18-0,19-0,2-0,21-0,22 1,00E+00 1,00E+01 1,00E+02 1,00E+03 1,00E+04 1,00E+05 1,00E+06 1,00E+07 1,00E+08 1,00E+09 1,00E+10 Cycles Insertion Loss (db)

35-33,5 RF lifetime of THALES MEMS switch at 10GHz Cold switching (37 dbm) Measured down-state isolation versus input power at 10GHz -34-34,5-35 -35,5-36 -36,5-37 -37,5-38 -38,5 1,00E+00 1,00E+01 1,00E+02 1,00E+03 1,00E+04 1,00E+05 1,00E+06 1,00E+07 1,00E+08 1,00E+09 1,00E+10 Cycles Isolation (db)

36 RF lifetime of THALES MEMS switch at 10GHz RF Lifetime at 10 GHz 10 Billion Cycles at 37 dbm 32 Devices Tested at 36 dbm and Room Temp. 25 Devices Completed 10 Billion Cycles (Stopped Test) 6 Devices Completed 1 Billion Cycles (Stopped Test) 1 Device Failed at 0.72 Billion Cycles 8 KHz Cycle Rate 0.69 Billion Cycles/Day 10 Billion Cycles in 15 Days

37 CNs switch J. E. Jang et al., Appl. Phys. Lett. 87, 163114 (2005) Nanoelectromechanical switches with vertically aligned carbon nanotubes Department of engineering, University of Cambridge

38 CNs switch

39 NEMS @ TRT Why carbon nanotube based NEMS? High isolation, low losses from MEMS properties Low actuation voltage < 10 V High switching speed ~ a few ns From nanometer size of CNs High power handling exceptional electrical and mechnical properties of CNs High integration density Low cost Low consumption Main difficulty Achieving reproducible and routinely fabrication process of CN switches

40 NEMS @ TRT TRT has developed a growth technology of highly homogeneous vertical CNs

41 This document and any data included are the property of Thales. They cannot be reproduced, disclosed or used without Thales' prior written approval. NEMS @ TRT + + + + + + + + + + + + - - - - - - - - - - - - Ohmic switch (metal/metal contact) + + + + + + + + + + + + - - - - - - - - - - - - Capacitive switch (metal/dielectric/metal contact)

42 NEMS @ TRT Coupling CNs with coplanar waveguides for RF switching

CN Antennas 43 Particular electrical properties: High characteristic impedance & high losses High relaxation frequency (>50GHz) High wave velocity (λ/50 - λ/100) Advantages of CN antennas: High integration High density circuits High frequency resonnators Applications of CN antennas: Wireless communications between nano-sized devices/organisms and macroscopic world Antenna arrays at high frequencies Thales: 60-110 GHz Generator Dipole Radiated Field -λ/4 0 λ/4 Dipole Length I0 Current Distribution This document and any data included are the property of Thales. They cannot be reproduced, disclosed or used without Thales' prior written approval.

44 Technical issues: Dipole fabrication: FIB Impedance matching: 50Ω - 10kΩ Emission pattern measurements: Radiation efficiency 60 db CN Antennas

45 Conclusion Conclusion Key RF performance characteristics for a Zro 2 -SPDT switch are at 10 Ghz: insertion loss of 0.15 db and isolation of 28 db. RF lifetimes exceeding 10 10 cycles achieved at input Power level of 36 dbm Research on nanotubes RF NEMS is underway at Thales

46 Thank you for your attention

47 Bare chip Characteristics: Insertion losses Membrane in up position 0-0,2-0,4-0,6-0,8-1 S12 pzt db -1,2-1,4-1,6-1,8-2 0 2 4 6 8 10 12 14 16 18 20 Freq GHz

48 0.04-20 GHz measurements 0-5 -10-15 db -20-25 -30 Return losses 0 5 10 15 20 Freq GHz S11 pzt

49 0 Bare chip Characteristics: Isolation (0.4-40 GHz) Membrane in down position -10-20 -30-40 S12 pzt db -50-60 -70-80 0 5 10 15 20 Freq GHz

50 0.04-20 GHz measurements 0-0,05-0,1 db -0,15-0,2-0,25 Return losses 0 5 10 15 20 Freq GHz S11 pzt