Performance Analysis of Differential Evolution Algorithm based Beamforming for Smart Antenna Systems

Similar documents
Synthesis of Dual Beam Pattern of Planar Array Antenna in a Range of Azimuth Plane Using Evolutionary Algorithm

LINEAR ANTENNA ARRAY DESIGN WITH USE OF GENETIC, MEMETIC AND TABU SEARCH OPTIMIZATION ALGORITHMS

Antenna Array Synthesis for Suppressed Side Lobe Level Using Evolutionary Algorithms

Synthesis of Non-Uniform Amplitude equally Spaced Antenna Arrays Using PSO and DE Algorithms

Linear Array Geometry Synthesis Using Genetic Algorithm for Optimum Side Lobe Level and Null

PERFORMANCE ANALYSIS OF DIFFERENT ARRAY CONFIGURATIONS FOR SMART ANTENNA APPLICATIONS USING FIREFLY ALGORITHM

SMART ANTENNA ARRAY PATTERNS SYNTHESIS: NULL STEERING AND MULTI-USER BEAMFORMING BY PHASE CONTROL

A PLANT GROWTH SIMULATION ALGORITHM FOR PATTERN NULLING OF LINEAR ANTENNA ARRAYS BY AMPLITUDE CONTROL

Introduction to Multiple Beams Adaptive Linear Array Using Genetic Algorithm

Side Lobe Level Reduction of Phased Array Using Tchebyscheff Distribution and Particle Swarm Optimization

Research Article Design of Fully Digital Controlled Shaped Beam Synthesis Using Differential Evolution Algorithm

International Journal of Innovative Research in Computer and Communication Engineering. (An ISO 3297: 2007 Certified Organization)

Side Lobe Level Reduction in Circular Antenna Array Using DE Algorithm

Non-Uniform Concentric Circular Antenna Array Design Using IPSO Technique for Side Lobe Reduction

Generation of Ramp Pattern using Modified Differential Evolution algorithm

Linear Antenna SLL Reduction using FFT and Cordic Method

Synthesis of Simultaneous Multiple-Harmonic-Patterns in Time-Modulated Linear Antenna Arrays

Progress In Electromagnetics Research, PIER 36, , 2002

DISTRIBUTION NETWORK RECONFIGURATION FOR LOSS MINIMISATION USING DIFFERENTIAL EVOLUTION ALGORITHM

Bio-inspired Optimization Algorithms for Smart Antennas

Smart Antenna of Aperiodic Array in Mobile Network

Radiation Pattern Synthesis Using Hybrid Fourier- Woodward-Lawson-Neural Networks for Reliable MIMO Antenna Systems

Invasive Weed Optimization (IWO) Algorithm for Control of Nulls and Sidelobes in a Concentric Circular Antenna Array (CCAA)

[Sukumar, 5(3): July-September, 2015] ISSN: Impact Factor: 3.145

Electronically Steerable planer Phased Array Antenna

Prognostic Optimization of Phased Array Antenna for Self-Healing

AN ALTERNATIVE METHOD FOR DIFFERENCE PATTERN FORMATION IN MONOPULSE ANTENNA

Adaptive Antennas. Randy L. Haupt

Low Side Lobe Level Linear Array Optimization using Evolutionary Algorithms: A Review

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 1, February 2013

Optimal design of a linear antenna array using particle swarm optimization

A COMPACT TRI-BAND ANTENNA DESIGN USING BOOLEAN DIFFERENTIAL EVOLUTION ALGORITHM. Xidian University, Xi an, Shaanxi , P. R.

Design of Optimum Gain Pyramidal Horn with Improved Formulas Using Particle Swarm Optimization

Adaptive Array Beamforming using LMS Algorithm

Performance improvement in beamforming of Smart Antenna by using LMS algorithm

Design of Linear and Circular Antenna Arrays Using Cuckoo Optimization Algorithm

Design of Non-Uniform Circular Arrays for Side lobe Reduction Using Real Coded Genetic Algorithm

Mutual Coupling Reduction in Two- Dimensional Array of Microstrip Antennas Using Concave Rectangular Patches

SECTOR SYNTHESIS OF ANTENNA ARRAY USING GENETIC ALGORITHM

Radiation Analysis of Phased Antenna Arrays with Differentially Feeding Networks towards Better Directivity

T/R Module failure correction in active phased array antenna system

Time-modulated arrays for smart WPT

Study the Behavioral Change in Adaptive Beamforming of Smart Antenna Array Using LMS and RLS Algorithms

Performance Analysis of MUSIC and LMS Algorithms for Smart Antenna Systems

Position-only side lobe reduction of a uniformly excited elliptical antenna array using evolutionary algorithms

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 3, Issue 2, March 2014

A STUDY OF AM AND FM SIGNAL RECEPTION OF TIME MODULATED LINEAR ANTENNA ARRAYS

STUDY OF PHASED ARRAY ANTENNA AND RADAR TECHNOLOGY

A PARETO ELITE SELECTION GENETIC ALGORITHM FOR RANDOM ANTENNA ARRAY BEAMFORMING WITH LOW SIDELOBE LEVEL

A Pattern Synthesis Method for Large Planar Antenna Array

Adaptive Nulling Algorithm for Null Synthesis on the Moving Jammer Environment

Design of PID Controller for Higher Order Discrete Systems Based on Order Reduction Employing ABC Algorithm

Synthesis of Antenna Array by Complex-valued Genetic Algorithm

DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL INFORMAZIONE

Adaptive Digital Beam Forming using LMS Algorithm

Performance Study of A Non-Blind Algorithm for Smart Antenna System

NULL STEERING USING PHASE SHIFTERS

A Study on Various Types of Beamforming Algorithms

Index Terms Uniform Linear Array (ULA), Direction of Arrival (DOA), Multiple User Signal Classification (MUSIC), Least Mean Square (LMS).

Design of Sectoral Horn Antenna with Low Side Lobe Level (S.L.L)

Performance Analysis of MUSIC and MVDR DOA Estimation Algorithm

INTERFERENCE REJECTION OF ADAPTIVE ARRAY ANTENNAS BY USING LMS AND SMI ALGORITHMS

Title. Author(s) Itoh, Keiichi; Miyata, Katsumasa; Igarashi, Ha. Citation IEEE Transactions on Magnetics, 48(2): Issue Date

Performance Analysis of LMS and NLMS Algorithms for a Smart Antenna System

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions

DESIGN OF FOLDED WIRE LOADED ANTENNAS USING BI-SWARM DIFFERENTIAL EVOLUTION

G. A. Jafarabadi Department of Electronic and Telecommunication Bagher-Aloloom Research Institute Tehran, Iran

A Novel approach for Optimizing Cross Layer among Physical Layer and MAC Layer of Infrastructure Based Wireless Network using Genetic Algorithm

Analysis of LMS and NLMS Adaptive Beamforming Algorithms

Application Article Synthesis of Phased Cylindrical Arc Antenna Arrays

Eigenvalues and Eigenvectors in Array Antennas. Optimization of Array Antennas for High Performance. Self-introduction

ADAPTIVE BEAMFORMING USING LMS ALGORITHM

Department of ECE, K L University, Vaddeswaram, Guntur, Andhra Pradesh, India. 1.

Beamforming of Frequency Diverse Array Radar with Nonlinear Frequency Offset Based on Logistic Map

Research Article Adaptive Array Beamforming Using a Chaotic Beamforming Algorithm

Beamforming Techniques for Smart Antenna using Rectangular Array Structure

S. K. Sanyal Department of Electronics and Telecommunication Engineering Jadavpur University Kolkata, , India

CURRICULUM VITAE TAISIR HASAN ALGHANIM

Design, Simulation and Fabrication of an Optimized Microstrip Antenna with Metamaterial Superstrate Using Particle Swarm Optimization

CPW-fed Wideband Antenna with U-shaped Ground Plane

UNIVERSITY OF TRENTO SYNTHESIS OF TIME-MODULATED PLANAR ARRAYS WITH CONTROLLED HARMONIC RADIATIONS. P. Rocca, L. Poli, G. Oliveri, and A.

Neural Network Synthesis Beamforming Model For Adaptive Antenna Arrays

Smart antenna technology

Improvement in Angle of Separation in Smart Antenna by LMS-MPSO Algorithm

IF ONE OR MORE of the antennas in a wireless communication

Low Cost Em Signal Direction Estimation With Two Element Time Modulated Array System For Military/Police Search Operations

Beam Forming Algorithm Implementation using FPGA

DESIGN OF A LOW SIDELOBE 4D PLANAR ARRAY INCLUDING MUTUAL COUPLING

Failure Correction of Linear Antenna Array by Changing Length and Spacing of Failed Elements

A Compact Microstrip Patch Antenna Based on Metamaterials for Wi-Fi and WiMAX Applications

ADAPTIVE ANTENNAS. TYPES OF BEAMFORMING

A NOVEL DIGITAL BEAMFORMER WITH LOW ANGLE RESOLUTION FOR VEHICLE TRACKING RADAR

International Journal of Electronics and Communication Engineering and Technology (IJECET)

ENHANCEMENT OF PHASED ARRAY SIZE AND RADIATION PROPERTIES USING STAGGERED ARRAY CONFIGURATIONS

Design Of PID Controller In Automatic Voltage Regulator (AVR) System Using PSO Technique

A Method for Analyzing Broadcast Beamforming of Massive MIMO Antenna Array

Research Article A Time Modulated Printed Dipole Antenna Array for Beam Steering Application

Design of Multi-Beam Rhombus Fractal Array Antenna Using New Geometric Design Methodology

Adaptive Beamforming Approach with Robust Interference Suppression

A Beam Switching Planar Yagi-patch Array for Automotive Applications

Transcription:

I.J. Wireless and Microwave Technologies, 2014, 1, 1-9 Published Online January 2014 in MECS(http://www.mecs-press.net) DOI: 10.5815/ijwmt.2014.01.01 Available online at http://www.mecs-press.net/ijwmt Performance Analysis of Differential Evolution Algorithm based Beamforming for Smart Antenna Systems Amara Prakasa Rao a,*, N.V.S.N.Sarma a a Department of E&C Engineering, National Institute of Technology, Warangal, 506 004, India Abstract This paper presents smart antenna array beamforming using differential evolution algorithm. The excitation values of the elements in the array are smartly adjusted to control side lobe levels and placing nulls in the interference signal direction while maintaining the beam in the desired signal direction. Different cases are considered to illustrate the performance of this technique. Simulation results show that this evolution algorithm is better than the traditional beamforming algorithms for Smart antenna systems. Index Terms: Array Factor; Beamforming; Differential Evolution Algorithm; Null Steering; Smart Antenna Array. 2014 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research Association of Modern Education and Computer Science 1. Introduction A smart antenna, performs adaptive beamforming and interference suppression, is expected to significantly increase the system capacity and extend the coverage for wireless communication systems [1]. The smart antenna is a promising technology. The main advantage of the smart antenna system is its ability to steer beams towards desired users and place nulls towards interfering signals in the coverage area/network. The smart antenna array basically consists of a number of antenna elements combined via weight control network to generate a desired antenna beam pattern under dynamic channel environment. Signal processing techniques and evolutionary algorithm are used to adjust the weights of the array to meet the desired response of the system. The evolutionary algorithms such as genetic algorithms, ant colony optimization, differential evolutionary algorithm, particle swarm optimization, and bees algorithm can produce an optimum solution for the problem [2-9]. A.Tennant et al., 1994 [2] addressed the element position perturbations based on the genetic algorithm are used for beamforming of linear arrays. G.K.Mahanti et al., 2007 [3] presented a real coded genetic algorithm is used for the design of fully digital controlled reconfigurable array antennas with fixed dynamic range ratio. * Corresponding author. E-mail address: aprao@nitw.ac.in

2 Performance Analysis of Differential Evolution Algorithm based Beamforming for Smart Antenna Systems S.Yang et al., 2004 [4] discussed differential evolution algorithm is applied to null steering of linear arrays by controlling the element excitation amplitudes. S.R.Muhammad et al., 2010 [5] compared the performance of least square based algorithms for smart antenna system. In [6] and [7] the synthesis of linear array beamforming is discussed by ant colony and particle swarm optimization techniques respectively. In the present study, placing a deep null in the undesired direction and side lobe reduction are considered. The organization of the paper is as follows: Section 2 presents the problem formulation. In Section 3, the procedure of differential evolution algorithm discussed. The simulated results are presented in Section 4. In Section 5 some conclusions and summary on the performance of the algorithm are discussed. 2. Mathematical Model The basic concept of deploying smart antenna system in modern communication is illustrated in Fig. 1. The geometry of the array is shown in Fig. 2. For the uniform linear array of N elements with the inter-element spacing d. Fig.1. Block diagram of Smart Antenna Array Beamforming Concept. The adaptive array factor for the far field is given by [10] AF (θ) = N j(n 1)kd cos θ n=1 ω n e (1) where N is number of elements in the array, θ is an incident angle of interfering signal or desired signal with respect to array normal, ω n is the weight coefficient of the n th element. The problem is defined as the optimization of the excitation weights of the array to meet the desired pattern.

Performance Analysis of Differential Evolution Algorithm based Beamforming for Smart Antenna Systems 3 Fig. 2. Geometry of the N elements linear array. 3. Differential Evolution Algorithm Differential Evolution (DE), proposed by Storn and Price [11-12], is a simple yet powerful algorithm for real parameter optimization. Like other evolutionary algorithms DE is an iterative search method and has some processes called mutation and crossover. This paper describes a family of improved variants of the DE/best/2/exp scheme, which utilizes the neighbourhood mutation operator. The steps involved in this algorithm are discussed briefly here. The details can be found in [13]: (a) Generate an initial population of NP D-dimensional parameter vectors representing the candidate solutions. The following pseudo-code is used to generate initial population. for i = 1: NP pop(i,:) = X min + rand(1,d).* (X max X min ); end (b) After initialization, fitness of the population is calculated based on cost function.the cost function used in optimization process is defined as: Costfunction = AF(θ i ) + SLL M i=1 (2) where M is the number of nulls in the radiation pattern, θ i is null location in the direction of undesired signal, and SLL is the desired side lobe level. Based on cost function (2) value of the initial generation, best one is selected from this set so far. (c) Now, Donor vectors are created by using mutation operation. The general convention used for naming the various mutation strategies is DE/x/y/z, where DE stands for differential evolution, x represents a string denoting the vector to be perturbed, y is the number of difference vectors considered for perturbation of x, and z stands for the type of crossover being used. Most frequently used different strategies are given below [12].

4 Performance Analysis of Differential Evolution Algorithm based Beamforming for Smart Antenna Systems Strategy: 1 DE/best/1/exp 2 DE/rand/1/exp 3 DE/rand-to-best/1/exp 4 DE/rand/2/exp 5 DE/best/2/exp 6 DE/best/1/bin 7 DE/rand/1/bin 8 DE/rand-to-best/1/bin 9 DE/best/2/bin 10 DE/target-to-best/1/bin Generate donor vectors based on one of the strategies of DE is used. (d) To explore the space diversity of the population, a crossover operation comes after mutation operation. Here trial vectors are generated using crossover operation on donor and target vectors. (e) Calculate the fitness of trial vectors using cost function. (f) Compare local best value of the trial vectors to the best value of the target vectors and select best vector for next generation. The following pseudo-code is used to generate donor, trial vectors and best population of next generation. while (iter itermax) do for i = 1:NP costval(i) =feval(costfun, pop(i,:)); end for i loop [costvalsort, costvalsortindex] = sort(costval); Bestmem = pop(costvalsortindex(1),:); Best(iter) = costvalsort(1); for j = 1:NP if μ = rand < CR; Generate donor vector based on one of the mutation schemes of DE. Generate trial vector using binomial or arithmetic crossover. for k = 1 : D tempval(k) = feval(costfun,tr(k,:)); end for k loop [sorttempval,sorttempindex] = sort(tempval); newpop(j,:) = tr(sorttempindex(1),;); else newpop(j,:) = pop(j,:); end if end for j loop for i = 1 : NP pop(i,:) = newpop(i,:); end for i loop iter = iter +1; end while

Performance Analysis of Differential Evolution Algorithm based Beamforming for Smart Antenna Systems 5 4. Simulation Results Consider a linear array with the following specifications: Number of elements in the array: 20, Inter element spacing in the array: 0.5λ, Number of iterations: 100, Initial Population: 15, Crossover CR: 0.8 and Constant Value F: 0.6. 4.1. Radiation Patterns: In the first case, consider two interference signals are intercepting the array at 250 and 450 direction. By applying Differential Evolution algorithm with crossover CR= 0.8 and mutation factor = 0.6 on this linear array of 20 elements, the radiation pattern of this result is shown in Fig. 3 with null depth of 55 db and 63 db at undesired signal directions respectively. It is observed that the ratio between the powers of the main lobe and the first side lobe is 16.5 db. The half power beam width is 12.60. Fig. 3. Radiation pattern of 20 elements linear array with null depths at 250 and 450 of the interference signals direction. In the second case, the cost function is considered only for the side lobe levels. The response for this case is shown in Fig. 4 with all lobes below 22 db level. Signal to noise ratio is improved since all side lobe levels are much below the desired side lobe level. The beam width is 300 measured between the first two nulls on either side of the radiation pattern. The half power beam width is 11.80.

6 Performance Analysis of Differential Evolution Algorithm based Beamforming for Smart Antenna Systems Fig. 4. Radiation pattern of 20 elements linear array with side lobe level control. Fig. 5. Radiation pattern of 20 elements linear array with side lobe level(sll) and a null at undesired signal direction at 650. In the third case, both the side lobe reduction and placing a null in undesired signal direction is considered as the cost function. Consider that the interference signal is at 650. Using DE both parameters are controlled.

Performance Analysis of Differential Evolution Algorithm based Beamforming for Smart Antenna Systems 7 Deep null is placed in the direction of the interference signal as shown in Fig. 5 with 68.5 db level. Also it can be noticed that all side lobe levels are below 18 db. Fig. 6. Placement of nulls in the direction of undesired signals at 300, 450, and 600 in the radiation pattern. Fig.7. Amplitude of the elements in the 20 elements linear array. In this section three interference signals are intercepting the array at 300, 450, and 600 respectively. Using differential evolution algorithm, nulls are placed at undesired signal directions. Hence the signal to noise ratio

8 Performance Analysis of Differential Evolution Algorithm based Beamforming for Smart Antenna Systems is improved. The response for the case is shown in Fig. 6. All three nulls are having deep depths of 58 db, 50 db, and 52.5 db respectively at undesired signal directions. It is observed that all side lobe levels are below the 18 db and half power beam width of the main beam is 120. Fig. 7 illustrates the excitation of the elements in the array. Fig.8. Comparison of the radiation patterns of the 20 elements linear array by using DE with different strategies. In this paper the first five strategies are considered and their performance is compared. Out of the five strategies, the strategy 5 produced the best results. Except 1 and 2, the other three strategies performed good. But in the case of strategy 5, all the side lobe levels are much below the specified level. The directivity of radiation pattern is improved by strategy 5, by placing deep null in the undesired signal direction. It can be observed in Fig. 8. The half power beam width is 120. The beam width is 300 measured between the first two nulls on either side of the main beam. Signal to Noise interference ratio is improved by suppressing all the side lobe levels to less than 22 db. Deep null is placed in the direction of undesired signal at 300 by this strategy. 5. Conclusion In this paper, placing the deep nulls in the directions of the undesired signal by using differential algorithm is studied. Different cases are considered to control side lobe levels and placing nulls at interference signal directions in the radiation pattern. References [1] J.H. Winters, Smart Antennas for Wireless Systems, IEEE Personal Communications, Vol.4, No.11, pp:23-27, Feb.1998. [2] A. Tennant, Dawoud M.M, Anderson A.P, Array pattern nulling by element position perturbations using a Genetic Algorithm, Electron Letters, Vol.30, pp:174-176, 1994. [3] G.K. Mahanti, Chakraborty A, Das S, Design of fully digital controlled reconfigurable array antennas with fixed dynamic range ratio, Journal Electromagnetic Waves Applications, Vol.21, pp:97-106, 2007.

Performance Analysis of Differential Evolution Algorithm based Beamforming for Smart Antenna Systems 9 [4] S. Yang, Gan Y.B, Qing A, Antenna array pattern nulling using a Differential Evolution Algorithm, Int.J RF Microwave CAE, Vol.14, pp:57-63, 2004. [5] S.R. Muhammad, Noor M Khan, Performance Comparison of Adaptive Beamforming Algorithms for Smart Antenna Systems, World Applied Sciences Journal, Vol.11(7), pp:775-785, 2010. [6] D. Karaboga, Guney K, Akdagli A, Antenna array pattern nulling by controlling both amplitude and phase using modified touring Ant Colony Optimization Algorithm, Int J Electron, Vol.91, pp:241-251, 2004. [7] J.R. Perez, J.Basterrechea, Hybrid Particle Swarm-based Algorithms and their application to linear array synthesis, PIER 90, pp:63-74, 2009. [8] Bao. Zheng, Renbiao, Control of Peak Sidelobe Level in Adaptive Arrays, IEEE Transactions on Antennas and Propagation, Vol.44, No.10, pp:1341-1347, October 1996. [9] H. Chao-Hsing, Optimizing Beam Pattern of Adaptive Linear Phase Array Antennas using Local Genetic Algorithm, IEEE Antennas and Propagation Society International Symposium, Vol.1B, pp:315-318, 2005. [10] C.A. Balanis, Antenna Theory Analysis and Design, Wiley-India, Second Edition. [11] R. Storn,K.Price, Differential Evolution-A Simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, Vol.11, No.4, pp:341-359, 1997. [12] K.V. Price, R.M. Storn, J.A. Lampinen, Differential Evolution- A practical Approach to global optimization, Springer,2005. [13] Sk.M. Islam, S.Das, S.Ghosh, S.Roy, and P.N.Suganthan, An Adaptive Differential Evolution Algorithm with Novel Mutation and Crossover Strategies for Global Numerical Optimization, IEEE Transactions on systems, man, and cybernetics-part B: cybernetics, Vol.42, No.2, pp:482-500, April 2012. Authors Profiles Mr. Amara Prakasa Rao obtained his Bachelors degree in ECE from Nagarjuna University, A.P, India, and Master's degree from PEC-Pondicherry, India, with Electronics and Communication Engineering as specialization in 1994 and 1998, respectively. He has more than 15 years of experience in teaching at various organizations. Currently he is with the department of Electronics and Communication Engineering as Associate Professor at National Institute of Technology, Warangal, India. His areas of interest include Signal processing, Smart Antenna systems and Optimisation techniques. Presently he is working on Adaptive beamforming of smart antennas arrays towards obtaining his doctoral degree. E-mail: aprao@nitw.ac.in Dr N.V.S.N Sarma obtained his Bachelors degree with specialization in Electronics and Communications Engineering from College of Engineering, Kakinada, JawaharLal Nehru Technological University in the year 1984. His Masters and Doctoral degrees are from Indian Institute of Technology, Kharagapur, India in the year 1985 and 1992 respectively. He worked at Tata Institute of Fundamental Research, Mumbai for a brief period during Feb 86 to July 87. He has been with the department of Electronics and Communications Engineering at National Institute of Technology, Warangal, India at various positions since 1990. About 80 papers are at his credit in International and National journals and conferences. His area of interest includes Numerical Electromagnetics, Adaptive antenna arrays, and energy efficient routing protocols in wireless sensor networks. Currently, he is serving as the Head of the ECE Department at NIT Warangal. E-mail: sarma@nitw.ac.in