Physiological evidence for auditory modulation filterbanks: Cortical responses to concurrent modulations

Similar documents
Modulation Encoding in Auditory Cortex. Jonathan Z. Simon University of Maryland

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007

Spectral and temporal processing in the human auditory system

Neural Coding of Multiple Stimulus Features in Auditory Cortex

The role of intrinsic masker fluctuations on the spectral spread of masking

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 AUDITORY EVOKED MAGNETIC FIELDS AND LOUDNESS IN RELATION TO BANDPASS NOISES

Magnetoencephalography and Auditory Neural Representations

Spectro-Temporal Methods in Primary Auditory Cortex David Klein Didier Depireux Jonathan Simon Shihab Shamma

Effect of filter spacing and correct tonotopic representation on melody recognition: Implications for cochlear implants

Psycho-acoustics (Sound characteristics, Masking, and Loudness)

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb A. Faulkner.

HCS 7367 Speech Perception

Perception of pitch. Importance of pitch: 2. mother hemp horse. scold. Definitions. Why is pitch important? AUDL4007: 11 Feb A. Faulkner.

Hearing and Deafness 2. Ear as a frequency analyzer. Chris Darwin

Binaural Hearing. Reading: Yost Ch. 12

Concurrent Encoding of Frequency and Amplitude Modulation in Human Auditory Cortex: MEG Evidence

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 5: 12 Feb A. Faulkner.

Estimating critical bandwidths of temporal sensitivity to low-frequency amplitude modulation

Pressure vs. decibel modulation in spectrotemporal representations: How nonlinear are auditory cortical stimuli?

COM325 Computer Speech and Hearing

THE MATLAB IMPLEMENTATION OF BINAURAL PROCESSING MODEL SIMULATING LATERAL POSITION OF TONES WITH INTERAURAL TIME DIFFERENCES

AUDL GS08/GAV1 Auditory Perception. Envelope and temporal fine structure (TFS)

You know about adding up waves, e.g. from two loudspeakers. AUDL 4007 Auditory Perception. Week 2½. Mathematical prelude: Adding up levels

Interaction of Object Binding Cues in Binaural Masking Pattern Experiments

Tone-in-noise detection: Observed discrepancies in spectral integration. Nicolas Le Goff a) Technische Universiteit Eindhoven, P.O.

Complex Sounds. Reading: Yost Ch. 4

A cat's cocktail party: Psychophysical, neurophysiological, and computational studies of spatial release from masking

AUDL GS08/GAV1 Signals, systems, acoustics and the ear. Loudness & Temporal resolution

The psychoacoustics of reverberation

Concurrent Encoding of Frequency and Amplitude Modulation in Human Auditory Cortex: Encoding Transition

Modeling auditory processing of amplitude modulation I. Detection and masking with narrow-band carriers Dau, T.; Kollmeier, B.; Kohlrausch, A.G.

Phase and Feedback in the Nonlinear Brain. Malcolm Slaney (IBM and Stanford) Hiroko Shiraiwa-Terasawa (Stanford) Regaip Sen (Stanford)

Modeling auditory processing of amplitude modulation II. Spectral and temporal integration Dau, T.; Kollmeier, B.; Kohlrausch, A.G.

Proceedings of Meetings on Acoustics

Machine recognition of speech trained on data from New Jersey Labs

AUDL 4007 Auditory Perception. Week 1. The cochlea & auditory nerve: Obligatory stages of auditory processing

Distortion products and the perceived pitch of harmonic complex tones

III. Publication III. c 2005 Toni Hirvonen.

Structure of Speech. Physical acoustics Time-domain representation Frequency domain representation Sound shaping

I. INTRODUCTION J. Acoust. Soc. Am. 110 (3), Pt. 1, Sep /2001/110(3)/1628/13/$ Acoustical Society of America

(Time )Frequency Analysis of EEG Waveforms

Modeling spectro - temporal modulation perception in normal - hearing listeners

Temporal resolution AUDL Domain of temporal resolution. Fine structure and envelope. Modulating a sinusoid. Fine structure and envelope

Testing of Objective Audio Quality Assessment Models on Archive Recordings Artifacts

Acoustics, signals & systems for audiology. Week 4. Signals through Systems

Acoustics, signals & systems for audiology. Week 9. Basic Psychoacoustic Phenomena: Temporal resolution

ABSTRACT. Title of Document: SPECTROTEMPORAL MODULATION LISTENERS. Professor, Dr.Shihab Shamma, Department of. Electrical Engineering

Exploiting envelope fluctuations to achieve robust extraction and intelligent integration of binaural cues

The effect of noise fluctuation and spectral bandwidth on gap detection

Preeti Rao 2 nd CompMusicWorkshop, Istanbul 2012

Spectro-Temporal Processing of Dynamic Broadband Sounds In Auditory Cortex

Feasibility of Vocal Emotion Conversion on Modulation Spectrogram for Simulated Cochlear Implants

Measuring the complexity of sound

Effect of fast-acting compression on modulation detection interference for normal hearing and hearing impaired listeners

Wide band pneumatic sound system for MEG

Imagine the cochlea unrolled

Signals & Systems for Speech & Hearing. Week 6. Practical spectral analysis. Bandpass filters & filterbanks. Try this out on an old friend

Preface A detailed knowledge of the processes involved in hearing is an essential prerequisite for numerous medical and technical applications, such a

A comparison of spectral magnitude and phase-locking value analyses of the frequency-following response to complex tones

A102 Signals and Systems for Hearing and Speech: Final exam answers

Effects of Reverberation on Pitch, Onset/Offset, and Binaural Cues

2920 J. Acoust. Soc. Am. 102 (5), Pt. 1, November /97/102(5)/2920/5/$ Acoustical Society of America 2920

Measuring the critical band for speech a)

Introduction to cochlear implants Philipos C. Loizou Figure Captions

Monaural and Binaural Speech Separation

A CLOSER LOOK AT THE REPRESENTATION OF INTERAURAL DIFFERENCES IN A BINAURAL MODEL

Auditory modelling for speech processing in the perceptual domain

Signals, Sound, and Sensation

Across frequency processing with time varying spectra

Computational Perception. Sound localization 2

Predicting discrimination of formant frequencies in vowels with a computational model of the auditory midbrain

Non-intrusive intelligibility prediction for Mandarin speech in noise. Creative Commons: Attribution 3.0 Hong Kong License

SPEECH INTELLIGIBILITY DERIVED FROM EXCEEDINGLY SPARSE SPECTRAL INFORMATION

On the significance of phase in the short term Fourier spectrum for speech intelligibility

MOST MODERN automatic speech recognition (ASR)

Monaural and binaural processing of fluctuating sounds in the auditory system

I R UNDERGRADUATE REPORT. Stereausis: A Binaural Processing Model. by Samuel Jiawei Ng Advisor: P.S. Krishnaprasad UG

Psychology of Language

Neuronal correlates of pitch in the Inferior Colliculus

University of Washington Department of Electrical Engineering Computer Speech Processing EE516 Winter 2005

speech signal S(n). This involves a transformation of S(n) into another signal or a set of signals

Dominant Voiced Speech Segregation Using Onset Offset Detection and IBM Based Segmentation

Different Approaches of Spectral Subtraction Method for Speech Enhancement

Using the Gammachirp Filter for Auditory Analysis of Speech

SOUND QUALITY EVALUATION OF FAN NOISE BASED ON HEARING-RELATED PARAMETERS SUMMARY INTRODUCTION

COMMUNICATIONS BIOPHYSICS

PSYC696B: Analyzing Neural Time-series Data

IN a natural environment, speech often occurs simultaneously. Monaural Speech Segregation Based on Pitch Tracking and Amplitude Modulation

Intensity Discrimination and Binaural Interaction

An auditory model that can account for frequency selectivity and phase effects on masking

ALTERNATING CURRENT (AC)

Large-scale cortical correlation structure of spontaneous oscillatory activity

Results of Egan and Hake using a single sinusoidal masker [reprinted with permission from J. Acoust. Soc. Am. 22, 622 (1950)].

A Neural Edge-Detection Model for Enhanced Auditory Sensitivity in Modulated Noise

Auditory motivated front-end for noisy speech using spectro-temporal modulation filtering

Modelling the sensation of fluctuation strength

Temporal Modulation Transfer Functions for Tonal Stimuli: Gated versus Continuous Conditions

Shuman He, PhD; Margaret Dillon, AuD; English R. King, AuD; Marcia C. Adunka, AuD; Ellen Pearce, AuD; Craig A. Buchman, MD

RASTA-PLP SPEECH ANALYSIS. Aruna Bayya. Phil Kohn y TR December 1991

I. INTRODUCTION. NL-5656 AA Eindhoven, The Netherlands. Electronic mail:

Transcription:

Physiological evidence for auditory modulation filterbanks: Cortical responses to concurrent modulations Juanjuan Xiang a) Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20815 juanjuan.xiang@gs.com David Poeppel Department of Psychology, New York University, New York, New York 10003 david.poeppel@nyu.edu Jonathan Z. Simon b) Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20815 jzsimon@umd.edu Abstract: Modern psychophysical models of auditory modulation processing suggest that concurrent auditory features with syllabic (5 Hz) and phonemic rates (20 Hz) are processed by different modulation filterbank elements, whereas features at similar modulation rates are processed together by a single element. The neurophysiology of concurrent modulation processing at speech-relevant rates is here investigated using magnetoencephalography. Results demonstrate expected neural responses to stimulus modulation frequencies; nonlinear interaction frequencies are also present, but, critically, only for nearby rates, analogous to beating in a cochlear filter. This provides direct physiological evidence for modulation filterbanks, allowing separate processing of concurrent syllabic and phonemic modulations. VC 2013 Acoustical Society of America PACS numbers: 43.64.Qh, 43.64.Ri, 43.66.Ba [BLM] Date Received: September 20, 2012 Date Accepted: November 15, 2012 1. Introduction Natural sounds, including animal vocalizations and human speech, are often characterized by the nature of their temporal envelopes. The most critical information for speech intelligibility is preserved in the slowest envelope components, at rates well below 20 Hz (Drullman et al., 1994; Shannon et al., 1995). Phase-locked neural responses to temporally modulated stimuli in human sensory cortex can be noninvasively examined by electroencephalography (EEG) and magnetoencephalography (MEG). Such EEG and MEG signals, when evoked by stationary modulated sounds can be characterized by the auditory steady state response (assr), the response component at the same frequency as the stimulus modulation frequency (e.g., Wang et al., 2012). Speech typically contains multiple concurrent modulations, but EEG and MEG studies of concurrent modulations have typically focused on rates far above 20 Hz (Lins and Picton, 1995; John et al., 1998; Draganova et al., 2002). a) Present address: Goldman Sachs, New York, NY 10282. b) Author to whom correspondence should be addressed. Also at: Dept. of Biology, University of Maryland, College Park, MD 20815. J. Acoust. Soc. Am. 133 (1), January 2013 VC 2013 Acoustical Society of America EL7

Two broad categories of theories have been proposed to explain auditory modulation perception. Earlier approaches proposed that the demodulation of input signals is induced by half-wave rectification and compressive processes occurring at the periphery. A low-pass filter in subsequent auditory stages additionally accounts for the observation that a subject s threshold for detecting modulation decreases with increased modulation rates (Viemeister, 1979). A second scheme adds a centrally located bank of bandpass filters that are sensitive to different ranges of modulation frequency (Dau et al., 1997a,b; Jepsen et al., 2008) (see also Chi et al., 1999). This bank of band-limited modulation filters may be thought of as analogous to the cochlear filterbank, but where modulations are segregated by band-limited modulation-filtering, as opposed to the band-limited carrier-filtering of the cochlea. The present study addresses two questions. First, how are concurrent amplitude modulations physiologically represented in the auditory cortex? Secondly, how do the neural responses to the concurrent modulations fit into theories of modulation filters? We employ sinusoidally amplitude-modulated stimuli containing both single and concurrent modulations (with either a single narrowband or single broadband carrier), at different separations of modulation rate. The concurrent modulations are additive rather than multiplicative (cf. Ewert et al., 2002), so modulation-interaction components are absent at the level of the stimulus. Nonetheless modulation-interaction components may appear in the responses, if the filter outputs only undergo some (unspecified) nonlinearity. This is analogous to the phenomenon of beating arising in cochlear filterbank processing of concurrent carriers when nearby enough to be captured by the same cochlear filter. Under this mild assumption, the presence, or absence, of response modulation-interaction components can be used to differentiate between the two types of models: a nonlinear response interaction term (at the frequency given by the difference, or sum, of the frequencies physically present in the stimulus) is evidence that the modulations are processed in the same modulation filter. In contrast, the absence of a nonlinear response interaction term is consistent with the hypothesis that the modulations are processed separately, by distinct modulation filters (Fig. 1). 2. Methods Sixteen subjects (7 males; mean age 24 years) participated in this MEG study. All subjects were right handed (Oldfield, 1971) and had normal hearing and no history of a neurological disorder. The experiments were approved by the University of Maryland Institutional Review Board, and written informed consent was obtained from each participant. Subjects were paid for their participation. The stimuli, generated using MATLAB (MathWorks Inc., Natick, MA), were 50.25 s in duration with 15 ms onset and offset cosine ramps and were sampled at 44.1 khz. Three types of conditions were employed: a single AM condition (stimulus AM envelope with a single frequency f 1 ), a nearby AM-AM condition (stimulus AM envelope with two frequency components f 1 and f 2,wheref 2 f 1 ¼ 3 Hz), and a distant AM-AM condition (stimulus AM envelope with two frequency components f 1 and f 2,wheref 2 f 1 ¼ 17Hz).TheenvelopeforthesingleAMconditionisgivenbyy ENV s ðtþ¼1 cosð2pf 1 tþ and for the concurrent modulation stimuli by y ENV c ðtþ¼1 ½cosð2pf 1 tþþcosð2pf 2 tþš=2. The six single AM stimulus envelopes were generated with modulation frequencies of 4, 5, 18, 19, 21, and 22Hz, to verify response measurability of the absence of a concurrent modulation. The two distant AM-AM stimulus envelopes were created by using 4 and 21Hz and 5Hz and 22Hz, respectively. The two nearby AM-AM stimulus envelopes were made with 18 and 21Hz and 19 and 22Hz. Finally, these ten envelopes were each applied to two different carriers: a pure tone at 707Hz, and 5 octave pink noise centered at 707Hz, giving a total of 20 stimuli. Subjects were placed horizontally in a dimly lit magnetically shielded room (Yokogawa Electric Corporation, Tokyo, Japan). Stimuli were presented using Presentation software (Neurobehavioral Systems, Albany, CA). The sounds were delivered to EL8 J. Acoust. Soc. Am. 133 (1), January 2013 Xiang et al.: Physiological auditory modulation filterbanks

Fig. 1. Cartoon of the effects of auditory modulation filtering on possible resultant neural nonlinearities, as a function of modulation rate and response frequency. (a) Simultaneous presentation of modulations with wellseparated rates (e.g., 4 Hz and 21 Hz) should produce responses that include nonlinear interaction terms (e.g., at the difference and sum frequencies of 17 Hz and 25 Hz) if they are processed by the same (broad) neural filter. If they are processed by distinct bandpass filters, however, there would be no within-filter interaction to produce such nonlinear interaction terms. (b) Analogously, simultaneous presentation of modulations of nearby rates (e.g., 18 Hz and 21 Hz) should produce nonlinear interaction terms if they are processed by the same bandpass neural filter (e.g., at the difference and sum frequencies of 3 Hz and 39 Hz), but not if they are processed by still narrower filters. the subjects ears with 50 X sound tubing (E-A-RTONE 3A, Etymotic Research, Inc), attached to E-A-RLINK foam plugs inserted into the ear-canal and presented binaurally at a comfortable loudness of approximately 70 db SPL. Each stimulus was presented once. Interstimulus intervals (ISI) were randomized and ranged uniformly from 1800 to 2200 ms. Subjects listened passively to the acoustic stimuli while MEG recordings were taken. MEG recordings (157-channel axial gradiometers, KIT, Kanazawa, Japan) were conducted and denoised using the protocols in Xiang et al. (2010). For each stimulus, an analysis epoch of duration 50 s (from 0.25 s post-stimulus to the end of the stimulus) was extracted. Each single trial response was transformed using a discrete Fourier Transform (DFT) to a complex frequency response (of 0.02 Hz resolution and 250 Hz extent). The neural responses at 6 modulation frequencies (4, 5, 18, 19, 21, 22 Hz) and 6 potential interaction frequencies (3, 17, 25, 27, 39, 41 Hz) were obtained for each stimulus and channel. The 6 interaction frequencies were further divided into 2 categories, difference rates (obtainable from f 2 f 1 ) and sum rates (obtainable from f 2 þ f 1 ). The remainder of the analysis was based on the normalized neural responses (Xiang et al., 2010), defined as the squared magnitude of the spectral component at J. Acoust. Soc. Am. 133 (1), January 2013 Xiang et al.: Physiological auditory modulation filterbanks EL9

the target frequency divided by the average squared magnitude of the spectral components ranging from 1 Hz below to 1 Hz above the target frequency (excluding the component at the target frequency), averaged over the 20 channels with the strongest individual normalized neural responses. To assess the potential nonlinearity of the cortical responses to modulations, we used interaction level (IL): the average background-subtracted normalized neural responses at each interaction frequency. The background is estimated to be the average normalized neural response to all stimuli whose envelopes lack a distortion component at this frequency. For example, IL at 3 Hz was calculated by computing the mean normalized neural response at 3 Hz evoked by all the relevant concurrent stimuli (18 and 21 Hz, 19 and 22 Hz), and then subtracting the mean normalized neural response at 3 Hz evoked by all other stimuli. Thus IL is a bias-corrected statistical estimator of the normalized neural response. IL was computed separately for each category: difference rate (3 Hz) vs sum rate (39 Hz, 41 Hz); each modulation condition: nearby vs distant; and each bandwidth: narrowband vs broadband. 3. Results The neural responses to single and concurrent modulated sounds were observed at all direct frequencies (the values of f 1 and f 2 present in the stimulus), with a roughly 1/f power distribution consistent with that seen in Wang et al. (2012). The MEG magnetic field distributions of neural responses to single modulations demonstrate the stereotypical patterns of neural activity originating separately from left and right auditory cortex (Elhilali et al., 2009). Similarly, direct neural responses to both of the concurrent modulations emerge as sharp spectral peaks at the individual stimulus component modulation rates f 1 and f 2, also with stereotypical patterns of neural activity originating separately from left and right hemispheres of auditory cortex. Neural responses at interaction frequencies (f 2 6 f 1 ), assessed by IL, were obtained separately for each interaction category (difference frequency vs sum frequencies), each bandwidth (narrowband vs broadband), and each concurrent modulation condition (nearby vs distant). A 3 2 2 three-way analysis of variance reveals that carrier bandwidth does not interact with interaction category or modulation condition. Neural responses to stimuli with both narrow and broad bandwidth carriers were therefore pooled together for all further analysis. We observed that nearby modulation rates produced significant interaction responses, but not distant modulation rates (Fig. 2). The extent of interaction is highly significant for both interaction categories, but, critically, only for the nearby modulation rates and not for distant modulation rates. This is especially striking in the case of the difference frequencies, since the 1/f spectrum of the background activity (Wang et al., 2012) means the strongest potential to mask detection of the interaction Fig. 2. Interaction Level (IL) by modulation proximity. Distant (well-separated) modulation rates show no evidence of interaction. Nearby modulation rates show highly significant interaction (t test: *** P < 0.001). Error bars represent one standard error. Responses from both of the two sum-frequencies were pooled together. EL10 J. Acoust. Soc. Am. 133 (1), January 2013 Xiang et al.: Physiological auditory modulation filterbanks

frequency occurs for the nearby modulation rates and not for distant modulation rates. This differential activation between the near and distant conditions demonstrates modulation proximity as a critical factor in cortical neural responses to concurrent modulations, suggesting the employment of band-limited modulation filters followed by a nonlinearity. 4. Discussion The results indicate that the neural response pattern to concurrent modulations depends critically on the rate separation between modulations. The interaction activity indicative of within-channel processing is only evoked from nearby, but not distant, modulation rates, compatible with the physiological employment of central, bandlimited modulation filter banks. Two main categories of modulation filter models have been proposed for the auditory processing of temporal modulation: those containing only peripherally generated lowpass filters (e.g., Viemeister, 1979), and those with additional centrally generated modulation filterbanks (e.g., Dau et al., 1997a,b; Jepsen et al., 2008). Assuming only that that output of the filters is further processed by an (unspecified) nonlinearity, the results here are consistent with filterbank models but not lowpassonly models. Past studies investigating interaction components of cortical neural responses have not focused on the low modulation rates (near and below 20 Hz) relevant to speech. Lins and Picton (1995) found weak interaction components for concurrent modulations at 81 Hz and 97 Hz. John et al. (1998) employed concurrent modulations rates ranging from 70 to 110 Hz with separate carriers and found significant interactions when carrier frequencies were separated by an octave. Draganova et al. (2002) investigated neural responses to tones modulated by 38 and 40 Hz concurrently and found a 2 Hz MEG response component. Studies investigating responses to concurrent modulations at the low modulation rates relevant to speech have instead focused on effects of attending to one modulation over the other, rather than on interaction components (Bidet-Caulet et al., 2007; Xiang et al., 2010). Resolving distant modulation rates in the auditory system is critical for speech perception, since a speech signal can be at least segmented at two time-scales: syllabic rate (near 5 Hz) and phonemic rate (near 20 Hz). The results of this study indicate that the syllabic and phonetic processes are processed independently, but that nearby phonemic rates are processed together. Acknowledgments Support has been provided by the National Institute for Deafness and Other Communication Disorders (NIDCD) by NIH grants R01 DC 005660 and R01 DC 008342. We thank Mounya Elhilali and Nai Ding for discussions and Jeff Walker for excellent technical support. References and links Bidet-Caulet, A., Fischer, C., Besle, J., Aguera, P. E., Giard, M. H., and Bertrand, O. (2007). Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex, J. Neurosci. 27, 9252 9261. Chi, T., Gao, Y., Guyton, M. C., Ru, P., and Shamma, S. (1999). Spectro-temporal modulation transfer functions and speech intelligibility, J. Acoust. Soc. Am. 106, 2719 2732. Dau, T., Kollmeier, B., and Kohlrausch, A. (1997a). Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers, J. Acoust. Soc. Am. 102, 2892 2905. Dau, T., Kollmeier, B., and Kohlrausch, A. (1997b). Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration, J. Acoust. Soc. Am. 102, 2906 2919. Draganova, R., Ross, B., Borgmann, C., and Pantev, C. (2002). Auditory cortical response patterns to multiple rhythms of AM sound, Ear Hear. 23, 254 265. J. Acoust. Soc. Am. 133 (1), January 2013 Xiang et al.: Physiological auditory modulation filterbanks EL11

Drullman, R., Festen, J. M., and Plomp, R. (1994). Effect of reducing slow temporal modulations on speech reception, J. Acoust. Soc. Am. 95, 2670 2680. Elhilali, M., Xiang, J., Shamma, S. A., and Simon, J. Z. (2009). Interaction between attention and bottom-up saliency mediates the representation of foreground and background in an auditory scene, PLoS Biol. 7, e1000129. Ewert, S. D., Verhey, J. L., and Dau, T. (2002). Spectro-temporal processing in the envelope-frequency domain, J. Acoust. Soc. Am. 112, 2921 2931. Jepsen, M. L., Ewert, S. D., and Dau, T. (2008). A computational model of human auditory signal processing and perception, J. Acoust. Soc. Am. 124, 422 438. John, M. S., Lins, O. G., Boucher, B. L., and Picton, T. W. (1998). Multiple auditory steady-state responses (MASTER): Stimulus and recording parameters, Audiology 37, 59 82. Lins, O. G., and Picton, T. W. (1995). Auditory steady-state responses to multiple simultaneous stimuli, Electroencephalogr. Clin. Neurophysiol. 96, 420 432. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory, Neuropsychologia 9, 97 113. Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J., and Ekelid, M. (1995). Speech recognition with primarily temporal cues, Science 270, 303 304. Viemeister, N. F. (1979). Temporal modulation transfer functions based upon modulation thresholds, J. Acoust. Soc. Am. 66, 1364 1380. Wang, Y., Ding, N., Ahmar, N., Xiang, J., Poeppel, D., and Simon, J. Z. (2012). Sensitivity to temporal modulation rate and spectral bandwidth in the human auditory system: MEG evidence, J. Neurophysiol. 107, 2033 2041. Xiang, J., Simon, J., and Elhilali, M. (2010). Competing streams at the cocktail party: Exploring the mechanisms of attention and temporal integration, J. Neurosci. 30, 12084 12093. EL12 J. Acoust. Soc. Am. 133 (1), January 2013 Xiang et al.: Physiological auditory modulation filterbanks