Enhancement of Power Quality in Multi Feeders by using MC-DPFC

Similar documents
Power Quality Improvement And Mitigation Of Voltage Sag And Current Swell Using Distributed Power Flow Controller

Mitigation of Voltage Sag and Swell Using Distributed Power Flow Controller

Modeling and Analysis of DPFC to Improve Power Quality

Power Quality Enhancement and Mitigation of Voltage Sag using DPFC

MITIGATION OF VOLTAGE SAG AND SWELL FOR POWER QUALITY IMPROVEMENT USING DISTRIBUTED POWER FLOW CONTROLLER

Performance Of Distributed Power Flow Controller (DPFC) Under Fault Condition

Mitigation of Voltage Sag and Swell by Ant Colony Optimization Technique using DPFC

A Fuzzy based MC-DPFC for Enhancement of Power Quality in Transmission Line

SIMULATION OF DISTRIBUTED POWER FLOW CONTROLLER FACTS DEVICE IN VOLTAGE SAG AND SWELL MITIGATION

Harmonics Reduction and Power Quality Improvement by using Multilevel DPFC

Designing and Control of Converters used in DPFC for Mitigation of Voltage Sag and Swell In Transmission Line

Designing Of Distributed Power-Flow Controller

A COMPARATIVE STUDY ON UPFC AND DPFC TOWARDS LOW HARMONIC DISTORTION

A NOVEL APPROACH ON INSTANTANEOUS POWER CONTROL OF D-STATCOM WITH CONSIDERATION OF POWER FACTOR CORRECTION

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

A Versatile Control Scheme for UPQC for Power Quality Improvement using fuzzy controller

Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition

Power Control Scheme of D-Statcom

Power Quality Improvement in Distribution System Using D-STATCOM

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System

A VOLTAGE SAG/SWELL ALONG WITH LOAD REACTIVE POWER COMPENSATION BY USING SERIES INVERTER of UPQC-S

Modeling and Simulation of SRF and P-Q based Control DSTATCOM

Power Flow Control by Using DPFC

SIMULATION OF D-STATCOM AND DVR IN POWER SYSTEMS

Improvement of Power Quality in Distribution System using D-STATCOM With PI and PID Controller

Improvement of System Reliability & Power Transfer Capability using Distributed Power- Flow Controller (DPFC)

IJESR/Nov 2012/ Volume-2/Issue-11/Article No-21/ ISSN International Journal of Engineering & Science Research

Development and Simulation of Dynamic Voltage Restorer for Voltage SAG Mitigation using Matrix Converter

OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side

A RELATIVE STUDY ON UPFC AND DPFC ON THE BASIS OF TOTAL HARMONICS DISTORTION

A Novel Approach to Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Using UPQC

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August ISSN

Adaptive ANN based STATCOM and DVR for optimal integration of wind energy with grid using permanent magnet synchronous generator

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India)

SIMULATION OF DSTATCOM FOR POWER FACTOR IMPROVEMENT

Improving the Transient and Dynamic stability of the Network by Unified Power Flow Controller (UPFC)

IJCSIET--International Journal of Computer Science information and Engg., Technologies ISSN

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

Power Quality enhancement of a distribution line with DSTATCOM

Improvement of Power Quality using Unified Power Quality Conditioner with Distributed Generation

Mitigation of Voltage Sag, Swell and Load Hamonics by the Combined Opertation of Series APF and Solar System

CHAPTER 5 DESIGN OF DSTATCOM CONTROLLER FOR COMPENSATING UNBALANCES

Mitigating Voltage Sag Using Dynamic Voltage Restorer

Modified three phase Unified Power Quality Conditioner with capacitor midpoint topology

Power Quality and the Need for Compensation

Voltage Improvement Using SHUNT FACTs Devices: STATCOM

Protection from Voltage Sags and Swells by Using FACTS Controller

Design Strategy for Optimum Rating Selection of Interline D-STATCOM

CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC

Shunt Active Power Filter based on SRF theory and Hysteresis Band Current Controller under different Load conditions

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION

Comparative Study of Sag & Swell Mitigation by a Novel Multi Level DVR with Wavelets

Analysis and modeling of thyristor controlled series capacitor for the reduction of voltage sag Manisha Chadar

Implementation of UPQC for Voltage Sag Mitigation

Manjeet Baniwal 1, U.Venkata Reddy 2, Gaurav Kumar Jha 3

Mitigation of Voltage Sag/Swell Using UPQC

Volume I Issue VI 2012 September-2012 ISSN

Ripple Reduction Using Seven-Level Shunt Active Power Filter for High-Power Drives

Analysis, Modeling and Simulation of Dynamic Voltage Restorer (DVR)for Compensation of Voltage for sag-swell Disturbances

DESIGN A D STATCOM FOR VOLTAGE HARMONIC SUPPRESSION IN DISTRIBUTION SYSTEM

Enhancement of Power Quality in Distribution System Using D-Statcom

Performance of DVR under various Fault conditions in Electrical Distribution System

ISSN Vol.07,Issue.21, December-2015, Pages:

Harmonic Immunity And Power Factor Correction By Instantaneous Power Control Of D-STATCOM

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System

Increasing Dynamic Stability of the Network Using Unified Power Flow Controller (UPFC)

Real and Reactive Power Control by using 48-pulse Series Connected Three-level NPC Converter for UPFC

Power Quality Improvement using Hysteresis Voltage Control of DVR

International Journal of Advance Engineering and Research Development CONTROL OF REDUCED-RATING DYNAMIC VOLTAGE RESTORER

Improvement of Power Quality Using a Hybrid Interline UPQC

Voltage Flicker Compensation using STATCOM to Improve Power Quality

Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side

A Power Control Scheme for UPQC for Power Quality Improvement

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults

UPQC (Unified Power Quality Conditioner)

STATCOM WITH POD CONTROLLER FOR REACTIVE POWER COMPENSATION Vijai Jairaj 1, Vishnu.J 2 and Sreenath.N.R 3

Mitigation of Current Harmonics with Combined p-q and Id-IqControl Strategies for Fuzzy Controller Based 3Phase 4Wire Shunt Active Filter

Design of Dynamic Voltage Restorer for three phase network as steady state device in the Distribution System

2020 P a g e. Figure.2: Line diagram of series active power filter.

MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR)

Voltage Sag and Swell Mitigation Using Dynamic Voltage Restore (DVR)

Unit.2-Voltage Sag. D.Maharajan Ph.D Assistant Professor Department of Electrical and Electronics Engg., SRM University, Chennai-203

Power Quality Compensation by using UPFC

A Review on Power Quality Improvement in Distribution System using UPQC

A Review on Improvement of Power Quality using D-STATCOM

Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator

Mitigation of Faults in the Distribution System by Distributed Static Compensator (DSTATCOM)

Multiconverter Unified Power-Quality Conditioning System: MC-UPQC T.Charan Singh, L.Kishore, T.Sripal Reddy

Power Quality Improvement of Distribution Network for Non-Linear Loads using Inductive Active Filtering Method Suresh Reddy D 1 Chidananda G Yajaman 2

Design Requirements for a Dynamic Series Compensator for Voltage Sags Mitigation in Low Voltage Distribution System

Design Requirements for a Dynamic Voltage Restorer for Voltage Sags Mitigation in Low Voltage Distribution System

Keywords: unbalanced voltage, unbalanced current, Load balancing transformer

A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online):

FUZZY CONTROLLED DSTATCOM FOR HARMONIC COMPENSATION

Transcription:

Enhancement of Power Quality in Multi Feeders by using MC-DPFC B. Manaswini 1, Dr. S. Vathsal 2, Dr. S. Siva Prasad 3 1 M.Tech student, 2 Professor&Dean 3 Professor&HOD J.B. Institute of Engineering and Technology(UGC Autonomous), Hyderabad, India Email id: 1 manaswini68@gmail.com Abstract- According to growth of electricity demand and the increased number of non-linear loads in power grids, providing a high quality electrical power should be considered. In this paper, voltage sag and swell of the power quality issues are studied and distributed power flow controller (DPFC) is used to mitigate the voltage deviation and improve power quality. The DPFC is a new FACTS device, which its structure is similar to unified power flow controller (UPFC). In spite of UPFC, in DPFC the common dc-link between the shunt and series converters is eliminated and three-phase series converter is divided to several single-phase series distributed converters through the line. The case study contains a DPFC sited in a single-machine infinite bus power system including two parallel transmission lines, which simulated in MATLAB/Simulink environment. The presented simulation results validate the DPFC ability to improve the power quality. controller (UPFC) and synchronous static compensator (STAT-COM), are used to alleviate the disturbance and improve the power system quality and reliability. In this paper, a distributed power flow controller, introduced in as a new FACTS device, is used to mitigate voltage and current waveform deviation and improve power quality in a matter of seconds. The DPFC structure is derived from the UPFC structure that is included one shunt converter and several small independent series converters, as shown in Fig. 1. The DPFC has same capability as UPFC to balance the line parameters, i.e., line impedance, transmission angle, and bus voltage magnitude. I.INTRODUCTION In the last decade, the electrical power quality issue has been the main concern of the power companies Power quality is defined as the index which both the delivery and consumption of electric power affect on the performance of electrical apparatus From a customer point of view, a power quality problem can be defined as any problem is manifested on voltage, current, or frequency deviation that results in power failure. The power electronics progressive, especially in flexible alternating-current transmission system (FACTS) and custom power devices, affects power quality improvement. Generally, custom power devices, e.g., dynamic voltage restorer (DVR), are used in medium -to-low voltage levels to improve customer power quality. Most serious threats for sensitive equipment in electrical grids are voltage sags (voltage di p) and swells (over voltage). These disturbances occur due to some events, e.g., short circuit in the grid, inrush currents involved with the starting of large machines, or switching operations in the grid. The FACTS devices, such as unified power flow Fig.1. The DPFC Structure II.DPFC PRINCIPLE In comparison with UPFC, the main advantage offered by DPFC is eliminating the huge DC-link and instate using 3 rd -harmonic current to active power exchange. In the following subsections, the DPFC basic concepts are explained. A. Eliminate DC Link and Power Exchange Within the DPFC, the transmission line is used as a connection between the DC terminal of shunt converter and the AC terminal of series converters, instead of direct connection using DC-link for power exchange between converters. The method of power exchange in DPFC is based on power theory of nonsinusoidal components. Based on Fourier series, a non-sinusoidal voltage or current can be presented as the sum of sinusoidal components at different frequencies. The product of voltage and current www.ijrcct.org Page 1165

components provides the active power. Since the integral of some terms with different frequencies are zero, so the active power equation is as follow: p = V i I i cos ϕ i (1) i=1 Where V i and I i are the voltage and current at the i th harmonic, respectively, and φ i is the angle between the voltage and current at the same frequency. Equation (1) expresses the active power at different frequency components are independent. Based on this fact, a shunt converter in DPFC can absorb the active power in one frequency and generates output power in another frequency. Assume a DPFC is placed in a transmission line of a two-bus system, as shown in Fig.1. While the power supply generates the active power, the shunt converter has the capability to absorb power in fundamental frequency of current. Meanwhile, the third harmonic component is trapped in Y- transformer. Output terminal of the shunt converter injects the third harmonic current into the neutral of -Y transformer (Fig. 3). Consequently, the harmonic current flows through the transmission line. This harmonic current controls the DC voltage of series capacitors. Fig. 2 illustrates how the active power is exchanged between the shunt and series converters in the DPFC. The third-harmonic is selected to exchange the active power in the DPFC and a high-pass filter is required to make a closed loop for the harmonic current. The third-harmonic current is trapped in - winding of transformer. Hence, no need to use the high-pass filter at the receiving-end of the system. In other words, by using the third-harmonic, the highpass filter can be replaced with a cable connected between -winding of transformer and ground. This cable routes the harmonic current to ground. impedance, transmission angle, and bus voltage magnitude. High Reliability The series converters redundancy increases the DPFC reliability during converters operation.it means, if one of series converters fails, the others can continue to work. Low Cost The single-phase series converters rating are lower than one three-phase converter. Furthermore, the series converters do not need any high voltage isolation in transmission line connecting; single-turn transformers can be used to hang the series converters. III.DPFC CONTROL The DPFC has three control strategies: central controller, series control, and shunt control, as shown in Fig. 3. A. Central Control This controller manages all the series and shunt controllers and sends reference signals to both of them. B. Series Control Each single-phase converter has its own series control through the line. The controller inputs are series capacitor voltages, line current, and series voltage reference in the dq-frame. The block diagram of the series converters in Matlab/Simulink environment is demonstrated in Fig. 4. Fig.3. DPFC control structure Fig. 2.Active power exchange between DPFC converters B. The DPFC Advantages The DPFC in comparison with UPFC has some advantages, as follows: High Control Capability The DPFC similar to UPFC, can control all parameters of transmission network, such as line Fig.4. Block diagram of the series converters in Matlab/Simulink www.ijrcct.org Page 1166

Any series controller has a low-pass and a 3 rd -pass filter to create fundamental and third harmonic current, respectively. Two single-phase phase lock loop (PLL) are used to take frequency and pha se information from network.the block diagram of series controller in Matlab/Simulink is shown in Fig.5. The PWM-Generator block manages switching processes. C. Shunt Control The shunt converter includes a three-phase converter connected back-to-back to a single-phase converter. The three-phase converter absorbs active power from grid at fundamental frequency and controls the dc voltage of capacitor between this converter and single-phase one. Other task of the shunt converter is to inject constant third-harmonic current into lines through the neutral cable of -Y transformer. fundamental frequency (b) for third frequency -harmonic IV.POWER QUALITY IMPROVEMENT The whole model of system under study is shown in Fig. 7. The system contains a three-phase source connected to a non-linear RLC load through parallel transmission lines (Line 1 and Line 2) with the same lengths. The DPFC is placed in transmission line, which the shunt converter is connected to the transmission line 2 in parallel through a Y- threephase transformer, and series converters is distributed through this line. To simulate the dynamic performance, a threephase fault is considered near the load. The time duration of the fault is 0.5 seconds. Fig. 5. Block diagram of series control structure in Matlab/Simulink Each converter has its own controller at different frequency operation (fundamental and third - harmonic frequency). The shunt control structure block diagram is shown in Fig. 6. Fig. 6. The shunt control configuration: (a) for Fig.7. Simulation model of the DPFC V.SIMULATION RESULTS The DPFC controls the power flow through transmission lines by varying the voltage injected by the series converter at the fundamental frequency. Figs. 8-12 illustrate the step response of the experimental setup. A step change of the fundamental reference voltage of the series converter is made, which consists of both active and reactive variations, as shown in Fig. 8. As shown, the dc voltage of the series converter is stabilized before and after the step change. To verify if the series converter can inject or absorb active and reactive power from the grid at the fundamental frequency, the power is calculated from the measured voltage and current in Figs. 9 and 10. The measured data in one phase are processed in the computer by using MATLAB. To analyze the www.ijrcct.org Page 1167

voltage and current at the fundamental frequency, the measured data that contains harmonic distortion are filtered by a low-pass digital filter with the 50- Hz cut off frequency. Because of this filter, the calculated voltage and current at the fundamental frequency have a 1.5 cycle delay to the actual values, thereby causing a delay of the measured active and reactive power. Fig. 11 illustrated the active and reactive power injected by the series converter. A comparison is made between the measured power and the calculated power. We can see that the series converters are able to absorb and inject both active and reactive power to the grid at the fundamental frequency. Fig. 11. Step response of the DPFC: active and reactive power injected by the series converter at the fundamental frequency. Fig.8. Reference voltage for the series converters. Fig. 12. Step response of the DPFC: bus voltage and current at the Δ side of the transformer The load voltage harmonic analysis without presence of DPFC is illustrated in Fig. 13. It can be seen, after DPFC implementation in system, the even harmonics is eliminated, the odd harmonics are reduced within acceptable limits, and total harmonic distortion (THD) of load voltage is minimized from 45.67 to 0.65 percentage (Fig. 14), i.e., the standard THD is less than 5 percent in IEEE standards.\ Fig.9. Step response of the DPFC: series converter voltage. Fig.10. Step response of the DPFC: line current. www.ijrcct.org Fig. 12. Total harmonic distortion of load voltage without DPFC Page 1168

distribution networks, in Proc. IEEE Power Engineering Society Winter Meeting, vol. 4, 2000. [5] A. L. Olimpo and E. Acha, Modeling and analysis of custom power systems by PSCAD/EMTDC, IEEE Trans. Power Delivery, vol. 17, no.1,2002. [6]M. A. Hannan and Azah Mohamed, member IEEE, PSCAD/EMTDC Simulation of Unified Series-Shunt Compensator for Power Quality Improvement, IEEE Transactions on Power Delivery, vol. 20, no. 2, 2005. Fig. 13. Total harmonic distortion of load voltage with DPFC VI. CONCLUSION To improve power quality in the power transmission system, there are effective methods. In this paper, the voltage sag and swell mitigation, using a new FACTS device called distributed power flow controller (DPFC) is presented. The DPFC structure is similar to unified power flow controller (UPFC) and has a same control capability to balance the line parameters, i.e., line impedance, transmission angle, and bus voltage magnitude. However, the DPFC offers some advantages, in comparison with UPFC, such as high control capability, high reliability, and low cost. The DPFC is modeled and three control loops, i.e., central controller, series control, and shunt control are design. The system under study is a single machine infinite-bus system, with and without DPFC. To simulate the dynamic performance, a three-phase fault is considered near the load. It is found that the DPFC gives an acceptable performance in power quality mitigation and power flow control. [7] I Nita R. Patne, Krishna L. Thakre Factor Affecting Characteristics Of Voltage Sag Due to Fault in the Power System Serbian Journal Of Electrical engineering. vol. 5, no.1,2008. [8] Zhihui Yuan, Sjoerd W.H de Haan and Braham Frreira DPFC control during shunt converter failure IEEE Transaction on Power Electronics 2009. [9] Zhihui Yuan, Sjoerd W.H de Haan, Braham Frreira and Dalibor Cevoric A FACTS Device: Distributed Power Flow Controller (DPFC) IEEE Transaction on Power Electronics, vol.25, no.10, 2010. [10] S. Masoud Barakati, Arash Khoshkbar Sadigh and Ehsan Mokhtarpour, Voltage Sag and Swell Compensation with DVR Based on Asymmetrical Cascade Multicell Converter,North American Power Symposium (NAPS), 2011. REFERENCES [1] Alexander Eigels Emanuel, John A. McNeill Electric Power Quality. Annu. Rev. Energy Environ 1997. [2] J. R. Enslin, Unified approach to power quality mitigation, in Proc. IEEE Int. Symp. Industrial Electronics (ISIE 98), vol. 1, 1998. [3] B. Singh, K. Al-Haddad, and A. Chandra, A review of active filters for power quality improvement, IEEE Trans. Ind. Electron. vol. 46, no. 5, 1999. [4] P. Pohjanheimo and E. Lakervi, Steady state modeling of custom power components in power www.ijrcct.org Page 1169