REFLECTION SUPPRESSION IN LARGE SPHERICAL NEAR-FIELD RANGE

Similar documents
SPHERICAL NEAR-FIELD SELF-COMPARISON MEASUREMENTS

MISSION TO MARS - IN SEARCH OF ANTENNA PATTERN CRATERS

IMPROVING AND EXTENDING THE MARS TECHNIQUE TO REDUCE SCATTERING ERRORS

ALIGNMENT SENSITIVITY AND CORRECTION METHODS FOR MILLIMETER- WAVE SPHERICAL NEAR-FIELD MEASUREMENTS

PROBE CORRECTION EFFECTS ON PLANAR, CYLINDRICAL AND SPHERICAL NEAR-FIELD MEASUREMENTS

High Accuracy Spherical Near-Field Measurements On a Stationary Antenna

Accurate Planar Near-Field Results Without Full Anechoic Chamber

SPHERICAL NEAR-FIELD MEASUREMENTS AT UHF FREQUENCIES WITH COMPLETE UNCERTAINTY ANALYSIS

ANECHOIC CHAMBER EVALUATION

A COMPOSITE NEAR-FIELD SCANNING ANTENNA RANGE FOR MILLIMETER-WAVE BANDS

APPLICATIONS OF PORTABLE NEAR-FIELD ANTENNA MEASUREMENT SYSTEMS

A CYLINDRICAL NEAR-FIELD VS. SPHERICAL NEAR-FIELD ANTENNA TEST COMPARISON

33 BY 16 NEAR-FIELD MEASUREMENT SYSTEM

Near-Field Antenna Measurements using a Lithium Niobate Photonic Probe

Characterization of a Photonics E-Field Sensor as a Near-Field Probe

ANECHOIC CHAMBER DIAGNOSTIC IMAGING

RAYTHEON 23 x 22 50GHZ PULSE SYSTEM

PERFORMANCE CONSIDERATIONS FOR PULSED ANTENNA MEASUREMENTS

Upgraded Planar Near-Field Test Range For Large Space Flight Reflector Antennas Testing from L to Ku-Band

A LARGE COMBINATION HORIZONTAL AND VERTICAL NEAR FIELD MEASUREMENT FACILITY FOR SATELLITE ANTENNA CHARACTERIZATION

PRACTICAL GAIN MEASUREMENTS

Further Refining and Validation of RF Absorber Approximation Equations for Anechoic Chamber Predictions

GAIN COMPARISON MEASUREMENTS IN SPHERICAL NEAR-FIELD SCANNING

Sub-millimeter Wave Planar Near-field Antenna Testing

Numerical Calibration of Standard Gain Horns and OEWG Probes

METHODS TO ESTIMATE AND REDUCE LEAKAGE BIAS ERRORS IN PLANAR NEAR-FIELD ANTENNA MEASUREMENTS

IMPLEMENTATION OF BACK PROJECTION ON A SPHERICAL NEAR- FIELD RANGE

Structural Correction of a Spherical Near-Field Scanner for mm-wave Applications

HOW TO CHOOSE AN ANTENNA RANGE CONFIGURATION

ADVANTAGES AND DISADVANTAGES OF VARIOUS HEMISPHERICAL SCANNING TECHNIQUES

A Method for Gain over Temperature Measurements Using Two Hot Noise Sources

Accuracy Estimation of Microwave Holography from Planar Near-Field Measurements

ON THE DEVELOPMENT OF GHZ ANTENNAS FOR TOWED DECOYS AND SUITABILITY THEREOF FOR FAR-FIELD AND NEAR-FIELD MEASUREMENTS

A DUAL-PORTED PROBE FOR PLANAR NEAR-FIELD MEASUREMENTS

Chapter 5. Array of Star Spirals

HIGH ACCURACY CROSS-POLARIZATION MEASUREMENTS USING A SINGLE REFLECTOR COMPACT RANGE

Dependence of Antenna Cross-polarization Performance on Waveguide-to-Coaxial Adapter Design

TRADITIONAL ANTENNA MEASUREMENTS AND CTIA OTA MEASUREMENTS MERGING THE TECHNOLOGIES

WIESON TECHNOLOGIES CO., LTD.

60 GHz antenna measurement setup using a VNA without external frequency conversion

A TECHNIQUE TO EVALUATE THE IMPACT OF FLEX CABLE PHASE INSTABILITY ON mm-wave PLANAR NEAR-FIELD MEASUREMENT ACCURACIES

DIGITAL BEAM-FORMING ANTENNA RANGE

Antenna Measurement Uncertainty Method for Measurements in Compact Antenna Test Ranges

A TURNKEY NEAR-FIELD MEASUREMENT SYSTEM FOR PULSE MODE APPLICATIONS

Millimetre Spherical Wave Antenna Pattern Measurements at NPL. Philip Miller May 2009

A Reduced Uncertainty Method for Gain over Temperature Measurements in an Anechoic Chamber

THE EFFECT OF RANGE LENGTH ON THE MEASUREMENT OF TRP

Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 100 Suwanee, GA 30024

Main features. System configurations. I Compact Range SOLUTION FOR

ESTIMATING THE UNCERTAINTIES DUE TO POSITION ERRORS IN SPHERICAL NEAR-FIELD MEASUREMENTS

The Importance of Polarization Purity Author: Lars J Foged, Scientific Director at MVG (Microwave Vision Group)

> StarLab. Multi-purpose Antenna Measurement Multi-protocol Antenna Development Linear Array Antenna Measurement OTA Testing

BROADBAND GAIN STANDARDS FOR WIRELESS MEASUREMENTS

Spherical Scanning Measurement Challenge for Future Millimeter Wave Applications

Estimating Measurement Uncertainties in Compact Range Antenna Measurements

Antenna and RCS Measurement Configurations Using Agilent s New PNA Network Analyzers

Farfield Vertical Gain Component at the Horizon with and without a Shield Tom Mozdzen

AN AUTOMATED CYLINDRICAL NEAR-FIELD MEASUREMENT AND ANALYSIS SYSTEM FOR RADOME CHARACTERIZATION

A HILBERT TRANSFORM BASED RECEIVER POST PROCESSOR

Millimeter Spherical µ-lab System from Orbit/FR

An introduction to Mobile Station Over-the-Air measurements

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA

MEASUREMENT OF THE EARTH-OBSERVER-1 SATELLITE X-BAND PHASED ARRAY

Implementation of a VHF Spherical Near-Field Measurement Facility at CNES

Improvement of Antenna Radiation Efficiency by the Suppression of Surface Waves

SPHERICAL NEAR-FIELD ANTENNA MEASUREMENTS: A REVIEW OF CORRECTION TECHNIQUES

System configurations. Main features I SG 64 SOLUTION FOR

HISTOGRAM EQUALISATION AS A METHOD FOR MAKING AN OBJECTIVE COMPARISON BETWEEN ANTENNA PATTERNS FUNCTIONS

Keywords: cylindrical near-field acquisition, mechanical and electrical errors, uncertainty, directivity.

Chapter 7 - Experimental Verification

NTT DOCOMO Technical Journal. Method for Measuring Base Station Antenna Radiation Characteristics in Anechoic Chamber. 1.

MITIGATING INTERFERENCE ON AN OUTDOOR RANGE

Using measured fields as field sources in computational electromagnetic (CEM) solvers

Vehicle Level Antenna Pattern & ADAS Measurement

A LARGE SPHERICAL NEAR-FIELD ARCH SCANNER FOR CHARACTERIZING LOW-FREQUENCY PHASED ARRAYS

System configurations. Main features. I TScan SOLUTION FOR

Optimizing a CATR Quiet Zone using an Array Feed

Agilent Antenna and RCS Measurement Configurations Using PNA Microwave Network Analyzers. White Paper

The CDT Ultra Wide-Band Anechoic Chamber. Félix Tercero, José Manuel Serna, Tim Finn, J.A.López Fernández INFORME TÉCNICO IT - OAN

Dual-Polarized Probe with Full Octave Bandwidth and Minimum Scattering for Planar Near Field Measurements

A BROADBAND POLARIZATION SELECTABLE FEED FOR COMPACT RANGE APPLICATIONS

Comparison of antenna measurement results in disturbed environment using a VHF spherical near field system

Rapid Antenna Measurement Systems

Large E Field Generators in Semi-anechoic Chambers for Full Vehicle Immunity Testing

EHF Rotman Lens Fed Linear Array Multibeam Planar Near-Field Range Measurements CST 5 th NORTH AMERICAN USERS FORUM 4th FEBRUARY 2008 SANTA CLARA, CA

A Broadband Reflectarray Using Phoenix Unit Cell

A Telemetry Antenna System for Unmanned Air Vehicles

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters

High Performance Dual Polarized Near-Field Probe at V-Band Provides Increased Performances for Millimeter Wave Spherical Near-Field Measurements

CHARACTERIZATION OF PHASE SHIFTERS ON A KU-BAND PHASED ARRAY ANTENNA ESA/ESTEC, NOORDWIJK, THE NETHERLANDS 3-5 OCTOBER 2012

T- DualScan. StarLab

This paper examines Massive MIMO measurements. Massive MIMO is a technology using a very large number of antenna elements to support multi-user MIMO t

Narrow Pulse Measurements on Vector Network Analyzers

Fundamentals. Senior Project Manager / AEO Taiwan. Philip Chang

Truncation Error Mitigation in Free-Space Automotive Partial Spherical Near Field Measurements

The Design of an Automated, High-Accuracy Antenna Test Facility

Non-Ideal Quiet Zone Effects on Compact Range Measurements

Thermal Testing of Small Antennas in Multi-Probe Spherical Near-Field Systems

Full-Wave Analysis of Planar Reflectarrays with Spherical Phase Distribution for 2-D Beam-Scanning using FEKO Electromagnetic Software

SAGE Millimeter, Inc.

Transcription:

REFLECTION SUPPRESSION IN LARGE SPHERICAL NEAR-FIELD RANGE Greg Hindman & Allen C. Newell Nearfield Systems Inc. 1973 Magellan Drive Torrance, CA 952 ABSTRACT Reflections in antenna test ranges can often be the largest source of measurement errors, dominating all other error sources. This paper will show the results of a new technique developed by NSI to suppress reflections from the radome and gantry of a large hemi-spherical automotive test range developed for Nippon Antenna in Itzehoe, Germany. The technique, named Mathematical Absorber Reflection Suppression (MARS), is a postprocessing technique that involves analysis of the measured data and a special filtering process to suppress the undesirable scattered signals. The technique is a general technique that can be applied to any spherical near-field test range. It has also been applied to extend the useful frequency range of microwave absorber in a spherical near-field system in an anechoic chamber. The paper will show typical improvements in pattern performance and directivity measurements, and will show validation of the MARS technique using data measured on antennas in a conventional anechoic chamber. NSI has also extended the MARS technique for operation with other spherical near-field test systems with limited or no absorber, as well as for use in improving the reflection performance in a traditional anechoic chamber. Figure 1 Nippon Antenna SNF/FF Test Range Keywords: radome, absorber, reflection, spherical nearfield, suppression 1. Introduction This paper describes a proprietary technique developed by NSI to suppress reflections in a spherical near-field test range. The initial development of the MARS technique was done to support operation in a hemi-spherical automotive near-field test system that NSI recently installed for Nippon Antenna in Itzehoe Germany (figures 1 and 2). The system is a combination spherical near-field and farfield test facility with a 11.5 m radius dielectric gantry provided by the Howland company, and 6.5 m diameter in-ground turntable provided by NSI. The radome is 14 m high and 24 m in diameter. The facility uses the continuous ground plane approach, rather than use of any absorber on the turntable or ground surface. Reflections from the dielectric gantry and the radome do affect the measured antenna performance, and the MARS technique is used to suppress the majority of these reflections. Figure 2 NSI rotator and gantry testing automobile 2. MARS Approach The purpose of the MARS approach is to reduce the influence of scattering on far-field pattern results. We use a mathematical post processing technique that requires a minimum amount of detailed information about the AUT, probe and antenna range geometry. The

processing is applied during regular near-field to far-field processing. The technique is general enough to apply to different types of spherical measurement geometries and to different antenna types. NSI has developed a mathematical operator that is applied to the measured data that helps to distinguish between the correct antenna properties and scattering. Successful processing requires more measured data than for the AUT without scattering for best performance - typically requires one half the spacing in theta and phi than recommended by sampling criteria. This will usually require about double the test time, compared to normal measurements. 3. Simple Reflection Test Using Near-Field Comparison A common and very simple technique to identify or estimate reflection levels in a test range is a comparison of a theta cut with the AUT phi changed between and 18 degrees. For a correctly aligned measurement system[1-4], the differences in the patterns are due to the range reflections and will give a preliminary estimate of expected error signal level [5] for the far-field patterns (figure 3). This data was taken on NSI s 7S-6 Spherical NF scanner inside an anechoic chamber shown in figure 4. Figure 4 NSI-RF-WR284 OEWG probe being tested at NSI on NSI-7S-6 Spherical NF in anechoic chamber Scattering Comparison for WR-284 OEWG at 2.6 GHz in Chamber Near-field Comparison of and 18 Phi Cuts Phi= Phi=18 SCAT. SIG -1-2 -3-4 5-6 -1 5 1 Theta (deg) Figure 3 Reflections at 2.6 GHz in anechoic chamber using near-field comparison of and 18 deg patterns Figure 5 NSI-RF-WR284 OEWG probe being tested at NSI on NSI-7S-9 ARCH Spherical NF in open environment with NO anechoic chamber Figure 5 shows the same WR-284 OEWG probe now mounted in the NSI factory floor on an ARCH system, the NSI-7S-9 Spherical NF scanner, with no anechoic chamber. Again one can get an initial idea of range reflections by comparing near-field patterns with the AUT at and 18 degree PHI positions. This result is shown in figure 6.

Scattering Comparison for WR-284 OEWG at 2.6 GHz on ARCH range, no absorber Near-field Comparison of and 18 Phi Cuts -1-2 Phi= Phi=18 SCAT. SIG WR284 Open Ended Waveguide AUT on Two Spherical Ranges CMBR ARCH, Z=-13" ARCH, Z=-33" -1-3 -4 5-2 -6-1 5 1 Theta (deg) Figure 6 Reflections at 2.6 GHz in open environment with no test chamber, using near-field comparison of and 18 deg patterns At first glance, one might think that the resulting data would indicate that measurements would be totally impractical due to the high reflection level of only about - db versus the much better level of about -3 db in the prior result in the anechoic chamber. However, with appropriate application of the MARS processing technique, we can show that the results obtained by measuring the antenna with no range absorber can be improved significantly, and can approach the accuracy achievable in a conventional anechoic chamber! -3 Figure 7 Far-field comparison at 2.6 GHz of chamber measured data, versus data taken in open environment with no test chamber, with No MARS correction Enabling the MARS processing yields the comparison in figure 8, overlaid with the result measured in the anechoic chamber, showing that the patterns on the open ARCH range are now quite comparable to those in the chamber. The only additional requirements were that of sampling data at twice the normal density, and applying the MARS processing. - 25 5 Elevation (deg) WR284 Open Ended Waveguide AUT on Two Spherical Ranges CMBR ARCH, Z=-13" ARCH, Z=-33" 4. MARS Results with and without use of Anechoic Chamber We measured the WR-284 probe as the antenna on the ARCH spherical range at two different Z distances from the theta/phi intersection axis. The resulting far-field calculations at 2.6 GHz without MARS processing are shown in figure 7, and compared to the result measured in the anechoic chamber. The patterns on the open range are of course quite different due to the very poor reflection environment. -1-2 -3-25 5 Elevation (deg) Figure 8 Far-field comparison at 2.6 GHz of chamber measured data, versus data taken in open environment with no test chamber, MARS correction enabled

5. Validation of the MARS technique Far-field amplitude of NSI-RF-SG284_7S-9_21.nsi WR-284 SGH on ARCH range with no absorber or chamber, 3. GHz In addition to the chamber comparison shown above, NSI tested a number of Standard Gain Horns (SGH) in various test ranges, with and without MARS processing. This section will summarize those tests. MARS correction enabled 33 3 uncorrected 3 One set of tests used a NSI-RF-SG284 Standard Gain Horn operating from 2.6 to 3.95 GHz. We measured the same SGH on 3 different test ranges and compared results with and without MARS processing. 27 3 6 9-4 -3-2 -1 db 24 12 21 18 Figure 1 NSI-RF-SG284 Standard Gain Horn tested on NSI ARCH scanner with no absorber or chamber showing pattern improvement with MARS correction enabled The same SGH was tested in the NSI anechoic chamber. Here we subtract the far-field results with and without MARS correction to show the significant improvement in reflection error level achieved thru use of the processing. Without the MARS correction, the plot subtraction yields an error level or reflection effect of up to -16 db from the beam peak. With MARS correction enabled, the error level is suppressed to below -34 db about a 18 db improvement. Far-field amplitude of NSI-RF-SG284_7S-6_1.nsi - Far-field amplitude of NSI-RF-SG284_7S-9_21.nsi WR-284 SGH at 3. GHz Chamber vs. ARCH, no MARS Plot 1 Plot 2 Plot 1 - Plot 2 Figure 9 NSI-RF-SG284 Standard Gain Horn tested on NSI ARCH scanner with no absorber or chamber Again, taking data with double the normal density in theta and phi angles, we can use the MARS processing to show the improved result with the reflection inhibited. -1-2 -3-4 -1 5 1 Azimuth (deg) Figure 11 Far-field comparison at 3. GHz of SGH data taken in chamber versus on ARCH range with no absorber or chamber, with no MARS correction

Far-field amplitude of NSI-RF-SG284_7S-6_1.nsi - Far-field amplitude of NSI-RF-SG284_7S-9_21.nsi Plot 1 Plot 2 Plot 1 - Plot 2 6. Test Results on Nippon SNF range with MARS processing -1-2 -3 Figure 14 shows the result of a patch antenna tested on the Nippon Antenna range with and without MARS processing. The significant reduction in the ripple due to the reflections is evident. Far-field amplitude of GPS_AMRO_23.nsi MARS Correction Enabled, Theta cut, PHI= MARS Correction Enabled 3 Correction Off 33-4 3 6 3-1 5 1 Azimuth (deg) Figure 12 Far-field comparison at 3. GHz of SGH data taken in chamber versus on ARCH range with no absorber or chamber, with MARS correction enabled To check the performance over a broader frequency range, we can use the multi-frequency data on the SGH to calculate the directivity performance versus the NRL directivity calculations with and without the MARS processing. Figure 13 shows this result. The maximum difference from the NRL curve with MARS off is about 1.7 db, whereas when the MARS processing is applied, the large discrepancies disappear and the maximum difference drops to only about.5 db. 21. 2.5 2. 19.5 Directivity vs. Frequency of C:\i-drive\nsi97\data\AMTA 25 MARS\NSI-RF-SG284_7S-9_12.nsi Worst-case difference.57 db; average.3 db Measured Dir (MARS on) Measured Dir (MARS off) NRL Gain Calculation 9 12 18 Figure 14 Far-field comparison at 1.5 GHz of patch antenna on a ground plane taken in Nippon Antenna SNF range with and without MARS correction enabled. We also tested a WR-43 Standard Gain horn on the Nippon Antenna range and compared the result to the result from another SGH of the same NSI model#, tested in a spherical NF system in an anechoic chamber delivered to one of our customers. These comparisons are shown in Figure & 16. 21 24-4 -3-2 -1 27 db Directivity(dBi) 19. 18.5 18. 17.5 17. 16.5 16. 2. 3. 3.25 3.5 3. Frequency (GHz) Figure 13 Directivity versus frequency of WR-284 SGH taken on ARCH range with no absorber or chamber, compared to NRL directivity, with and without MARS correction

Far-field amplitude of NipponSGH13.nsi S-2 - no MARS - NipponSGH13 S in Chamber - WR43-SGH-8 3 33 3 6 3 9-4 -3-2 -1 27 db 7. MARS Requirements and Limitations The key requirement for MARS processing is the need to over-sample the theta/phi data by about a factor of two. This can typically be done in only double the test time if the receiver system is fast enough or if one limits the number of frequencies. One must also estimate or determine the phase center location of the antenna since this is used in the post-processing. Other than these restrictions, the process is quite straightforward for the user with NSI s MARS processing algorithm. 8. Summary Figure Far-field comparison at 1.7 GHz of WR- 43 SGH taken in Nippon Antenna SNF range with NO MARS correction against same model # SGH tested in anechoic chamber S in Chamber - WR43-SGH-8 12 6 3 Far-field amplitude of NSI-RF-SG43 SGH S_2 w/mars - NipponSGH13 18 21 33 24 3 3 NSI has developed and validated a novel technique to suppress reflections on spherical near-field ranges. The technique is quite general and can be used to achieve acceptable results with use of minimal absorber or even with no anechoic chamber. It can also improve the reflection levels in a traditional anechoic chamber by 1 db or more, allowing improved accuracy as well as the ability to use existing chambers down to lower frequencies than the absorber used might indicate. 8. REFERENCES [1] Slater, D., "Nearfield Antenna Measurements", Artech House, Norwood, MA, 1991 [2] Newell, A. C., Hindman, G., "The alignment of a spherical near-field rotator using electrical measurements" In the proceedings of the 19th annual AMTA Meeting and Symposium, Boston, MA, 1997. 9-4 -3-2 -1 27 db [3] Newell, A. C., Hindman, G., "Quantifying the effect of position errors in spherical near-field measurements", In the proceedings of the 2th annual AMTA Meeting and Symposium, pp 1-149, Montreal, Canada, 1998. 12 18 Figure 16 Far-field comparison at 1.7 GHz of WR- 43 SGH taken in Nippon SNF range with MARS correction enabled against same model # SGH tested in anechoic chamber 21 24 [4] Newell, A.C., "The effect of measurement geometry on alignment errors in spherical near-field measurements", AMTA 21st Annual Meeting & Symposium, Monterey, California, Oct. 1999. [5] Hindman, G, Newell, A.C., " Spherical near-field selfcomparison measurements", AMTA 26th Annual Meeting & Symposium, Atlanta, GA, Oct. 24.