QPD W, 50V, DC 4 GHz, GaN RF Transistor

Similar documents
QPD W, 50V, DC 3.7 GHz, GaN RF Transistor

QPD W, 32V, DC 12 GHz, GaN RF Transistor

QPD W, 50V, DC 4 GHz, GaN RF Transistor

QPD1008L 125W, 50V, DC 3.2 GHz, GaN RF Transistor

TGF2929-HM 100W, 28V, DC 3.5 GHz, GaN RF Power Transistor

QPD1015L 65W, 50V, DC 3.7 GHz, GaN RF Transistor

QPD W, 50V, GHz, GaN RF IMFET

QPD1019S2. 500W, 50V, GHz, GaN RF IMFET. Product Overview. Key Features. Functional Block Diagram. Applications.

QPD W, 28V, GHz, GaN RF Input-Matched Transistor

TGF2929-FL 100W, 28V, DC 3.5 GHz, GaN RF Power Transistor

QPD GHz, 50 V, 30 W GaN RF Input-Matched Transistor

T1G FL 45W, 32V, DC 3.5 GHz, GaN RF Transistor

QPD1025. Product Overview. Key Features. Functional Block Diagram. Applications. Ordering info

QPD MHz, 50 V, 7 W GaN RF Input-Matched Transistor

TGF2929-FS. Applications. Product Features. Functional Block Diagram. Pin Configuration. General Description

QPD1025L. Product Overview. Key Features. Functional Block Diagram. Applications. Ordering info

TGF2977-SM DC 12 GHz, 32 V, 5 W GaN RF Transistor

TGF2819-FL 100W Peak Power, 20W Average Power, 32V DC 3.5 GHz, GaN RF Power Transistor

T1G FS 30W, 28V, DC 6 GHz, GaN RF Power Transistor

TGA2583-SM 2.7 to 3.7 GHz, 10 W GaN Power Amplifier

TGF Watt Discrete Power GaN on SiC HEMT

QPD1025LS2. Product Overview. Key Features. Functional Block Diagram. Applications. Ordering info

TGF Watt Discrete Power GaN on SiC HEMT

QPD GHz, 110 W / 220 W, 48 V, Asymmetric Doherty

T2G Q3 10W, 28V DC 6 GHz, GaN RF Power Transistor

QPD0020S2. 35 W, 48 V, DC 6 GHz, GaN RF Power Transistor. Product Overview. Key Features. Functional Block Diagram. Applications. Ordering Information

TGA2818-SM S-Band 30 W GaN Power Amplifier

TGA2594-HM GHz GaN Power. Product Description. Product Features. Functional Block Diagram. Applications. Ordering Information

QPD W, 48 V, DC 4 GHz, GaN RF Power Transistor

TGA2578-CP 2 to 6 GHz, 30W GaN Power Amplifier

TGF Watt Discrete Power GaN on SiC HEMT

TGA2813-CP 3.1 to 3.6 GHz, 100W GaN Power Amplifier

QPA GHz 50 Watt GaN Amplifier

TGA2214-CP 2 18 GHz 4 W GaN Power Amplifier

TGA3503-SM 2-30 GHz GaAs Wideband Gain Block

TGA3504-SM 2-30 GHz GaAs Wideband Gain Block

T1G Q3 DC 6 GHz 18 W GaN RF Power Transistor

TGA2704-SM 8W 9-11 GHz Power Amplifier

TGA2625-CP GHz 20 W GaN Power Amplifier

QPD W, 48 V GHz GaN RF Power Transistor. Product Description. Product Features. Functional Block Diagram.

QPA1003P 1 8 GHz 10 W GaN Power Amplifier

TGA2583-SM 2.7 to 3.7GHz, 10W GaN Power Amplifier

QPD W, 48 V GHz GaN RF Power Transistor

TGA2578-CP 2 to 6 GHz, 30W GaN Power Amplifier

TGA2612-SM 6 12 GHz GaN LNA

QPM GHz Limiter/Low-Noise Amplifier. Product Description. Product Features. Functional Block Diagram. Ordering Information.

TGA2814-CP 3.1 to 3.6 GHz, 80W GaN Power Amplifier

QPA GHz 50 Watt GaN Amplifier

QPA GHz GaAs Low Noise Amplifier

TGM2635-CP X-Band 100 W GaN Power Amplifier

TGA2710-SM 8W GHz Power Amplifier

QPD GHz, 110 W / 220 W, 48 V, Asymmetric Doherty. Product Description. Applications. Ordering Information. Part No.

QPA1003D. 1 8 GHz 10 W GaN Power. Product Description. Product Features. Functional Block Diagram. Applications. Ordering Information

QPC GHz 50 W GaN SPDT Switch. Product Overview. Key Features. Functional Block Diagram. Applications. Ordering Information

QPC1006EVB GHz High Power GaN SP3T Switch. Product Overview. Key Features. Functional Block Diagram. Applications. Ordering Information

TGM2543-SM 4-20 GHz Limiter/LNA

TGA2622-CP 9 10 GHz 35 W GaN Power Amplifier

TGA2567-SM 2 20 GHz LNA Amplifier

QPD0210TR7. 2x15 W, 48 V, GHz, Dual GaN RF Transistor. Product Overview. Applications. Functional Block Diagram. Ordering Information

TGA FL 2.5 to 6 GHz 40W GaN Power Amplifier

TGA2760-SM GHz Power Amplifier

TGL2226-SM GHz 6-Bit Attenuator

TGM2635-CP X-Band 100 W GaN Power Amplifier

TGL2226-SM GHz 6-Bit Digital Attenuator

TGA4535-SM-T/R. K-Band Power Amplifier. Product Description. Product Features. Functional Block Diagram. Ordering Information.

QPD W / 220 W, 48 V, Asymmetric Doherty. Product Description. Applications. Ordering Information

TGL2767-SM-EVB. 2 31GHz Voltage Variable Attenuator. Product Description. Product Features. Applications Block Diagram. Ordering Information

TGA4533-SM K-Band Power Amplifier

TGS2355 SM EVB GHz 100 Watt GaN Switch. Product Overview. Key Features. Applications. Functional Block Diagram. Ordering Information

Applications Ordering Information Part No. ECCN Description TGA2535-SM 3A001.b.2.b X-band Power Amplifier

QPA GHz Variable Gain Driver Amplifier

TGA2760-SM-T/R GHz Power Amplifier. Product Overview. Key Features. Applications. Functional Block Diagram. Ordering Information

TGL GHz Voltage Variable Attenuator

TGP2105-SM 6-18 GHz 6-Bit Digital Phase Shifter (+Vc)

TGS SM GHz High Power SPDT Reflective Switch

TGV2561-SM GHz VCO with Divide by 2

TGA4548S2. Product Overview. Key Features. Functional Block Diagram. Applications. Ordering Information GHz 10 W GaN Power Amplifier

QPA W, 28 V, GHz GaN PA Module

TGA3500-SM 2-12 GHz Driver Amplifier

QPC GHz 6-Bit Digital Phase Shifter

TGP2107-SM 6 to 18 GHz 6-Bit Digital Phase Shifter ( V C )

QPA W, 28 V, GHz GaN PA Module

TGA4532 K-Band Power Amplifier

TGA FL 2.5 to 6GHz 40W GaN Power Amplifier

TAT Ω 5V MHz RF Amplifier

QPA1019S GHz 10W GaN Power Amplifier

WJA V Active-Bias InGaP HBT Gain Block

QPM GHz Multi-Chip T/R Module

TQP DC-6 GHz Gain Block

TGL2201-SM T/R. Wideband Dual Stage VPIN Limiter. Applications. Ordering Information. Part No. ECCN Description

TQP3M9035 High Linearity LNA Gain Block

QPA4501SR. 3 W, 28 V, GHz GaN PA Module. Product Overview. Key Features. Functional Block Diagram Applications. Ordering Information

TGA FL 20W Ku-Band GaN Power Amplifier

TQP PCB. DC-6 GHz Gain Block. Applications. Ordering Information

TGA Gb/s Linear Driver

TQP DC-6 GHz Gain Block

TQP MHz Power Amplifier. General Description. Product Features. Functional Block Diagram. Ordering Information

TQP3M9008 High Linearity LNA Gain Block

TGA4852 DC 35GHz Wideband Amplifier

TGA4906-SM 4 Watt Ka-Band Power Amplifier

Transcription:

General Description The Qorvo QPD1010 is a 10 W (P3dB) discrete GaN on SiC HEMT which operates from DC to 4 GHz. The device is constructed with Qorvo s proven QGaN25HV process, which features advanced field plate techniques to optimize power and efficiency at high drain bias operating conditions. This optimization can potentially lower system costs in terms of fewer amplifier line-ups and lower thermal management costs. The device is housed in an industry-standard 3 x 3 mm surface mount QFN package. Lead-free and ROHS compliant Evaluation boards are available upon request. Functional Block Diagram Product Features 3 x 3 x 0.100 mm Frequency: DC to 4 GHz Output Power (P3dB): 11 W at 2 GHz Linear : 24.7 db at 2 GHz Typical 3dB: 70% at 2 GHz Operating Voltage: 50 V Low thermal resistance package CW and Pulse capable 3 x 3 mm package Applications Military radar Civilian radar Land mobile and military radio communications Test instrumentation Wideband or narrowband amplifiers Jammers Ordering info Part No. ECCN Description QPD1010 EAR99 DC 4 GHz RF Transistor QPD1010- EVB1 EAR99 0.96 1.215 GHz EVB Rev. B - 1 of 25 - Disclaimer: Subject to change without notice

Absolute Maximum Ratings 1 Parameter Rating Units Breakdown Voltage,BVDG +145 V Gate Voltage Range, VG -7-0 V Drain Current, ID 1150 ma Gate Current Range, IG See page 4. ma Power Dissipation, CW, PDISS 12.8 W RF Input Power at 2 GHz, CW, 50 Ω, T = 25 C +24 dbm Channel Temperature, TCH 275 C Mounting Temperature (30 Seconds) 3 C Storage Temperature to +150 C 1. Operation of this device outside the parameter ranges given above may cause permanent damage. Recommended Operating Conditions 1 Parameter Min Typ Max Units Operating Temp. Range +25 +85 C Drain Voltage Range, VD +12 +50 +60 V Drain Bias Current, IDQ 18 ma Drain Current, ID 0 ma Gate Voltage, VG 2.8 V Channel Temperature (TCH) 250 C Power Dissipation, CW (PD) 2 11.4 W Power Dissipation, Pulsed (PD) 2, 3 13.5 W 1. Electrical performance is measured under conditions noted in the electrical specifications table. Specifications are not guaranteed over all recommended operating conditions. 2. Back plane of package at 85 C 3. Pulse Width = 128 us, Duty Cycle = 10% Rev. B - 2 of 25 - Disclaimer: Subject to change without notice

Pulsed Characterization Load Pull Performance Power Tuned Parameters Typical Values Unit Frequency, F 1 2 3 3.5 4 GHz Linear, GLIN 26.4 24.7 21.4.7 19.8 db Output Power at 3dB compression point, P3dB.9.4 41.7.4 dbm Power-Added-Efficiency at 3dB compression point, 3dB 69.4 63.2 64.7 59.5 53.9 % at 3dB compression point 23.4 21.7 18.4 17.7 16.8 db 1. Test conditions unless otherwise noted: VD = +50 V, IDQ = 18 ma, Temp = +25 C Pulsed Characterization Load Pull Performance Efficiency Tuned Parameters Typical Values Unit Frequency 1 2 3 3.5 4 GHz Linear, GLIN 27.1 25.3 22.3 21.3.1 db Output Power at 3dB compression point, P3dB 39.7 38.6 39.7 39.1 39.8 dbm Power-Added-Efficiency at 3dB compression point, 3dB 80.2 70.6 73.2 64.1 56.7 % at 3dB compression point, 24.1 22.3 19.3 18.3 17.1 db G3dB 1. Test conditions unless otherwise noted: VD = +50 V, IDQ = 18 ma, Temp = +25 C RF Characterization 0.96 1.215 GHz EVB Performance At 1.09 GHz 1 Parameter Min Typ Max Units Linear, GLIN 19.3 db Output Power at 3dB compression point, P3dB.5 dbm Drain Efficiency at 3dB compression point, DEFF3dB 65.7 % at 3dB compression point, G3dB 16.3 db 1. VD = +50 V, IDQ = 18 ma, Temp = +25 C, Pulse Width = 128 us, Duty Cycle = 10% RF Characterization Mismatch Ruggedness at 1.1 GHz Symbol Parameter db Compression Typical VSWR Impedance Mismatch Ruggedness 3 10:1 Test conditions unless otherwise noted: TA = 25 C, VD = 50 V, IDQ = 18 ma Driving input power is determined at pulsed compression under matched condition at EVB output connector. Rev. B - 3 of 25 - Disclaimer: Subject to change without notice

Maximum Gate Current Maximum Gate Current [ma] Maximum Gate Current Vs. Channel Temperature 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 130 1 150 160 170 180 190 0 210 2 230 Channel Temperature [ C] Rev. B - 4 of 25 - Disclaimer: Subject to change without notice

Median Lifetime 1 Median Lifetime, T M (Hours) 1.00E+19 1.00E+18 1.00E+17 1.00E+16 1.00E+15 1.00E+14 1.00E+13 1.00E+12 1.00E+11 1.00E+10 1.00E+09 1.00E+08 1.00E+07 1.00E+06 1.00E+05 Median Lifetime vs. Channel Temperature 25 50 75 100 125 150 175 0 225 250 275 Channel Temperature, T CH ( C) 1 For pulsed signals, average lifetime is average lifetime at maximum channel temperature divided by duty cycle. Rev. B - 5 of 25 - Disclaimer: Subject to change without notice

Thermal and Reliability Information - Pulsed Peak Channel Temperature, C 255 245 235 225 215 5 195 185 175 165 155 145 135 125 115 105 95 QPD1010 Peak Channel Temperature vs. Dissipation Power Surface of QFN Package Fixed at 85C 128 us, 10% Pulsed Operation 1E6 Hours Operating Limit 85 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.010.5 Pulsed Dissipation Power, W Parameter Conditions Values Units Thermal Resistance (θjc) 10.2 C/W 85 C Case Maximum Channel Temperature (TCH) 116 C 3 W Pdiss, 128 us, 10% Median Lifetime (TM) 2.9E12 Hrs Thermal Resistance (θjc) 10.5 C/W 85 C Case Maximum Channel Temperature (TCH) 132 C 4.5 W Pdiss, 128 us, 10% Median Lifetime (TM) 4.1E11 Hrs Thermal Resistance (θjc) 10.8 C/W 85 C Case Maximum Channel Temperature (TCH) 150 C 6 W Pdiss, 128 us, 10% Median Lifetime (TM) 5.3E10 Hrs Thermal Resistance (θjc) 11.1 C/W 85 C Case Maximum Channel Temperature (TCH) 168 C 7.5 W Pdiss, 128 us, 10% Median Lifetime (TM) 8.5E9 Hrs Thermal Resistance (θjc) 11.5 C/W 85 C Case Maximum Channel Temperature (TCH) 188 C 9 W Pdiss, 128 us, 10% Median Lifetime (TM) 1.3E9 Hrs Thermal Resistance (θjc) 11.8 C/W 85 C Case Maximum Channel Temperature (TCH) 9 C 10.5 W Pdiss, 128 us, 10% Median Lifetime (TM) 2.1E8 Hrs Rev. B - 6 of 25 - Disclaimer: Subject to change without notice

Thermal and Reliability Information - CW Maximum Channel Temperature, C 255 245 235 225 215 5 195 185 175 165 155 145 135 125 115 105 95 QPD1010 Maximum Channel Temperature vs. Dissipation Power Surface of QFN Package Fixed at 85C CW Operation 1E6 Hours Operating Limit 85 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.010.5 CW Power Dissipation, W Parameter Conditions Values Units Thermal Resistance (θjc) 11.9 C/W 85 C Case Maximum Channel Temperature (TCH) 121 C 3 W Pdiss, CW Median Lifetime (TM) 1.5E11 Hrs Thermal Resistance (θjc) 12.2 C/W 85 C Case Maximum Channel Temperature (TCH) 1 C 4.5 W Pdiss, CW Median Lifetime (TM) 1.7E10 Hrs Thermal Resistance (θjc) 12.7 C/W 85 C Case Maximum Channel Temperature (TCH) 161 C 6.0 W Pdiss, CW Median Lifetime (TM) 1.7E9 Hrs Thermal Resistance (θjc) 13.1 C/W 85 C Case Maximum Channel Temperature (TCH) 183 C 7.5 W Pdiss, CW Median Lifetime (TM) 2.0E8 Hrs Thermal Resistance (θjc) 13.7 C/W 85 C Case Maximum Channel Temperature (TCH) 8 C 9.0 W Pdiss, CW Median Lifetime (TM) 2.2E7 Hrs Thermal Resistance (θjc) 14.2 C/W 85 C Case Maximum Channel Temperature (TCH) 234 C 10.5 W Pdiss, CW Median Lifetime (TM) 2.8E6 Hrs Rev. B - 7 of 25 - Disclaimer: Subject to change without notice

1, 2, 3 Load Pull Smith Charts 1. Vd = 50 V, IDQ = 18 ma, Pulsed signal with 128 us pulse width and 10 % duty cycle. Performance is at indicated input power. 2. See page 18 for load pull and source pull reference planes. -Ω load pull TRL fixtures are built with -mil RO4350B material. 3. NaN means the impedances are either undefined or varying in load-pull system. 1GHz, Load-pull Zs(fo) = 13.38+24.9iΩ Zs(2fo) = 3.65+3.45iΩ Zs(3fo) = 113.81+0.44iΩ Zl(2fo) = NaNΩ Zl(3fo) = NaNΩ 25.9 26.4 26.9 Max Power is.9dbm at Z = 48.72+29.412iΩ Γ = 0.508+0.2106i Max is 27dB at Z = 22.681+56.699iΩ Γ = 0.661+0.4503i Max is 80.2% at Z = 51.376+57.993iΩ Γ = 0.6624+0.2743i 3 4 5 6 78.9 76.9 74.9 7 8 9.9.7.5 1.6 1.8 2 3 Zo = Ω 3dB Compression Referenced to Peak 4 5 6 7 8 9 10 Power Rev. B - 8 of 25 - Disclaimer: Subject to change without notice

1, 2, 3 Load Pull Smith Charts 1. Vd = 50 V, IDQ = 18 ma, Pulsed signal with 128 us pulse width and 10 % duty cycle. Performance is at indicated input power. 2. See page 18 for load pull and source pull reference planes. -Ω load pull TRL fixtures are built with -mil RO4350B material. 3. NaN means the impedances are either undefined or varying in load-pull system. 2GHz, Load-pull 1.8 Zs(fo) = 5.69+10.29iΩ Zs(2fo) = 4.01-11.53iΩ Zs(3fo) = 29.02-35.58iΩ Zl(2fo) = NaNΩ Zl(3fo) = NaNΩ 22.4 22.9 Max Power is.4dbm at Z = 21.5+28.462iΩ Γ = 0.3445+0.4496i Max is 23.4dB at Z = 12.092+34.305iΩ Γ = 0.4183+0.6218i Max is 70.6% at Z = 15.211+39.199iΩ Γ = 0.4927+0.5648i 2 3 21.9 69.3 65.3 67.3.4.2 Zo = Ω 3dB Compression Referenced to Peak Power Rev. B - 9 of 25 - Disclaimer: Subject to change without notice

1, 2, 3 Load Pull Smith Charts 1. Vd = 50 V, IDQ = 18 ma, Pulsed signal with 128 us pulse width and 10 % duty cycle. Performance is at indicated input power. 2. See page 18 for load pull and source pull reference planes. -Ω load pull TRL fixtures are built with -mil RO4350B material. 3. NaN means the impedances are either undefined or varying in load-pull system. 3GHz, Load-pull 1 0.9 1.2 Zs(fo) = 4.02+5.28iΩ Zs(2fo) = 5.76-15.9iΩ Zs(3fo) = 22.22+18.4iΩ Zl(2fo) = NaNΩ Zl(3fo) = NaNΩ 19.1 1.4 1.6 Max Power is 41dBm at Z = 13.172+21.317iΩ Γ = 0.1466+0.5484i Max is 19.4dB at Z = 6.424+22.324iΩ Γ = 0.1167+0.7463i Max is 73.2% at Z = 7.888+25.064iΩ Γ = 0.66+0.7131i 1.8 2 18.6 72.2 18.1 68.2 70.2.9.7.5 Zo = Ω 3dB Compression Referenced to Peak Power Rev. B - 10 of 25 - Disclaimer: Subject to change without notice

1, 2, 3 Load Pull Smith Charts 1. Vd = 50 V, IDQ = 18 ma, Pulsed signal with 128 us pulse width and 10 % duty cycle. Performance is at indicated input power. 2. See page 18 for load pull and source pull reference planes. -Ω load pull TRL fixtures are built with -mil RO4350B material. 3. NaN means the impedances are either undefined or varying in load-pull system. 3.5GHz, Load-pull 0.9 1 Zs(fo) = 3.84+2.66iΩ Zs(2fo) = 16.89-27.35iΩ Zs(3fo) = 30.66-18.38iΩ Zl(2fo) = NaNΩ Zl(3fo) = NaNΩ 0.7 0.8 18.3 1.2 1.4 Max Power is.7dbm at Z = 10.271+17.15iΩ Γ = -0.0003+0.5667i Max is 18.3dB at Z = 5.754+19.561iΩ Γ = 0.0151+0.7481i Max is 64.1% at Z = 5.754+19.561iΩ Γ = 0.0151+0.7481i 1.6 1.8 17.3 17.8 62.9 60.9 58.9.5.3.1 Zo = Ω 3dB Compression Referenced to Peak Power Rev. B - 11 of 25 - Disclaimer: Subject to change without notice

0.9 QPD1010 1, 2, 3 Load Pull Smith Charts 1. Vd = 50 V, IDQ = 18 ma, Pulsed signal with 128 us pulse width and 10 % duty cycle. Performance is at indicated input power. 2. See page 18 for load pull and source pull reference planes. -Ω load pull TRL fixtures are built with -mil RO4350B material. 3. NaN means the impedances are either undefined or varying in load-pull system. 4GHz, Load-pull 1 0.8 1.2 Zs(fo) = 3.7-0.76iΩ Zs(2fo) = 30.93-26.46iΩ Zs(3fo) = 5.6-3.31iΩ Zl(2fo) = NaNΩ Zl(3fo) = NaNΩ 0.7 1.4 Max Power is.4dbm at Z = 8.214+13.357iΩ Γ = -0.1582+0.5483i Max is 17.1dB at Z = 6.76+15.614iΩ Γ = -0.1151+0.6507i Max is 56.7% at Z = 6.76+15.614iΩ Γ = -0.1151+0.6507i 17.1 16.1 16.6 55.3 53.3 51.3.4.2 Zo = Ω 3dB Compression Referenced to Peak Power Rev. B - 12 of 25 - Disclaimer: Subject to change without notice

Typical Performance Load Pull Drive-up 1. Pulsed signal with 128 us pulse width and 10 % duty cycle, Vd = 50 V, IDQ = 18 ma 2. See page 18 for load pull and source pull reference planes where the performance was measured. [db] 30 29 28 27 26 25 24 23 22 21 QPD1009 - and vs. Output Power 1 GHz - Power Tuned Zs-fo = 13.38+24.9iΩ Zs-2fo = 3.65+3.45iΩ Zs-3fo = 113.81+0.44iΩ Zl-fo = 48.72+29.41iΩ Zl-2fo = 4.01+7.05iΩ Zl-3fo = NaNΩ 30 31 32 33 34 35 36 37 38 39 41 42 0 Output Power [dbm] 100 90 80 70 60 50 30 10 [%] [db] 30 29 28 27 26 25 24 23 22 21 QPD1009 - and vs. Output Power 1 GHz - Efficiency Tuned Zs-fo = 13.38+24.9iΩ Zs-2fo = 3.65+3.45iΩ Zs-3fo = 113.81+0.44iΩ Zl-fo = 51.38+57.99iΩ Zl-2fo = 4.02+7.03iΩ Zl-3fo = NaNΩ 30 31 32 33 34 35 36 37 38 39 0 Output Power [dbm] 100 90 80 70 60 50 30 10 [%] [db] 28 27 26 25 24 23 22 21 19 QPD1009 - and vs. Output Power 2 GHz - Power Tuned Zs-fo = 5.69+10.29iΩ Zs-2fo = 4.01-11.53iΩ Zs-3fo = 29.02-35.58iΩ Zl-fo = 21.5+28.46iΩ Zl-2fo = 16.94+27.25iΩ Zl-3fo = NaNΩ 18 30 31 32 33 34 35 36 37 38 39 41 0 Output Power [dbm] 100 90 80 70 60 50 30 10 [%] [db] 28 27 26 25 24 23 22 21 19 QPD1009 - and vs. Output Power 2 GHz - Efficiency Tuned Zs-fo = 5.69+10.29iΩ Zs-2fo = 4.01-11.53iΩ Zs-3fo = 29.02-35.58iΩ Zl-fo = 15.21+39.2iΩ Zl-2fo = 16.94+27.29iΩ Zl-3fo = NaNΩ 18 30 31 32 33 34 35 36 37 38 39 0 Output Power [dbm] 100 90 80 70 60 50 30 10 [%] [db] 25 24 23 22 21 19 18 17 16 QPD1009 - and vs. Output Power 3 GHz - Power Tuned Zs-fo = 4.02+5.28iΩ Zs-2fo = 5.76-15.9iΩ Zs-3fo = 22.22+18.4iΩ Zl-fo = 13.17+21.32iΩ Zl-2fo = 44.78+7.67iΩ Zl-3fo = NaNΩ 15 30 31 32 33 34 35 36 37 38 39 41 42 0 Output Power [dbm] 100 90 80 70 60 50 30 10 [%] [db] 25 24 23 22 21 19 18 17 16 QPD1009 - and vs. Output Power 3 GHz - Efficiency Tuned Zs-fo = 4.02+5.28iΩ Zs-2fo = 5.76-15.9iΩ Zs-3fo = 22.22+18.4iΩ Zl-fo = 7.89+25.06iΩ Zl-2fo = 44.13+7.88iΩ Zl-3fo = NaNΩ 15 30 31 32 33 34 35 36 37 38 39 0 Output Power [dbm] 100 90 80 70 60 50 30 10 [%] Rev. B - 13 of 25 - Disclaimer: Subject to change without notice

Typical Performance Load Pull Drive-up 3. Pulsed signal with 128 us pulse width and 10 % duty cycle, Vd = 50 V, IDQ = 18 ma 4. See page 18 for load pull and source pull reference planes where the performance was measured. [db] 24 23 22 21 19 18 17 16 15 QPD1009 - and vs. Output Power 3.5 GHz - Power Tuned Zs-fo = 3.84+2.66iΩ Zs-2fo = 16.89-27.35iΩ Zs-3fo = 30.66-18.38iΩ Zl-fo = 10.27+17.15iΩ Zl-2fo = 10.51+13.88iΩ Zl-3fo = NaNΩ 14 30 31 32 33 34 35 36 37 38 39 41 0 Output Power [dbm] 100 90 80 70 60 50 30 10 [%] [db] 24 23 22 21 19 18 17 16 15 QPD1009 - and vs. Output Power 3.5 GHz - Efficiency Tuned Zs-fo = 3.84+2.66iΩ Zs-2fo = 16.89-27.35iΩ Zs-3fo = 30.66-18.38iΩ Zl-fo = 5.75+19.56iΩ Zl-2fo = 10.5+13.89iΩ Zl-3fo = NaNΩ 14 30 31 32 33 34 35 36 37 38 39 0 Output Power [dbm] 100 90 80 70 60 50 30 10 [%] [db] 24 23 22 21 19 18 17 16 15 QPD1009 - and vs. Output Power 4 GHz - Power Tuned Zs-fo = 3.7-0.76iΩ Zs-2fo = 30.93-26.46iΩ Zs-3fo = 5.6-3.31iΩ Zl-fo = 8.21+13.36iΩ Zl-2fo = 24.98-25.26iΩ Zl-3fo = NaNΩ 14 30 31 32 33 34 35 36 37 38 39 41 10 Output Power [dbm] 60 55 50 45 35 30 25 15 [%] [db] 24 23 22 21 19 18 17 16 15 QPD1009 - and vs. Output Power 4 GHz - Efficiency Tuned Zs-fo = 3.7-0.76iΩ Zs-2fo = 30.93-26.46iΩ Zs-3fo = 5.6-3.31iΩ Zl-fo = 6.76+15.61iΩ Zl-2fo = 30.28-29.8iΩ Zl-3fo = NaNΩ 14 30 31 32 33 34 35 36 37 38 39 10 Output Power [dbm] 60 55 50 45 35 30 25 15 [%] Rev. B - 14 of 25 - Disclaimer: Subject to change without notice

Power Driveup Performance Over Temperatures Of 0.96 1.2 GHz EVB 1 1 Vd = 50 V, IDQ = 18 ma, Pulse Width = 128 us, Duty Cycle = 10 % P3dB [W] P3dB Over Temperatures 15 - C 14 25 C 13 85 C 12 11 10 9 8 7 6 5 950 1000 1050 1100 1150 10 1250 Frequency [MHz] DEFF3dB [%] DEFF3dB Over Temperatures 90 - C 85 25 C 80 85 C 75 70 65 60 55 50 45 950 1000 1050 1100 1150 10 1250 Frequency [MHz] G3dB [db] 21 19 18 17 16 15 14 13 12 G3dB Over Temperatures - C 25 C 85 C 11 950 1000 1050 1100 1150 10 1250 Frequency [MHz] Rev. B - 15 of 25 - Disclaimer: Subject to change without notice

Power Driveup Performance At 25 C Of 0.96 1.2 GHz EVB 1 QPD1010 1 Vd = 50 V, IDQ = 18 ma, Pulse Width = 128 us, Duty Cycle = 10 % 15 P3dB At 25 C 90 DEFF3dB At 25 C 14 85 13 80 12 75 P3dB [W] 11 10 9 DEFF3dB [%] 70 65 60 8 55 7 50 6 45 5 950 1000 1050 1100 1150 10 1250 Frequency [MHz] 950 1000 1050 1100 1150 10 1250 Frequency [MHz] G3dB [db] 21 19 18 17 16 15 G3dB At 25 C 14 13 12 11 950 1000 1050 1100 1150 10 1250 Frequency [MHz] Rev. B - 16 of 25 - Disclaimer: Subject to change without notice

Two-Tone Performance At 25 C Of 0.96 1.2 GHz EVB 1 QPD1010 1 Center Frequency = 1.09 GHz, Tone Separation = 1 MHz - IM Levels vs. Output PEP, Vd = 50 V, Idq = 18 ma - IM Levels vs. Output PEP, Vd = 50 V, Idq = 36 ma IM Level [dbc] -25-30 -35 - -45-50 -55 IM3 Low Side IM3 High Side IM5 Low Side IM5 High Side IM Level [dbc] -25-30 -35 - -45-50 -55-60 -65 IM3 Low Side IM3 High Side IM5 Low Side IM5 High Side -60 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Output PEP [dbm] -70 26 27 28 29 30 31 32 33 34 35 36 37 38 Output PEP [dbm] Rev. B - 17 of 25 - Disclaimer: Subject to change without notice

Pin Layout 1 1. The QPD1010 will be marked with the 1010 designator and a lot code marked below the part designator. The YY represents the last two digits of the calendar year the part was manufactured, the WW is the work week of the assembly lot start, the MXXX is the production lot number, and the ZZZ is an auto-generated serial number. Pin Description Pin Symbol Description 2, 3 VG / RF IN Gate voltage / RF Input 10, 11 VD / RF OUT Drain voltage / RF Output 1, 4, 5 9, 12-16 NC Not Connected 17 Back Plane Source to be connected to ground Rev. B - 18 of 25 - Disclaimer: Subject to change without notice

Mechanical Drawing 1. All dimensions are in inches. Otherwise noted, the tolerance is ±0.005 inches. Rev. B - 19 of 25 - Disclaimer: Subject to change without notice

Schematic 0.96 1.215 GHz EVB Bias-up Procedure Bias-down Procedure 1. Set V G to -4 V. 1. Turn off RF signal. 2. Set ID current limit to 30 ma. 2. Turn off VD 3. Apply 50 V VD. 3. Wait 2 seconds to allow drain capacitor to discharge 4. Slowly adjust VG until ID is set to 26 ma. 4. Turn off VG 5. Set ID current limit to 1 A 6. Apply RF. Rev. B - of 25 - Disclaimer: Subject to change without notice

PCB Layout 0.96 1.215 GHz EVB Board material is RO4362G2 0.0 thickness with 1 oz copper cladding. QPD1010 Rev. B - 21 of 25 - Disclaimer: Subject to change without notice

Component Placement 0.96 1.215 GHz EVB QPD1010 Rev. B - 22 of 25 - Disclaimer: Subject to change without notice

Bill Of material - 0.96 1.215 GHz EVB Ref Des Value Description Manufacturer Part Number C14, 15 82 pf C0G 100V 5% 0603 Capacitor AVX 06031A8JAT2A C8-10 1 nf X7R 100V 5% 0603 Capacitor AVX 06031C102JAT2A C17-18 100 nf X7R 100V 5% 0805 Capacitor AVX 08051C104JAT2A C4 0.5 pf RF NPO 250VDC ± 0.05 pf Capacitor ATC ATC600S0R5AT250X C13 1.0 pf RF NPO 250VDC ± 0.05 pf Capacitor ATC ATC600S1R0AT250X C6 3.3 pf RF NPO 250VDC ± 0.05 pf Capacitor ATC ATC600S3R3AT250X C16, 19 6.2 pf RF NPO 250VDC ± 0.1 pf Capacitor ATC ATC600S6R2BT250X C11, 6.8 pf RF NPO 250VDC ± 0.1 pf Capacitor ATC ATC600S6R8BT250X C3, 5, 7, 9, 12 56 pf RF NPO 250VDC 1% Capacitor ATC ATC600S5650FT250X C1 33 uf 80V SVP Capacitor Panasonic EEEFK1K330P C2 10 uf 16V Tantalum Capacitor AVX TPSC106KR0500 J1-2 SMA Panel Mount 4-hole Jack Gigalane PSF-S00-000 R4, 6 1 Ohm 0603 1% Thick Film Resistor ANY R2, 8, 10 5.1 Ohm 0603 1% Thick Film Resistor ANY R1, 13, 14, 15 7.5 Ohm 0603 1% Thick Film Resistor ANY R3, 5 33 Ohm 0603 1% Thick Film Resistor ANY R11, 12 2 Ohm 0603 1% Thick Film Resistor ANY R7, 9 430 Ohm 0603 1% Thick Film Resistor ANY Rev. B - 23 of 25 - Disclaimer: Subject to change without notice

Recommended Solder Temperature Profile QPD1010 Rev. B - 24 of 25 - Disclaimer: Subject to change without notice

Product Compliance Information ESD Sensitivity Ratings Caution! ESD Sensitive Device Solderability Compatible with lead free soldering processes, 260 C maximum reflow temperature. Package lead plating: NiAu ESD Rating ESD Rating: Value: Test: Standard: MSL Rating MSL Rating: Test: Standard: TBD TBD Human Body Model (HBM) JEDEC Standard JESD22-A114 TBD 260 C convection reflow JEDEC Standard IPC/JEDEC J-STD-0 The use of no-clean solder to avoid washing after soldering is recommended. This part is compliant with EU 02/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment). This product also has the following attributes: Lead Free Halogen Free (Chlorine, Bromine) Antimony Free TBBP-A (C15H12Br2) Free PFOS Free SVHC Free Contact Information For the latest specifications, additional product information, worldwide sales and distribution locations, and information about Qorvo: Web: www.qorvo.com Tel: +1.972.994.8465 Email: info-sales@qorvo.com Fax: +1.972.994.8504 For technical questions and application information: Email: info-networks@qorvo.com Important Notice The information contained herein is believed to be reliable. Qorvo makes no warranties regarding the information contained herein. Qorvo assumes no responsibility or liability whatsoever for any of the information contained herein. Qorvo assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. Rev. B - 25 of 25 - Disclaimer: Subject to change without notice

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Qorvo: QPD1010 QPD1010-EVB1