FQD13N06 N-Channel QFET MOSFET

Similar documents
FQD7N30 N-Channel QFET MOSFET

FQD5N15 N-Channel QFET MOSFET

FQD5P10 P-Channel QFET MOSFET

FQD7P20 P-Channel QFET MOSFET

FQT7N10L N-Channel QFET MOSFET 100 V, 1.7 A, 350 mω

FQD2N80 N-Channel QFET MOSFET

FQD10N20L N-Channel QFET MOSFET

FQA9P25 P-Channel QFET MOSFET

FQPF22P10 P-Channel QFET MOSFET -100 V, A, 125 mω

FQP30N06L N-Channel QFET MOSFET 60 V, 32 A, 35 m

Description G D TO-220. Symbol Parameter FDP7N50 Unit. Maximum Lead Temperature for Soldering Purpose, 300 C 1/8 from Case for 5 Seconds

FQD18N20V2 N-Channel QFET MOSFET

Description G D TO-220. Symbol Parameter FDP61N20 Unit. Maximum Lead Temperature for Soldering Purpose, 300 C 1/8 from Case for 5 Seconds

FQD12N20 / FQU12N20 N-Channel QFET MOSFET

Description TO-220F. Symbol Parameter FDPF7N50U Unit. Maximum Lead Temperature for Soldering Purpose, 300 C 1/8 from Case for 5 Seconds

FQPF47P06 / FQPF47P06YDTU P-Channel QFET MOSFET -60 V, -30 A, 26 mω

Features G D TO-220. Symbol Parameter FQP50N06L Unit V DSS Drain-Source Voltage 60 V I D Drain Current - Continuous (T C = 25 C) 52.

FQD19N10L N-Channel QFET MOSFET

FQPF9N50CF N-Channel QFET FRFET MOSFET

FQD3P50. FQD3P50 P-Channel QFET MOSFET V, A, 4.9 Ω. Absolute Maximum Ratings T C = 25 C unless otherwise noted. Thermal Characteristics

FQP17P06 P-Channel QFET MOSFET - 60 V, - 17 A, 120 m

FQD7P06 P-Channel QFET MOSFET

FQP3P20 P-Channel QFET MOSFET

FQB11P06 P-Channel QFET MOSFET

P-Channel QFET MOSFET -60 V, A, 175 mω

June 2014 FQA140N10 N-Channel QFET MOSFET. Features. 140 A, 100 V, R DS(on) = 10 mω V GS = 10 V, TO-3PN

Features. 8.8 A, 250 V, R DS(on) =430 GS =10 V, I D =4.4 A Low Gate Charge (Typ nc) Low C rss (Typ pf) 100% Avalanche Tested

N-Channel QFET MOSFET 150 V, 50 A, 42 mω

FDT3N40 N-Channel UniFET TM MOSFET 400 V, 2.0 A, 3.4 Features

FQP30N06L. N-Channel QFET MOSFET 60 V, 32 A, 35 mω. FQP30N06L N-Channel QFET MOSFET. Absolute Maximum Ratings T C = 25 C unless otherwise noted.

FDP75N08A N-Channel UniFET TM MOSFET

Features G G SOT-223. Symbol Parameter FQT1N60C Unit V DSS Drain to Source Voltage 600 V V GSS Gate to Source Voltage ±30 V

Description TO-3PN. Symbol Parameter FDA20N50_F109 Unit. A A I DM Drain Current - Pulsed (Note 1)

Features. Symbol Parameter FQPF15P12 Unit V DSS Drain-Source Voltage -120 V I D Drain Current - Continuous (T C = 25 C) -15 * A

FQP32N20C / FQPF32N20C N-Channel QFET MOSFET

FQP2N60C / FQPF2N60C N-Channel QFET MOSFET

FDB52N20 N-Channel UniFET TM MOSFET 200 V, 52 A, 49 mω Features

FQPF12N60C N-Channel QFET MOSFET

Description. Symbol Parameter FCB20N60TM Unit V DSS Drain to Source Voltage 600 V. - Continuous (T C = 25 o C) 20 - Continuous (T C = 100 o C) 12.

FDPF16N50UT N-Channel UniFET TM Ultra FRFET TM MOSFET

FQP6N90C / FQPF6N90C N-Channel QFET MOSFET

FDA69N25 N-Channel UniFET TM MOSFET 250 V, 69 A, 41 mω Features

Features. I-PAK FQU Series

Description. Symbol Parameter FDH45N50F_F133 Unit. Maximum Lead Temperature for Soldering Purpose, 300 C 1/8 from Case for 5 Seconds

Description D S. Symbol Parameter FDA38N30 Unit. Symbol Parameter FDA38N30 Unit

FDPF7N50U / FDPF7N50U_G N-Channel UniFET TM Ultra FRFET TM MOSFET

FQH8N100C 1000V N-Channel MOSFET

FQN1N60C N-Channel QFET MOSFET

January 2009 QFET FQD2N100/FQU2N100. Features D D. I-PAK FQU Series

FQD12P10TM_F085. FQD12P10TM_F085 P-Channel MOSFET. 100V P-Channel MOSFET. Absolute Maximum Ratings T C = 25 C unless otherwise noted

FDA59N30 N-Channel UniFET TM MOSFET 300 V, 59 A, 56 mω Features

FQD13N10L / FQU13N10L

FQD12N20LTM_F V Logic Level N-Channel MOSFET

FQB7N65C 650V N-Channel MOSFET

FQD3P50TM_F V P-Channel MOSFET

Features. I 2 -PAK FQI Series

FGD V PDP Trench IGBT

FDD86252 N-Channel PowerTrench MOSFET 150 V, 27 A, 52 m Features

2N7000BU / 2N7000TA Advanced Small-Signal MOSFET

BAT54HT1G Schottky Barrier Diodes

FQB30N06L / FQI30N06L

J105 / J106 / J107 N-Channel Switch

Features. TA=25 o C unless otherwise noted

FDP18N50 / FDPF18N50 / FDPF18N50T

FQB34P10 P-Channel QFET MOSFET

FCA47N60 / FCA47N60_F109

LL4148 Small Signal Diode

Description. FCD5N60TM / Unit FCD5N60TM_WS V DSS Drain to Source Voltage 600 V. - Continuous (T C = 25 o C) Continuous (T C = 100 o C) 2.

Description TO-3PN. Symbol Parameter FQA36P15 Unit

FQA90N15 N-Channel QFET MOSFET

2N7002W N-Channel Enhancement Mode Field Effect Transistor

FQD2N60C/FQU2N60C 600V N-Channel MOSFET

FDH45N50F N-Channel UniFET TM FRFET MOSFET 500 V, 45 A, 120 mω Features

FQA11N90C_F V N-Channel MOSFET

FDB28N30 N-Channel UniFET TM MOSFET 300 V, 28 A, 129 m Features

FQT7N10L N-Channel QFET MOSFET 100 V, 1.7 A, 350 mω

Description TO-220F. Symbol Parameter FCP11N60F FCPF11N60F Units

BSS138W N-Channel Logic Level Enhancement Mode Field Effect Transistor

BAT54SWT1G / BAT54CWT1G Schottky Diodes

FCA20N60F N-Channel SuperFET FRFET MOSFET

FDB5800 N-Channel Logic Level PowerTrench MOSFET

FJB102 NPN High-Voltage Power Darlington Transistor

FDP054N10 N-Channel PowerTrench MOSFET

FCP36N60N N-Channel MOSFET 600V, 36A, 90mΩ Features

BAV103 High Voltage, General Purpose Diode

1N4934-1N4937 Fast Rectifiers

RURG3020CC. 30 A, 200 V, Ultrafast Dual Diode. Features. Description. Applications. Packaging. Ordering Information. Symbol. Data Sheet November 2013

FDD7N25LZ N-Channel UniFET TM MOSFET 250 V, 6.2 A, 550 mω Features

1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Small Signal Diode

BAT54 / BAT54A / BAT54C / BAT54S Schottky Diodes

Applications. Symbol Parameter FDP2614 Unit. Maximum Lead Temperature for Soldering Purpose, 300 C 1/8 from Case for 5 Seconds

FDB8860 N-Channel Logic Level PowerTrench MOSFET. 30V, 80A, 2.6mΩ. Features. Applications. December R DS(ON) = 1.9mΩ (Typ), V GS = 5V, I D = 80A

FDH / FDLL 300 / A / 333 High Contraction Low Leakage Diode

Applications. S1 Power 33

FGH75N60UF 600 V, 75 A Field Stop IGBT

Application. Inverter. H-Bridge. S2 Dual DPAK 4L

Features. Packaging. 12 A Square Wave, 20 khz Nonrepetitive Peak Surge Current... I FSM

Description TO-247. Symbol Parameter FCH76N60NF Unit V DSS Drain to Source Voltage 600 V V GSS Gate to Source Voltage ±30 V

FDMB2308PZ Dual Common Drain P-Channel PowerTrench MOSFET

Applications. Symbol Parameter Q1 Q2 Units V DS Drain to Source Voltage V V GS Gate to Source Voltage (Note 4) ±20 ±12 V

Transcription:

FQD13N06 N-Channel QFET MOSFET 60 V, 10 A, 140 mω Description This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor s proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts. Features November 013 10 A, 60 V, R DS(on) = 140 mω (Max.) @ = 10 V, I D = 5.0 A Low Gate Charge (Typ. 5.8 nc) Low Crss (Typ. 15 pf) 100% Avalanche Tested D D G S D-PAK G S Absolute Maximum Ratings T C = 5 C unless otherwise noted. Symbol Parameter FQD13N06TM Unit S Drain-Source Voltage 60 V I D Drain Current - Continuous (T C = 5 C) 10 A Thermal Characteristics - Continuous (T C = 100 C) 6.3 A I DM Drain Current - Pulsed (Note 1) 40 A S Gate-Source Voltage ± 5 V E AS Single Pulsed Avalanche Energy (Note ) 85 mj I AR Avalanche Current (Note 1) 10 A E AR Repetitive Avalanche Energy (Note 1).8 mj dv/dt Peak Diode Recovery dv/dt (Note 3) 7.0 V/ns P D Power Dissipation (T A = 5 C) *.5 W Power Dissipation (T C = 5 C) 8 W - Derate above 5 C 0. W/ C T J, T STG Operating and Storage Temperature Range -55 to +150 C T L Maximum lead temperature for soldering, 1/8" from case for 5 seconds 300 C Symbol Parameter FQD13N06TM Unit R JC Thermal Resistance, Junction to Case, Max. 4.5 R JA Thermal Resistance, Junction to Ambient (Minimum Pad of -oz Copper), Max. 110 Thermal Resistance, Junction to Ambient (*1 in Pad of -oz Copper), Max. 50 o C/W 1

Package Marking and Ordering Information Part Number Top Mark Package Packing Method Reel Size Tape Width Quantity FQD13N06TM FQD13N06 DPAK Tape and Reel 330 mm 16 mm 500 units Electrical Characteristics T C = 5 C unless otherwise noted. Symbol Parameter Test Conditions Min. Typ. Max. Unit Off Characteristics BS Drain-Source Breakdown Voltage = 0 V, I D = 50 µa 60 -- -- V Breakdown Voltage Temperature BS / T J Coefficient I DSS Zero Gate Voltage Drain Current I D = 50 µa, Referenced to 5 C -- 0.06 -- V/ C = 60 V, = 0 V -- -- 1 µa = 48 V, T C = 15 C -- -- 10 µa I GSSF Gate-Body Leakage Current, Forward = 5 V, = 0 V -- -- 100 na I GSSR Gate-Body Leakage Current, Reverse = -5 V, = 0 V -- -- -100 na On Characteristics (th) Gate Threshold Voltage =, I D = 50 µa.0 -- 4.0 V R DS(on) Static Drain-Source On-Resistance = 10 V, I D = 5.0 A -- 0.11 0.14 Ω g FS Forward Transconductance = 5 V, I D = 5.0 A -- 4.9 -- S Dynamic Characteristics C iss Input Capacitance = 5 V, = 0 V, -- 40 310 pf C oss Output Capacitance f = 1.0 MHz -- 90 10 pf C rss Reverse Transfer Capacitance -- 15 0 pf Switching Characteristics t d(on) Turn-On Delay Time -- 5 0 ns = 30 V, I D = 6.5 A, t r Turn-On Rise Time R G = 5 Ω -- 5 60 ns t d(off) Turn-Off Delay Time -- 8 5 ns t f Turn-Off Fall Time (Note 4) -- 15 40 ns Q g Total Gate Charge = 48 V, I D = 13 A, -- 5.8 7.5 nc Q gs Gate-Source Charge = 10 V --.0 -- nc Q gd Gate-Drain Charge (N ote 4) --.5 -- nc Drain-Source Diode Characteristics and Maximum Ratings I S Maximum Continuous Drain-Source Diode Forward Current -- -- 10 A I SM Maximum Pulsed Drain-Source Diode Forward Current -- -- 40 A V SD Drain-Source Diode Forward Voltage = 0 V, I S = 10 A -- -- 1.5 V t rr Reverse Recovery Time = 0 V, I S = 13 A, -- 39 -- ns Q rr Reverse Recovery Charge di F / dt = 100 A/µs -- 40 -- nc Notes: 1. Repetitive rating : pulse-width limited by maximum junction temperature.. L = 990 µh, I AS = 10 A, = 5 V, R G = 5 Ω, starting T J = 5 C. 3. I SD 13 A, di/dt 300 A/us, BS, starting T J = 5 C. 4. Essentially independent of operating temperature.

Typical Characteristics I D, Drain Current [A] 10 1 10 0 10-1 Top : 15.0 V 10.0 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom : 4.5 V 1. 50μ s Pulse Test. T C = 5 10-1 10 0 10 1, Drain-Source Voltage [V] Figure 1. On-Region Characteristics I D, Drain Current [A] 10 1 10 0 150 5-55 10-1 4 6 8 10, Gate-Source Voltage [V] 1. = 5V. 50μ s Pulse Test Figure. Transfer Characteristics 500 R DS(ON) [mω ], Drain-Source On-Resistance 400 300 00 100 = 10V = 0V Note : T J = 5 0 0 10 0 30 40 I D, Drain Current [A] I DR, Reverse Drain Current [A] 10 1 150 5 1. = 0V. 50μ s Pulse Test 10 0 0. 0.4 0.6 0.8 1.0 1. 1.4 1.6 V SD, Source-Drain voltage [V] Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature 600 500 C iss = C gs + C gd (C ds = shorted) C oss = C ds + C gd C rss = C gd 1 10 = 30V Capacitance [pf] 400 300 00 100 C iss C oss C rss 1. = 0 V. f = 1 MHz, Gate-Source Voltage [V] 8 6 4 = 48V Note : I D = 13 A 0 10-1 10 0 10 1, Drain-Source Voltage [V] 0 0 1 3 4 5 6 7 Q G, Total Gate Charge [nc] Figure 5. Capacitance Characteristics Figure 6. Gate Charge Characteristics 3

Typical Characteristics (Continued) BS, (Normalized) Drain-Source Breakdown Voltage 1. 1.1 1.0 0.9 0.8-100 -50 0 50 100 150 00 T J, Junction Temperature [ o C] 1. = 0 V. I D = 50 μ A Figure 7. Breakdown Voltage Variation vs. Temperature R DS(ON), (Normalized) Drain-Source On-Resistance.5.0 1.5 1.0 0.5 0.0-100 -50 0 50 100 150 00 T J, Junction Temperature [ o C] 1. = 10 V. I D = 5.0 A Figure 8. On-Resistance Variation vs. Temperature 10 10 Operation in This Area is Limited by R DS(on) 8 I D, Drain Current [A] 10 1 10 0 10-1 1. T C = 5 o C. T J = 150 o C 3. Single Pulse 10-1 10 0 10 1 10 DC 10 ms, Drain-Source Voltage [V] 1 ms 100 µs I D, Drain Current [A] 6 4 0 5 50 75 100 15 150 T C, Case Temperature [ ] Figure 9. Maximum Safe Operating Area Figure 10. Maximum Drain Current vs. Case Temperature Z JC (t), Thermal Response [ o C/W] 10 0 0. 0.1 N otes : 1. Z θ JC (t) = 4.5 /W M ax.. D uty Factor, D =t 1 /t 3. T JM - T C = P DM * Z θ JC 0.05 10-1 D=0.5 0.0 0.01 single pulse P DM t 1 t 10-5 10-4 10-3 10-10 -1 10 0 10 1 t 1, S quare W ave P ulse D uration [sec] Figure 11. Transient Thermal Response Curve 4

1V 00nF I G = const. 3mA 50KΩ Same Type as DUT 300nF V GS 10V Q g Q gs Q gd DUT Charge Figure 1. Gate Charge Test Circuit & Waveform R L 90% R G V 10 DUT 10% t d(on) t r t d(off) tf t on t off Figure 13. Resistive Switching Test Circuit & Waveforms L E AS = ---- 1 LI AS BS -------------------- BS - I D BS I AS R G I D (t) V 10 DUT (t) t p t p Time Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms 5

R G DUT I SD Driver + _ Same Type as DUT L dv/dt controlled by RG I SD controlled by pulse period ( Driver ) Gate Pulse Width D = -------------------------- Gate Pulse Period 10V I FM, Body Diode Forward Current I SD ( DUT ) di/dt I RM Body Diode Reverse Current ( DUT ) Body Diode Recovery dv/dt V SD Body Diode Forward Voltage Drop Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms 6

Mechanical Dimensions Figure 16. TO5 (D-PAK), Molded, 3-Lead, Option AA&AB Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor s online packaging area for the most recent package drawings: http:///package/packagedetails.html?id=pn_tt5-003 7

TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. AccuPower AX-CAP * BitSiC Build it Now CorePLUS CorePOWER CROSSVOLT CTL Current Transfer Logic DEUXPEED Dual Cool EcoSPARK EfficentMax ESBC Fairchild Fairchild Semiconductor FACT Quiet Series FACT FAST FastvCore FETBench FPS F-PFS FRFET Global Power Resource SM GreenBridge Green FPS Green FPS e-series Gmax GTO IntelliMAX ISOPLANAR Marking Small Speakers Sound Louder and Better MegaBuck MICROCOUPLER MicroFET MicroPak MicroPak MillerDrive MotionMax mwsaver OptoHiT OPTOLOGIC OPTOPLANAR tm PowerTrench PowerXS Programmable Active Droop QFET QS Quiet Series RapidConfigure Saving our world, 1mW/W/kW at a time SignalWise SmartMax SMART START Solutions for Your Success SPM STEALTH SuperFET SuperSOT -3 SuperSOT -6 SuperSOT -8 SupreMOS SyncFET Sync-Lock * TinyBoost TinyBuck TinyCalc TinyLogic TINYOPTO TinyPower TinyPWM TinyWire TranSiC TriFault Detect TRUECURRENT * SerDes UHC Ultra FRFET UniFET VCX VisualMax VoltagePlus XS FQD1N0L N-Channel QFET MOSFET *Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used here in: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation s Anti-Counterfeiting Policy. Fairchild s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild s quality standards for handing and storage and provide access to Fairchild s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary No Identification Needed First Production Full Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I66 8

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Fairchild Semiconductor: FQD13N06TM