Journal of Shivaji University (Science & Technology)

Similar documents
Boost-VSI Based on Space Vector Pulse Width Amplitude Modulation Technique Punith Kumar M R 1 Sudharani Potturi 2

Stationary Frame Control of Three-Leg and Four-Leg Voltage Source Inverters in Power System applications: Modelling and Simulations

Analysis of Voltage Source Inverters using Space Vector PWM for Induction Motor Drive

Simulation And Comparison Of Space Vector Pulse Width Modulation For Three Phase Voltage Source Inverter

Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control

Comparison of Three SVPWM Strategies

First of all, I would like to thank my advisor, Dr. Dusan Borojevic for his

Performance Analysis of modulation techniques for Induction motor fed by Diode-Clamped NPC Inverter

Sampled Reference Frame Algorithm Based on Space Vector Pulse Width Modulation for Five Level Cascaded H-Bridge Inverter

Design of High-speed Induction Motor Controllers using Space vector Pulse Width Modulation

DESIGN ANALYSIS AND IMPLEMENTATION OF SPACE VECTOR PULSE WIDTH MODULATING INVERTER USING DSP CONTROLLER FOR VECTOR CONTROLLED DRIVES

Speed Control of Induction Motor using Space Vector Modulation

Performance Analysis of Three-Phase Four-Leg Voltage Source Converter

COMPARISON ANALYSIS OF DIFFERENT CONTROLLERS FOR PWM INVERTER FED PERMANENT MAGNET BRUSHLESS DC MOTOR

CHAPTER 3 CASCADED H-BRIDGE MULTILEVEL INVERTER

REVIEW, EVALUATION AND PROPOSALS FOR SVPWM MODULATION TECNIQUES Marcos B. Ketzer 1, Maurício de Campos 2, Manuel M. P. Reimbold 3

Effective Algorithm for Reducing DC Link Neutral Point Voltage and Total Harmonic Distortion for Five Level Inverter

Space Vector Modulation Technique to Reduce Leakage Current of a Transformerless Three-Phase Four-Leg Photovoltaic System

International Journal of Pure and Applied Mathematics

Harmonics Elimination Using Shunt Active Filter

ABSTRACT. Introduction

Modeling and Simulation of Matrix Converter Using Space Vector PWM Technique

5-Level Parallel Current Source Inverter for High Power Application with DC Current Balance Control

A Novel Four Switch Three Phase Inverter Controlled by Different Modulation Techniques A Comparison

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1

Performance Study of Multiphase Multilevel Inverter Rajshree Bansod*, Prof. S. C. Rangari**

A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions

SVPWM Based Two Level VSI for Micro Grids

Chapter 2 MODELING AND CONTROL OF PEBB BASED SYSTEMS

CHAPTER 4 SPACE VECTOR PULSE WIDTH MODULATION

Space Vector PWM Voltage Source Inverter Fed to Permanent Magnet Synchronous Motor

Speed Control of Induction Motor using Multilevel Inverter

Tutorial 5 - Isolated DC-DC Converters and Inverters

Simulation of Speed Control of Induction Motor with DTC Scheme Patel Divyaben Lalitbhai 1 Prof. C. A. Patel 2 Mr. B. R. Nanecha 3

Lecture 19 - Single-phase square-wave inverter

Improving the Power Quality by Four Leg VSI

Lecture Note. DC-AC PWM Inverters. Prepared by Dr. Oday A Ahmed Website:

IMPLEMENTATION OF QALU BASED SPWM CONTROLLER THROUGH FPGA. This Chapter presents an implementation of area efficient SPWM

Simulation & Implementation Of Three Phase Induction Motor On Single Phase By Using PWM Techniques

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1

CHAPTER 3. NOVEL MODULATION TECHNIQUES for MULTILEVEL INVERTER and HYBRID MULTILEVEL INVERTER

MATLAB/SIMULINK IMPLEMENTATION AND ANALYSIS OF THREE PULSE-WIDTH-MODULATION (PWM) TECHNIQUES

3-Ф VSI FOR HARMONIC IMPROVEMENT USING MICROCONTROLLER AND SIMULATION IN MATLAB

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER

CONTROL OF A FOUR LEG INVERTER FOR UNBALANCED POWER NETWORKS 1

International Journal of Emerging Researches in Engineering Science and Technology, Volume 1, Issue 2, December 14

Capacitor Voltage Balancing of Five Level Diode Clamped Converter based STATCOM

Power Quality Improvement of Non-Linear Load by Using Instantaneous P-Q Theory

Assessment of Different Compensation Strategies in Hybrid Active Power Filters

SIMULATION AND COMPARISON OF SPWM AND SVPWM CONTROL FOR TWO LEVEL UPQC

CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM

V/F Speed Control of 3 phase Induction Motor using Space Vector Modulation

Hybrid Modulation Technique for Cascaded Multilevel Inverter for High Power and High Quality Applications in Renewable Energy Systems

New model multilevel inverter using Nearest Level Control Technique

SVPWM Technique for Cuk Converter

Comparative Study of Pulse Width Modulated and Phase Controlled Rectifiers

New Approaches for Harmonic Reduction Using Cascaded H- Bridge and Level Modules

Pulse width modulated (PWM) inverters are mostly used power electronic circuits in

Control of Induction Motor Drive using Space Vector PWM

Design of Three Phase SVPWM Inverter Using dspic

SVPWM Rectifier-Inverter Nine Switch Topology for Three Phase UPS Applications

SCIENCE & TECHNOLOGY

Space Vecor Modulated Three Level Neutral Point Clamped Inverter Using A Single Z Source Network

Hybrid PWM switching scheme for a three level neutral point clamped inverter

Switching Loss Characteristics of Sequences Involving Active State Division in Space Vector Based PWM

Mathematical Analysis of SVPWM for Inverter fed DTC of Induction motor Drive

Performance Analysis of SPWM and SVPWM Based Three Phase Voltage source Inverter. K. Latha Shenoy* Dr. C.Gurudas Nayak** Dr. Rajashekar P.

Five Level Output Generation for Hybrid Neutral Point Clamped Inverter using Sampled Amplitude Space Vector PWM

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

NOVEL SPACE VECTOR BASED GENERALIZED DISCONTINUOUS PWM ALGORITHM FOR INDUCTION MOTOR DRIVES

Power Quality Improvement Using Hybrid Power Filter Based On Dual Instantaneous Reactive Power Theory With Hysteresis Current Controller

IJSER

Elimination of Harmonics using Modified Space Vector Pulse Width Modulation Algorithm in an Eleven-level Cascaded H- bridge Inverter

Implementation Full Bridge Series Resonant Buck Boost Inverter

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality

Design and Simulation of Three Phase Shunt Active Power Filter Using SRF Theory

IMPORTANCE OF VSC IN HVDC

Research on Parallel Interleaved Inverters with Discontinuous Space-Vector Modulation *

IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 12 June 2016 ISSN (online): X

Modeling and Simulation of Induction Motor Drive with Space Vector Control

ICCCES Application of D-STATCOM for load compensation with non-stiff sources

COMPARISON STUDY OF THREE PHASE CASCADED H-BRIDGE MULTI LEVEL INVERTER BY USING DTC INDUCTION MOTOR DRIVES

ELEC387 Power electronics

A NOVEL SWITCHING PATTERN OF CASCADED MULTILEVEL INVERTERS FED BLDC DRIVE USING DIFFERENT MODULATION SCHEMES

Research Article. ISSN (Print) *Corresponding author T. Yuvaraja

Control of Shunt Active Power Filter for Improvement of Power Quality

Power Quality Improvement using Shunt Passive Filter

A Five-Level Single-Phase Grid-Connected Converter for Renewable Distributed Systems

Comparison of SPWM and SVM Based Neutral Point Clamped Inverter fed Induction Motor

3 PHASE INVERTER WITH 180 AND 120 CONDUCTION MODE

Experimental Results of a Single-Phase Shunt Active Filter Prototype with Different Switching Techniques

POWER QUALITY IMPROVEMENT USING SHUNT ACTIVE FILTER

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

International Journal of Advance Engineering and Research Development

Use of Advanced Unipolar SPWM Technique for Higher Efficiency High Power Applications

Speed control of Induction Motor drive using five level Multilevel inverter

Experiment 4: Three-Phase DC-AC Inverter

International Journal of Advance Engineering and Research Development

Voltage Quality Enhancement in an Isolated Power System through Series Compensator

Transcription:

SPACE VECTOR CONTROL OF THREE PHASE INVERTER Kanse Yuvraj K., Patil Suhas S., Barbadekar B.V., Palan Nitin G. Electronics Engineering R.I.T.Sakharale. Maharashtra (India) ABSTRACT: A three phase inverter with a neutral leg is represented in this paper. With additional neutral leg, space vector modulation is used. Space vector modulation control of inverter and its design considerations are described. The analysis is performed with respect to switching losses and total harmonic distortion under both balanced and unbalanced load. Three phase inverter is designed considering the power handling capability, operating speed and efficiency considerations of the load. Inverter consists of IGBT hex bridge as switch and EPROM is used to generate the switching sequence which is determined using the switching sequence schemes. Space Vector Modulation is more advanced switching algorithm which overcomes the drawbacks of the SINE PWM algorithm and increases overall efficiency. Here SVM is implemented digitally which increases the ease of VF control. The results of the experiment of the hardware and software implementation of inverter are observed. EPROM control makes the inverter more efficient, fast and reliable and Space Vector Modulation makes the circuit to eliminate the drawbacks of the sine PWM implementation. Key words: Space vector modulation (SVM), pulse width modulation (PWM), Sinusoidal pulse width modulation (SPWM), voltage source inverter (VSI), Total Harmonic Distortion (THD), Uninterrupted Power Supply (UPS). INTRODUCTION: DC to AC converter is known as inverter. The function of inverter is to convert a DC input voltage into symmetrical AC output voltage of desired magnitude and frequency. A variable output voltage can be obtained by two ways. Either by varying input voltage and maintaining gain of the inverter constant or by keeping the input voltage constant and varying the gain of the inverter. The wave shape of the inverter should be sinusoidal. However practical inverter gain output voltages are non-sinusoidal and contain harmonics. The wave shape of output voltage are square wave, quasi square wave or distorted sinusoidal. Using Space Vector Modulation technique number of harmonics can be effectively reduced also distortion can be minimised upto greater extent. ISSN-Science-0250-5347, Volume No. 41 (1), 2014 Page 1

Inverters used in low and medium power applications normally give square or quasi square wave output. But inverter required for high power application requires sinusoidal waveform as output. Three phase inverters are normally used for high power applications. Space Vector Modulation is most efficient way to control inverter parameters. There is an increased interest in four-leg inverters for their use under unbalanced load conditions especially in UPS and power systems applications. A high-power standalone power supply is needed to provide a continuous and high quality energy flow to critical loads, such as Medical Equipment, Military equipment, Satellite Earth Stations, Broadcasting Systems, Large Space Computer Systems, for rural areas where utility lines cannot reach[1]. In combining an engine generator set and a three phase power inverter, a rotary standalone three phase AC power supply is proposed which has merits of unlimited ampere hour capability, fast dynamic regulation and high performance. METHODS: TWO DIMENSIONAL SPACE VECTOR In a conventional three phase inverter, where an assumption of Xa + Xb + Xc = 0 is made, variables in a-b-c coordinates Xabc can be transformed into variables in an α-β orthogonal coordinates Xαβ. A conventional three phase inverter has 8 total possible switch combinations representing 8 possible three phase bridge voltages transforming the 8 three phase bridge voltages into α-β coordinates results in 8 switching vectors distributed in a plane. THREE DIMENSIONAL SPACE VECTOR: When a neutral leg is added to a conventional three-phase inverter to deal with the zero-sequence load current, the assumption of Xa+Xb+Xc = 0 is no longer valid. The three phase variables Xabc truly become three independent variables, which can be transformed into three-dimensional orthogonal coordinates Xαβγ by applying the equation given below. Xα 1-1/2-1/2 Xa Xβ = 2/3 0 3/2-3/2 Xb Xγ 1/2 1/2 1/2 Xc ISSN-Science-0250-5347, Volume No. 41 (1), 2014 Page 2

BLOCK DIAGRAM: Fig.1 Three phase inverter with a neutral leg Fig.1 shows three phase inverter using neutral leg where the neutral leg is used in the unbalanced load condition [5]. In four leg inverter there are 16 switching states vector (SSV).Where there are 14 non-zero vectors, and 2 zero vectors, which is shown in Fig.2 Vγ = Vg Vγ =2/3 Vg Vγ = 1/3 Vg nppn npnn γ pppn β α pnpn ppnn pnnn Out of these 16 SSV s, 14 of them produce a non-zero output voltage and remaining two topologies produce nnpn Vγ = 0 pppp nnnn ppnp Vγ = -1/3 Vg nppp npnp pnpp Vγ = -2/3 Vg pnnp Vγ = -Vg nnpp nnnp Fig. 2 Switching vectors of a three-phase inverter with a neutral leg Fig 2. Switching Vectors of a three-phase inverter with a neutral leg [5] ISSN-Science-0250-5347, Volume No. 41 (1), 2014 Page 3

pppp nnnp pnnp ppnp npnp nppp nnpp pnpp Vaf 0 -Vg 0 0 -Vg -Vg -Vg 0 Vbf 0 -Vg -Vg 0 0 0 -Vg -Vg Vcf 0 -Vg -Vg -Vg -Vg 0 0 0 pppn nnnn pnnn ppnn npnn nppn nnpn pnpn Vaf Vg 0 Vg Vg 0 0 0 Vg Vbf Vg 0 0 Vg Vg Vg 0 0 Vcf Vg 0 0 0 0 Vg Vg Vg Table 1. Switch combinations and independent bridge voltages pppp nnnp pnnp Ppnp npnp nppp Nnpp pnpp Vα 0 0 ⅔Vg ⅓Vg -⅓Vg -⅔Vg -⅓Vg ⅓Vg Vβ 0 0 0 1/ 3Vg 1/ 3Vg 0-1/ 3Vg -1/ 3Vg Vγ 0 -Vg -⅔Vg -1/ 3Vg -⅔Vg -1/ 3Vg -⅔Vg -1/ 3Vg pppn nnnn pnnn Ppnn npnn nppn Nnpn pnpn Vα 0 0 ⅔Vg ⅓Vg -⅓Vg -⅔Vg -⅓Vg ⅓Vg Vβ 0 0 0 1/ 3Vg 1/ 3Vg 0-1/ 3Vg -1/ 3Vg Vγ Vg 0 ⅓Vg ⅔Vg -⅓Vg ⅔Vg ⅓Vg ⅔Vg Table 2. Switch combinations and inverter voltages in α-β-γ ISSN-Science-0250-5347, Volume No. 41 (1), 2014 Page 4

VOLTAGE SPACE VECTORS: Space vector modulation (SVM) for three-leg VSI is based on the representation of the three phase quantities as vectors in a two-dimensional (a,b) plane[3]. This is shownin table 2 and illustrated here for the sake of completeness. Considering topology 1 of Fig. 3(a),we see that the line voltages Vab, Vbc, and Vca are given by Vab = Vg Vbc = 0 Vca = -Vg This can be represented in the α,β plane as shown in Fig.3(b), where voltages Vab, Vbc, and Vca are three line voltage vectors displaced 120 in space. The effective voltage vector generated by this topology is represented as V1(pnn) in Fig.3(b). Here the notation pnn refers to the three legs/phases a,b,c being either connected to the positive dc rail (p) or to the negative dc rail (n). Thus pnn corresponds to phase a being connected to the positive dc rail and phases b and c being connected to the negative dc rail. SPACE VECTOR MODULATION: The desired three phase voltages at the output of the inverter could be represented by an equivalent vector V rotating in the counter clock wise direction as shown in Fig. 4(a). The ISSN-Science-0250-5347, Volume No. 41 (1), 2014 Page 5

magnitude of this vector is related to the magnitude of the output voltage and the time this vector takes to complete one revolution is the same as the fundamental time period of the output voltage. Let us consider the situation when the desired line-to-line output voltage vector V is in sector 1 as shown in Fig.4 (a).this vector could be synthesized by the pulse-width modulation (PWM) of the two adjacent SSV s V1 (pnn) and V2 (ppn), the duty cycle of each being d1 and d2, respectively, and the zero vector ( V7(nnn) / V8(ppp) ) of duty cycle d0 d 1 V 1 + d 2 V 2 = V = mv g e je (1) d 1 + d 2 + d 0 = 1 (2) Where, 0 m 0.866, is the modulation index. This would correspond to a maximum line-toline voltage of 1.0Vg, which is 15% more than conventional sinusoidal PWM [4]. Three SVM algorithms are considered which are described below. Symmetric Sequence (SCM1) The sequence of vectors applied in this scheme has been shown in the following figure.5 This scheme has the lowest THD because of the symmetry in the switching waveforms. The number of commutations in one sampling period is eight. Since this scheme has the same number of switching with three switch turn-ons and three switch turn-offs, their switching losses are expected to be similar. ISSN-Science-0250-5347, Volume No. 41 (1), 2014 Page 6

p p p p n p p p p p p p p n p p p Fig.5 Scheme 1 Alternating Zero Vector Sequence (SCM2)tgf3 In this scheme, the zero vectors (pppp) and (nnnn) are used alternatively in adjacent cycles so that the effective switching frequency is halved, as shown in Fig.6 The sampling period is Ts, same as in the other schemes. The switching losses for this scheme are expected to be ideally 50% as compared to those of the other two schemes. THD is significantly higher due to the existence of the harmonics at half of the sampling frequency. Which is shown in fig 9. ISSN-Science-0250-5347, Volume No. 41 (1), 2014 Page 7

Highest Current Not-Switched Sequence (SCM3) In this scheme switching losses are approximately proportional to the magnitude of the current being switched and hence it would be advantageous to avoid switching the inverter leg carrying the highest instantaneous current.[2] This is possible in most cases, because all adjacent SSV s differ in the state of switches in only one leg. Hence, by using only one zero vector, (pppp) or (nnnn) within a given sector one of the legs does not have to be switched at all, as shown in Fig.7 Hardware Block Diagram Description ISSN-Science-0250-5347, Volume No. 41 (1), 2014 Page 8

The schematic diagram of a four-leg inverter is shown in Fig. 8. This topology is known to produce balanced output voltages even under unbalanced load conditions. Due to the additional leg, a four-leg inverter can assume sixteen topologies which is twice. RECTIFIER : The main function of this block is to convert input ac supply to dc. This is given to power drive. SC/OC CARD: This card is used to protect power circuit from over current and short circuit. CONTROL CIRCUIT: This circuit is used with the advanced and latest technology space vector modulation (SVM). Where EEPROM is used to produce pulses DRIVER CARD : This block provides isolation between power card and control circuit (SVM) POWER CARD : This block is having four leg inverter. The sequential switching of devices provides ac at output. Total Harmonic Distortion Fig. 9 shows the variation of THD (of phase voltage and phase current) with modulation index for all the schemes. The results are similar to the three-leg inverter. ISSN-Science-0250-5347, Volume No. 41 (1), 2014 Page 9

SWITCHING LOSSES: Fig. 10 shows the relative variation of switching losses with load power factor for the three schemes. Under balanced load conditions the neutral leg carries only the high frequency ripple. Hence the switching losses are expected to be similar to the three leg inverters. Losses for schemes 1 and 3 are independent of the load whereas for scheme 2 the losses depend on the load power factor. CONCLUSION: This analysis analyses the most important modulation schemes for a four leg inverter. The analysis was performed over the entire range of modulation index and load power factor. The Harmonic Distortion and Switching losses for all three switching schemes are studied and plotted. We can conclude that third switching scheme is more effective as it reduces switching losses.the analysis clearly brings out the tradeoff s to be observed between the THD and switching loses. Thus SVM is a balanced method that gives 15% more efficiency and less THD. ISSN-Science-0250-5347, Volume No. 41 (1), 2014 Page 10

ACKNOWLEDGEMENT: I am thankful to Manali, Swati and Manjiri for their assistance. My special thanks are due to Prof. A. N. Jadhav (Dean of Engg. Faculty) for his kind support. References: 1) Prasad V.H., Boroyevich D., Dubovsky S., IEEE Trans. On Ind. App., 24/1, (1996), 115-122. 2) Trzynadlowski A.M., Legowski S., IEEE trans. On Power Electronics, 9/1, (1994), 26-34. 3) Windhorn A., IEEE Trans. On Industry Application, 28/3, (1992), 541-545. 4) Yao J., Green T.C., European Conference on Power Electronics & Application, (2005),9-16. 5) Yu Z., Texas Instruments, Application Report SPRA 524, (2000), 1-17. ISSN-Science-0250-5347, Volume No. 41 (1), 2014 Page 11