Application Article Improved Low-Profile Helical Antenna Design for INMARSAT Applications

Similar documents
Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Research Article Embedded Spiral Microstrip Implantable Antenna

Research Article CPW-Fed Slot Antenna for Wideband Applications

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

Research Article Compact Multiantenna

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

Miniature Folded Printed Quadrifilar Helical Antenna with Integrated Compact Feeding Network

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

Research Article Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Research Article A Broadband Circularly Polarized Stacked Probe-Fed Patch Antenna for UHF RFID Applications

Research Article Suppression of Cross-Polarization of the Microstrip Integrated Balun-Fed Printed Dipole Antenna

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

High Power 12-Element Triangular-Grid Rectangular Radial Line Helical Array Antenna

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

NEW DESIGN OF COMPACT SHORTED ANNULAR STACKED PATCH ANTENNA FOR GLOBAL NAVIGA- TION SATELLITE SYSTEM APPLICATION

Research Article A Liquid Metal Conical Helical Antenna for Circular Polarization-Reconfigurable Antenna

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

ON THE OPTIMAL DIMENSIONS OF HELICAL ANTENNA WITH TRUNCATED-CONE REFLECTOR

Theory of Helix Antenna

Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

Design of Helical Antenna for Wideband Frequency

Posts and Telecommunications, Mailbox 280#, 66 Xinmofan Road, Nanjing , China

Low-Profile Helical Antenna for Space Application

SINGLE-FEEDING CIRCULARLY POLARIZED TM 21 - MODE ANNULAR-RING MICROSTRIP ANTENNA FOR MOBILE SATELLITE COMMUNICATION

Compact Wide-Beam Circularly Polarized Antenna with Stepped Arc-Shaped Arms for CNSS Application

A CPW-Fed Dual-Band Slot Antenna with Circular Polarization

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

Low-Profile Wideband Circularly Polarized Patch Antenna Using Asymmetric Feeding

Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

Research Article Yagi Array of Microstrip Quarter-Wave Patch Antennas with Microstrip Lines Coupling

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Research Article A Novel SIW H-Plane Horn Antenna Based on Parabolic Reflector

COMPACT DUAL-BAND CIRCULARLY-POLARIZED AN- TENNA WITH C-SLOTS FOR CNSS APPLICATION. Education, Shenzhen University, Shenzhen, Guangdong , China

Application Article Synthesis of Phased Cylindrical Arc Antenna Arrays

Research Article Triband Omnidirectional Circularly Polarized Dielectric Resonator Antenna with Top-Loaded Alford Loop

Research Article Gain Enhancement of Low-Profile, Electrically Small Capacitive Feed Antennas Using Stacked Meander Lines

Research Article Calculation of Effective Earth Radius and Point Refractivity Gradient in UAE

Research Article Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

Fractal-Based Triangular Slot Antennas with Broadband Circular Polarization for RFID Readers

A Very Wideband Dipole-Loop Composite Patch Antenna with Simple Feed

Impedance Matching for 2.4-GHz Axial- Mode PVC-Pipe Helix by Thin Triangular Copper Strip

On the Design of Slot Cut Circularly Polarized Circular Microstrip Antennas

Performance Analysis of Different Ultra Wideband Planar Monopole Antennas as EMI sensors

A Compact Dual-Polarized Antenna for Base Station Application

A Fan-Shaped Circularly Polarized Patch Antenna for UMTS Band

Design and realization of tracking feed antenna system

A Compact Wideband Slot Antenna for Universal UHF RFID Reader

Research Article Integrated Filtering Microstrip Duplex Antenna Array with High Isolation

Broadband Circular Polarized Antenna Loaded with AMC Structure

Research Article A Broadband Single-Feed Circularly Polarized Patch Antenna with Wide Beamwidth

A Simple Dual-Wideband Magneto-Electric Dipole Directional Antenna

Couple-fed Circular Polarization Bow Tie Microstrip Antenna

Research Article A Reconfigurable Coplanar Waveguide Bowtie Antenna Using an Integrated Ferroelectric Thin-Film Varactor

Research Article Quadrature Oscillators Using Operational Amplifiers

Research Article A High Gain Omnidirectional Antenna Using Negative Permeability Metamaterial

DESIGN OF LEAKY WAVE ANTENNA WITH COM- POSITE RIGHT-/LEFT-HANDED TRANSMISSION LINE STRUCTURE FOR CIRCULAR POLARIZATION RADIA- TION

A Broadband Reflectarray Using Phoenix Unit Cell

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

A Broadband Crossed-Slot Circularly Polarized Antenna with Stable Phase Center for GNSS Applications

A WIDEBAND TWIN-DIAMOND-SHAPED CIRCULARLY POLARIZED PATCH ANTENNA WITH GAP-COUPLED FEED

A CPW-fed Microstrip Fork-shaped Antenna with Dual-band Circular Polarization

Research Article UWB Directive Triangular Patch Antenna

First-Order Minkowski Fractal Circularly Polarized Slot Loop Antenna with Simple Feeding Network for UHF RFID Reader

A Compact Circularly Polarized Microstrip Antenna with Bandwidth Enhancement

Research Article Design and Optimization of a Millimetre Wave Compact Folded Magic-T

A Broadband Omnidirectional Antenna Array for Base Station

TRANSMITTING ANTENNA WITH DUAL CIRCULAR POLARISATION FOR INDOOR ANTENNA MEASUREMENT RANGE

A Compact Dual-Band Dual-Polarized Antenna for Base Station Application

SIZE REDUCTION AND BANDWIDTH ENHANCEMENT OF A UWB HYBRID DIELECTRIC RESONATOR AN- TENNA FOR SHORT-RANGE WIRELESS COMMUNICA- TIONS

A DUAL-BAND CIRCULAR SLOT ANTENNA WITH AN OFFSET MICROSTRIP-FED LINE FOR PCS, UMTS, IMT-2000, ISM, BLUETOOTH, RFID AND WLAN APPLI- CATIONS

WIDE BEAMWIDTH QUADIFILAR HELIX ANTENNA WITH CROSS DIPOLES

A Planar Equiangular Spiral Antenna Array for the V-/W-Band

Antenna Theory and Design

"(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/

Newsletter 4.4. Antenna Magus version 4.4 released! Array synthesis reflective ground plane addition. July 2013

A Compact Wideband Circularly Polarized L-Slot Antenna Edge-Fed by a Microstrip Feedline for C-Band Applications

Research Article An Investigation of Structural Damage Location Based on Ultrasonic Excitation-Fiber Bragg Grating Detection

Multi-Band Microstrip Antenna Design for Wireless Energy Harvesting

Miniature Multiband Antenna for WLAN and X-Band Satellite Communication Applications

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

Transcription:

Antennas and Propagation Volume 212, Article ID 829371, 5 pages doi:1.15/212/829371 Application Article Improved Low-Profile Helical Antenna Design for INMASAT Applications Shiqiang Fu, Yuan Cao, Yue Zhou, and Shaojun Fang School of Information Science and Technology, Dalian Maritime University, Liaoning, Dalian 11626, China Correspondence should be addressed to Shiqiang Fu, fushq@dlmu.edu.cn eceived 9 April 212; evised 19 May 212; Accepted 2 May 212 Academic Editor: Z. Chen Copyright 212 Shiqiang Fu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A new low-profile variable pitch angle cylindrical helical antenna employing a copper strip as impedance transformer is proposed in this paper. Under the circumstance of a limited antenna height, the circular polarization performance of the antenna has been enhanced by changing the pitch angle and the input impedance matching has been improved by adjusting the copper strip match stub. The design method of the proposed antenna is given. The optimal antenna structure for INMASAT application has been fabricated and measured. The measured results show that in the whole maritime satellite communication work band the VSW is less than 1.2, its antenna gain is higher than 9 dbi, and the axial ratio is lower than 2.5 db. The experimental results have a good agreement with the simulations. The proposed antenna is compact and easy tuning. It provides a promising antenna element for maritime satellite communication applications. 1. Introduction Helical antennas have been known for a long time [1]. Axialmode helical antennas are of considerable interest in satellites and radars because they provide circular polarization over a wide bandwidth without the need for a polarizer. In the past, the axial-mode helical antennas continue to appear in new designs and research papers. Numerous modifications focus on optimizing the length, pitch angle or radius of the helical antenna for a good radiation performance [2 5]. For example, in [2], Professor Nakano et al. calculated the helical arm length current distribution and realized an extremely low-profile cylindrical helix as a radiating element of circular polarization by the combination of low pitch and a small number of turns. In [3], exponential pitch spacing was proposed in order to increase the CP bandwidth of the axial-mode helix. In [4], an elliptical helical antenna with a variable pitch angle was presented in the pursuit of improved circular polarization as well as its directivity. In [5], a robust and low-profile hemispherical helical antenna was introduced which produces very pure circular polarization radiation over a broader angular range. The purpose of this paper is to call attention to the fact that the antenna size is restricted in practical designs. A new design method of the low-profile helical antenna is given with limited antenna height. Based on this method, a low-profile variable pitch angle cylindrical helical antenna employing a copper strip match stub is proposed. Kraus and Nakano have proposed some techniques to match the helical antenna to 5 ohms in [6, 7]. A more simple and effective self-matching scheme has been presented in [8] by adding a copper strip on the connecting wire as impedance transformer. However, the position of the copper strip is fixed at the center of the connecting wire and detailed matching scheme is not given. In this paper, under the circumstance of a given antenna height, the performance of circular polarization of the antenna has been enhanced by changing the pitch angle, and the input impedance matching has been improved by adjusting the copper strip match stub size and position. In addition, a parametric study of the proposed antenna is presented to provide the engineers with information for designing, modifying, and optimizing such an antenna. And also, the simulated results are validated by experimental data at L-band for INMASAT applications. 2. Antenna Configuration and Design Approach Figure 1 shows the proposed antenna model configuration. The variable pitch angle helix conductor supported by

2 Antennas and Propagation Helix conductor α 2 Foam F connector Ground plane Copper strip match stub α 1 H (a) Perspective view h D (b) Side view ρ l s w (c) Top view Figure 1: Antenna model configuration. expanded polystyrene (EPS) foam (ε r 1.5) is mounted on a big ground plane. A thin copper strip was bonded to the center-fed helix conductor between the feed point and the beginning of the helix proper as suggestedin Figure 1. The configuration parameters are designated as follows: helical radius, pitch angle α 1 at the feed end, pitch angle α 2 at the open end, helical height H, conductor wire radius ρ, total number of helical turns N, supported foam height h, copperstrippositions, copper strip width w, and length l. The equations that describe the proposed helix conductor are x = cos ( ϕ ), y = sin ( ϕ ), {[ z = tan α 1 + (α 2 α 1 ) ϕ ] } π (1), ϕ 2πn 18 where x, y, z are the Cartesian coordinates. For a complete helix ϕ 2πN and for a truncated helix ϕ can be used with ϕ 2πn,wheren is the actual number of turns. In practical designs, the antenna size is often limited, such as height and cross section. So to reduce the helix height sufficiently, the pitch spacing and pitch angle are varied as the α 1 and α 2 are varied. From [9], we can conclude some theories and experiences that are useful for optimizing the size of the helix, such as helical circumference C that should be around λ (the wavelength at a test frequency), and the pitch angle that should be in a range of 12 14.However, the pitch angle could be less than 7 referring to the research made by Nakano et al. [2]. In our design, for a given antenna height H 5cm demand, the pitch angle α 2 = 7 will be decided according to (1). Assuming in accordance with the traditional design requirements [9, 1], the antenna helical turns will be N 1.2. The antenna circular polarization performance will be poor at this time. So the design method should be improved taking into account the limited antenna height. Based on previous studies, we set N = 2andC = 2π = λ. At first, the commercial simulation tool HFSS has been used to optimize α 1 for the best circular polarization radiation performance at a given α 2 = 7.Theα 1 can be lower than α 2 (called positive variable pitch angle) or higher than α 2 (called negative variable pitch angle). There will be optimized α 1 for the optimal radiation performance, such as lower axial ratio as shown in Figure 2. And then the antenna input impedance can be easily adjusted to 5 Ω by changing the copper strip match stub size and position under the premise of ensuring the optimal radiation performance. Throughout the studies, it is found that the real part of the antenna impedance can be easily controlled by mainly changing the copper strip position s, while the imaginary part of the antenna impedance can be adjusted by mainly changing the copper strip width w and length l, which can be seen in Figure 3. The impedance matching can be achieved without major modification of the radiator, and the CP characteristic is also not so sensitive to the changing of the match stub.

Antennas and Propagation 3 Axial ratio (db) 45 4 35 3 25 2 1 5 9 75 6 45 3 3 45 6 75 9 θ (deg) Input impedance (Ω) 1 75 5 25 25 5 75 1 α 1 =, α 2 = 7 α 1 = 7, α 2 = 7 α 1 = 12, α 2 = 7 Figure 2: Wide angle axial ratio simulation results with variable pitch angle. 1 (a) Impedance curve as a function of s s = 4mm s = 7mm s = 1 mm 3. Experimental esults and Discussions The antenna was optimized for operation in the INMASAT working band (1.525 1.66 GHz) with center frequency 1.593 GHz. After extensive simulations, the following values are selected: = 3 mm, H = 5 mm, α 1 =, α 2 = 7, ρ = 2.5 mm, w = 1 mm, l = 25 mm, s = 7 mm, h = 5 mm, and N = 2. The antenna is located at the center of circular copper plate ground plane with a diameter of D = 18 mm. Figure 4 shows a photograph of the completed helical antenna prototype. A plastic rod is used to provide mechanical stability. The experimental and simulated reflection characteristics of the antenna measured using Agilent N523A network analyzer and Ansys HFSS, respectively, are compared in Figure 5. Itcanbeseenthatthemeasuredresultsarefoundto reasonably agree with the simulated data. A good measured input impedance match characteristics of S 11 < db in the range of 1.5 1.8 GHz is obtained. There exists a frequency offset between the measurements and simulations due to the assembly error. It can be adjusted by the copper strip match stub. The adjusted measured S 11 is less than 2 db over the INMASAT working band, yielding to a VSW < 1.2. Circular polarization radiation performance of the antenna has been measured using a rotating linearly polarized transmit horn antenna. The simulated and measured gain and axial ratio characteristics at the bore sight of the antenna are presented in Figure 6. As shown in Figure 6, this antenna possesses simulated 3 db axial ratio bandwidth of 16% (1.47 GHz to 1.72 GHz). The measured axial ratio value is less than 2.5 db over the INMASAT operating band, which is equivalent to on-axis cross-polarization discrimination (PD) of at least 17 db. The gain of the antenna was measured at approximately 9 dbi across the whole operating band. The measured gain is slightly lower than the simulated one. The radiation patterns of both Input impedance (Ω) 75 5 25 25 5 75 1 (b) Impedance curve as a function of l and w l = 8 mm, w = 22 mm l = 1 mm, w = 22 mm l = 1 mm, w = 25 mm l = 1 mm, w = 28 mm l = 12 mm, w = 28 mm Figure 3: Effect of copper strip match stub position and size on input impedance. HCP and LHCP at the center frequency are shown in Figure 7. The measured patterns are in good agreement with the computed ones. The discrepancy between them can be mainly attributed to fabrication and measurement errors. 4. Conclusions A new improved low-profile helical antenna design for INMASAT applications has been presented. The remarkable feature of the antenna is that it is very easy to design and tune with limited antenna height. Firstly, the circular polarization radiation performance of the antenna can be

4 Antennas and Propagation 33 3 3 6 3 (db) 45 27 9 3 Figure 4: The fabricated antenna prototype. 24 12 5 21 18 S11 magnitude (db) 1 2 25 3 35 Simulation Measurement Adjusted measurement Figure 5: Simulated and measured reflection characteristics versus frequency. Gain (db) 1 8 6 4 2 Simulated gain Measured gain Simulated A Measured A Figure 6: Simulated and measured gain and axial ratio at the boresight. 21 18 12 9 6 3 Axial ratio (db) Simulated HCP Measured HCP Simulated LHCP Measured LHCP Figure 7: Simulated and measured radiation pattern at the center frequency 1.593 GHz. optimized by using variable pitch, angle, and then the VSW bandwidth can be tuned to coincide with the axial ratio bandwidth by changing a copper strip match stub size and position. Good antenna characteristics are achieved in the entire INMASAT working band. The proposed antenna has many advantages such as simple structure, low-profile and easy to tune. It seems to be a well-suited antenna element candidate for maritime satellite communication applications. Acknowledgments This work has been supported by the National Science and Technology Support Project of China (no. 212BAH36B1), the National Natural Science Foundation of China (no. 617144), and the Applied Basic esearch Programs of Ministry of Transportation of China (no. 21-329-225-3). The authors are grateful to the Fundamental esearch Funds for the Central Universities of China (No. 211QN26) for providing financial assistance. eferences [1] J. D. Kraus, Helical beam antennas, Electronics, vol. 2, pp. 19 111, 1947. [2] H. Nakano, H. Takeda, T. Honma, H. Mimaki, and J. Yamauchi, Extremely low-profile helix radiating a circularly polarized wave, IEEE Transactions on Antennas and Propagation, vol. 39, no. 6, pp. 754 757, 1991. [3]C.-H.Chen,E.K.N.Yung,B.-J.Hu,andS.-L.ie, Axial mode helix antenna with exponential spacing, Microwave and Optical Technology Letters, vol. 49, no. 7, pp. 25 3, 27. [4] F. Yang, P. Zhang, C.-J. Guo, and J.-D. u, Axial-mode elliptical helical antenna with variable pitch angle, Electronics Letters, vol. 44, no. 19, pp. 113 114, 28.

Antennas and Propagation 5 [5] H. T. Hui, K. Y. Chan, and E. K. N. Yung, The low-profile hemispherical helical antenna with circular polarization radiation over a wide angular range, IEEE Transactions on Antennas and Propagation, vol. 51, no. 6, pp. 14 1418, 23. [6] J. D. Kraus, A 5-ohm input impedance for helical beam antennas, IEEE Transactions on Antennas and Propagation, vol. 25, no. 6, pp. 913 914, 1977. [7] H. Nakano, K. Sato, H. Mimaki, and J. Yamauchi, A long helical antenna wound on a dielectric rod, in Proceedings of the International Society for Asphalt Pavements, pp. 965 968, 24. [8]C.H.Chen,B.J.Hu,Z.H.Wu,andE.K.N.Yung, A self-matching hemispherical helical antenna, in Proceedings of the IEEE Symposium on Antennas and Propagation, pp. 479 4712, 26. [9]A..Djordjević, A. G. Zajić, M. M. Ilić, and G. L. Stüber, Optimization of helical antennas, IEEE Antennas and Propagation Magazine, vol. 48, no. 6, pp. 17 1, 26. [1] H. E. King, J. L. Wong, and E. H. Newman, Helical antennas, in Antenna Engineering Handbook, J. L. Volakis, Ed., McGraw- Hill, New York, NY, USA, 27.

otating Machinery Engineering The Scientific World Journal Distributed Sensor Networks Sensors Control Science and Engineering Advances in Civil Engineering Submit your manuscripts at Electrical and Computer Engineering obotics VLSI Design Advances in OptoElectronics Navigation and Observation Chemical Engineering Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Volume 21 Modelling & Simulation in Engineering Shock and Vibration Advances in Acoustics and Vibration