JOHANSON DIELECTRICS INC Bledsoe Street, Sylmar, Ca Phone (818) Fax (818)

Similar documents
Application Note 323. Flex Power Modules. Input Filter Design - 3E POL Regulators

A7221 DC-DC CONVERTER/ BUCK (STEP-DOWN) HIGH EFFICIENCY FAST RESPONSE, 2A, 16V INPUT SYNCHRONOUS STEP-DOWN CONVERTER

Controlling Input Ripple and Noise in Buck Converters

Application Guidelines for Non-Isolated Converters AN Input Filtering for Austin Lynx Series POL Modules

Understanding, measuring, and reducing output noise in DC/DC switching regulators

4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816. Features: SHDN COMP OVP CSP CSN

Low Voltage 0.5x Regulated Step Down Charge Pump VPA1000

AP3403. General Description. Features. Applications. Typical Application Schematic. A Product Line of Diodes Incorporated

Features. Applications SOT-23-5

RAD HARD 3.5A SWITCHING REGULATOR

AT V,3A Synchronous Buck Converter

Using Coupled Inductors to Enhance Transient Performance of Multi-Phase Buck Converters

"Improve Instrument Amplifier Performance with X2Y Optimized Input Filter"

How to Improve DC/DC Converter Performance with Phase Shifting Time Delay

Designing A SEPIC Converter

REV1.0 - AUG 2012 RELEASED

Designing a Multi-Phase Asynchronous Buck Regulator Using the LM2639

Advanced Monolithic Systems

Delphi D12S2R550 Non-Isolated Point of Load

DIO6305 High-Efficiency 1.2MHz, 1.1A Synchronous Step-Up Converter

AND8291/D. >85% Efficient 12 to 5 VDC Buck Converter

A7221A DC-DC CONVERTER/BUCK (STEP-DOWN) 600KHz, 16V, 2A SYNCHRONOUS STEP-DOWN CONVERTER

EOL - Not Recommended for New Designs; Alternate Solution is B384F120T C baseplate operation. 384 V to 12 V Bus Converter

RAD HARD 36V, 2A, 2.0MHz STEP-DOWN SWITCHING REGULATOR CONTROLLER

BS SW LSP5522. C4 16nF R3 C5 NC 10K. shows a sample LSP5522 application circuit generating 5V/2A output

LM78S40 Switching Voltage Regulator Applications

ABSOLUTE MAXIMUM RATINGS (Note 1) POWER Input oltage 7 Thermal Resistance CONTROL Input oltage 13 TO-220 package ϕ JA = 50 C/W Operating Junction Temp

Non-linear Control for very fast dynamics:

A Lossless Clamp Circuit for Tapped-Inductor Buck Converters*

Decoupling capacitor uses and selection

LM3940 1A Low Dropout Regulator for 5V to 3.3V Conversion

High Efficiency 3A Boost DC/DC Convertor

ABSOLTE MAXIMM RATINGS W W W... 7V Operating Junction Temperature Range Control Section... 0 C to 125 C Power Transistor... 0 C to 150 C Storage Tempe

Preliminary. Synchronous Buck PWM DC-DC Controller FP6329/A. Features. Description. Applications. Ordering Information.

ACT111A. 4.8V to 30V Input, 1.5A LED Driver with Dimming Control GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT

HF A 27V Synchronous Buck Converter General Description. Features. Applications. Package: TBD

APPLICATIO S. LT /LT1585A-1.5 Fixed 1.5V, 4.6A and 5A Low Dropout, Fast Response GTL+ Regulators DESCRIPTIO FEATURES TYPICAL APPLICATIO

ACE726C. 500KHz, 18V, 2A Synchronous Step-Down Converter. Description. Features. Application

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

AT V Synchronous Buck Converter

SGM6132 3A, 28.5V, 1.4MHz Step-Down Converter

RAD HARD 36V, 2A, 2.4MHz STEP-DOWN SWITCHING REGULATOR CONTROLLER

MIC General Description. Features. Applications. Typical Application. 3A Low Voltage LDO Regulator with Dual Input Voltages

SGM6232 2A, 38V, 1.4MHz Step-Down Converter

DUAL CHANNEL LDO REGULATORS WITH ENABLE

320 ma Switched Capacitor Voltage Doubler ADP3610

Design a SEPIC Converter

ANP030. Contents. Application Note AP2014/A Synchronous PWM Controller. 1. AP2014/A Specification. 2. Hardware. 3. Design Procedure. 4.

S24SE/S24DE series 30W Single/Dual Output DC/DC Converter

Comparing the Benefits of Using an Integrated Power Module versus a Discrete Regulator

23V, 3A, 340KHz Synchronous Step-Down DC/DC Converter

ZLDO1117 1A LOW DROPOUT POSITIVE REGULATOR 1.2V, 1.5V, 1.8V, 2.5V, 3.3V, 5.0V and ADJUSTABLE OUTPUTS

Datasheet. 4A 240KHZ 23V PWM Buck DC/DC Converter. Features

EUP A,30V,500KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

The ASD5001 is available in SOT23-5 package, and it is rated for -40 to +85 C temperature range.

eorex (Preliminary) EP3101

FEATURES DESCRIPTION APPLICATIONS PACKAGE REFERENCE

Power Supplies Bandgap Reference Case Study Spring 2017 Lecture 9 1

The Causes and Impact of EMI in Power Systems; Part 1. Chris Swartz

Analog Technologies. ATI2202 Step-Down DC/DC Converter ATI2202. Fixed Frequency: 340 khz

ZLDO1117. Description. Pin Assignments. Features. Typical Applications Circuit ZLDO V 1.8V MLCC MLCC. A Product Line of. Diodes Incorporated

LM3940 1A Low Dropout Regulator for 5V to 3.3V Conversion

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Driving High Intensity LED Strings in DC to DC Applications D. Solley, ON Semiconductor, Phoenix, AZ

MP2307 3A, 23V, 340KHz Synchronous Rectified Step-Down Converter

AT2596 3A Step Down Voltage Switching Regulators

BM2596 (MSP1250G) 150kHz 3A Step-down Voltage Converter

Intermediate Bus Converters Quarter-Brick, 48 Vin Family

MP3900 High Efficiency Boost Controller

LDS8710. High Efficiency 10 LED Driver With No External Schottky FEATURES APPLICATION DESCRIPTION TYPICAL APPLICATION CIRCUIT

BUCK Converter Control Cookbook

idesyn id8802 2A, 23V, Synchronous Step-Down DC/DC

Pin Assignment and Description TOP VIEW PIN NAME DESCRIPTION 1 GND Ground SOP-8L Absolute Maximum Ratings (Note 1) 2 CS Current Sense

SELECTION GUIDE. Nominal Input Voltage Output Voltage. Output Current

1.0MHz,24V/2.0A High Performance, Boost Converter

Switched Capacitor Voltage Converter with Regulated Output ADP3603*

MER1 Series 1kVDC Isolated 1W Single Output DC/DC Converters

DT V 1A Output 400KHz Boost DC-DC Converter FEATURES GENERAL DESCRIPTION APPLICATIONS ORDER INFORMATION

BCM Array TM BC384R120T030VM-00

MER1 Series 1kVDC Isolated 1W Single Output DC-DC Converters

Type RA Radial PET Film Capacitors

2A 150KHZ PWM Buck DC/DC Converter. Features

FAN5037. Adjustable Switching Regulator Controller. Features. Description. Applications. Block Diagram.

AP khz 18V 3A SYNCHRONOUS DC/DC BUCK CONVERTER. Description. Pin Assignments. Applications. Features. Typical Application Circuit AP6507

Filter Considerations for the IBC

HM V~5V Input 12W Output Step-up DC/DC Converter GENERAL DESCRIPTION FEATURES APPLICATIONS

Increasing Performance Requirements and Tightening Cost Constraints

RAD HARD 4.5A, 500KHZ STEP DOWN SWITCHING REGULATOR CONTROLLER

ACE735E. 36V Input Standoff Voltage, 1.5A Step-Down Converter

MP A, 50V, 1.2MHz Step-Down Converter in a TSOT23-6

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. 500KHz, 18V, 2A Synchronous Step-Down Converter

3A, 17V Current Mode Synchronous Step-Down Converter

S24SP series 60W Single Output DC/DC Converter

1A Ultra Low Dropout Voltage Regulator with Multi-Functions

LM2940/LM2940C 1A Low Dropout Regulator

TLE Data Sheet. Automotive Power. Low Drop Voltage Regulator TLE4296-2GV33 TLE4296-2GV50. Rev. 1.13,

STB Series 2:1 & 4:1 Vin range / up to 60W 1/16 Brick

Parameter Symbol Min Typ Max Unit Operating voltage Range Vin Vdc Input current at 36V. Iin - - A Input current at 55V

3A 150KHZ PWM Buck DC/DC Converter. Features

25 Watt DC/DC converter using integrated Planar Magnetics

Transcription:

Introduction JOHANSON DIELECTRICS INC. Dc-Dc Converter Trends and Output Filter Capacitor Requirements John Maxwell, Director of Product Development Historically the volume Dc-Dc converter market has been driven by telecommunications equipment powered by 48V isolated Brick DC/DC converters. Technologies used today in the design and manufacture of different high density custom semiconductors or ASIC (Application Specific Integrated Circuit) has resulted in a proliferation of power supply voltages and increased supply or load current requirements for these semiconductors. Today numerous different voltages can be encountered in systems each with different load currents and power on or sequencing requirements precluding multiple Brick converters. New power systems use a limited number of isolated bricks and a number of POL (Point Of Load) converters. ASIC voltage requirements are dropping resulting in dramatically reduced margins for ripple, noise, load variations and voltage drop in power planes within the system board. These voltage drops have evolved power system architectures to minimize the effect of these drops voltage drops within power distribution planes. Current total noise, ripple, DC voltage drift and voltage drop within power planes are fast approaching +/- 1% of the converter output voltage or +/- 15mV for a 1.5V output voltage. Understanding output filter capacitor parasitic parameters is critical in providing solutions that meet these new noise/ripple and drift requirements in high performance Dc-Dc converters. Traditionally capacitance and ESR were considered to be the most important capacitor parameters for Dc-Dc converters. Aluminum electrolytic, solid polymer aluminum, tantalum and niobium oxide capacitor have been used successfully as output filter capacitors for decades but as power migrates from large isolated bricks to smaller POL converters output filter capacitor requirements will change. Small physical size, minimum parasitic values and high capacitance have become mandatory for these small POL converters. Examples of Power Plane Voltage Drop Copper plane thickness of ½ oz (0.7 mil) is typically used in many 20+ layer boards in telecommunications systems. There are boards that use 1 oz layer copper thickness and some even use 2 oz copper layers for ground and power planes. Results are only presented for room temperature but copper has a temperature coefficient of +0.393%/ o C and can significantly increase voltage drops in both voltage and ground planes used in these large boards. A 50 o C board temperature rise increases copper resistivity and corresponding power plane voltage drops by nearly 20%. Appendix 1 lists the location of each voltage injection point and current sink or load on a 15 (38cm X 38cm) square telecom board. Both a single Brick and distributed POL power scheme were analyzed to compare DC voltage drops across a ½ oz single power plane with six 10A loads representing an ASIC at each location. Voltage drops will be the same for the ground plane. Load and source locations are listed in the appendix. 1 March 2006 Rev 1.03 1

These two cases are simulated using finite difference techniques that take into account copper thickness and temperature coefficients. In the first case a single 60A brick provides all of the current for the board. The second case uses four POL (Point of Load) DC/DC converters to supply the single power plane with current. The location for those POL converters was chosen to minimize power plane voltage drops. Voltage drops on the ground plane will be a mirror image of the power plane doubling the total voltage drop at any load point. Voltage gradients have shown (color changes) for each simulation represents a 2 mv difference. Vin = 1.5V Vin (1), 1.50V Vin (4), 1.50V Vin (2), 1.50V Vin (3), 1.50V 10 Amp Loads a) Single 60A Brick (68mV Drop) b) 4 Point of Load Converters (18mV Drop) Figure 1. Power Plane Voltage Drop Comparison between a Single Brick and 4 POL Converters Output Filter Capacitors A common switching frequency for Dc-Dc converters is around 500kHz and that will be used in determining capacitor parameters. ESL, ESR and capacitance will be analyzed in relation to converter ripple current and total output noise, ripple voltage and drift required for low voltage integrated circuits (ICs). AS the power supply voltages approach 1V, total noise, ripple and drift needs to be within +/- 1% or +/- 10mV. This requirement requires an understanding of capacitor parameters driven by the converter and is used in output filter capacitor technology and size selections. Ripple current in a buck converter switching at 500 khz will be used and is shown in Figure 2. The first parameter to be considered will be maximum output loop inductance and capacitor ESL as it has been traditionally ignored in the past but becomes critical as the physical size of converters shrink. We cannot look to the past when output filters were carpet bombed with capacitors but designers must now understand what the minimum/maximum limits of ESL, ESR and capacitance are. 1 March 2006 Rev 1.03 2

Maximum Output Filter Loop Inductance This is not just the inductance of the capacitor (ESL) but must include interconnect inductance in the output loop of the converter filter. Trace width and length now become part of the calculus of output filters. Current I A di 1 /dt 1 di 2 /dt 2 B Load Current 2uS t 2 t 1 Time Figure 2. Buck Converter Ripple Current Switching at 500kHz The largest di/dt is at current inflection points where current is sourced from different portions of the circuit. The voltage across an inductor V = L di/dt or L = V(dt/di). Knowing the total allowed ripple voltage (+/- 10mV) a plot of absolute maximum output loop inductance vs. ripple current. For example the inductive at point A will be negative and positive at point B. This plot would assume no contributions due to loop resistance or capacitance. The total current change at point A and B is the sum of the slopes or di 1 /dt 1 + di 2 /dt 2. Converter input and output voltage and load current determine the duty cycle which impacts maximum output loop inductance and capacitor ESL. Few converters will operate near 50% duty cycle but will typically operate in the 10-20% range severely limiting the total output loop inductance and corresponding capacitor ESL. 10 Maximum Output Loop Inductance (nh) 8 6 4 50% Duty Cycle 10% Duty Cycle 2 0 0 2 4 6 8 10 12 Ripple Current (A pk-pk ) Figure 3. Maximum Output Loop Inductance vs. Ripple Current 1 March 2006 Rev 1.03 3

Maximum Output Filter Loop Resistance Like in the loop inductance calculations now the total contribution of output ripple and noise will be determined assuming no contribution from either the inductance or capacitance. Again 20mV will be used for V = I x R(Loop Resistance) or R = V/ I. 20 Loop Resistance (mω) 15 10 5 0 0 2 4 6 8 10 12 Ripple Current (A pk-pk ) Figure 4. Maximum Output Loop Resistance vs. Ripple Current Minimum Output Filter Capacitance As in the two previous examples calculations will be based on the total contribution of ripple and noise by the output filter capacitance only. The basic capacitor equation of I = C dv/dt or C = I x (dt/ V). 500 Output Filter Capacitance (uf) 400 300 200 Series1 100 0 0 2 4 6 8 10 12 Ripple Current (A pk-pk ) Figure 5. Minimum Output Capacitance vs. Ripple Current 1 March 2006 Rev 1.03 4

The three critical minimum and maximum lumped parameters (inductance, resistance and capacitance) have been analyzed for the common buck converter topology used in POL Dc-Dc converters. Increases in switching frequencies, shorter inductor conduction time and increased load currents all impact output filter characteristics. Increases in frequency decrease output filter capacitance required to control ripple voltage but increases switching noise due to output filter inductance. The one parameter that is basically frequency independent is filter loop resistance while output capacitance has a marked impact on output ripple and noise. Output Capacitor Filter Technologies There are three main competing capacitor technologies for output filter applications. Multi-layer ceramic, tantalum/niobium oxide and polymer aluminum electrolytic capacitors are all used in Dc- Dc output filters. Small size and high performance of POL converters drive the choice of output filter capacitors. Inductance is the primary driver because not only does the capacitor ESL need to be low but it is further limited on board trace and interconnect inductance. High current/low resistance and inductance require large broad interconnects between the POL and board that it is mounted to. The shift to lead free solders further complicates the design due to the brittle nature of lead free solders driving interconnect dimensions for solder joint reliability but increasing both inductance and resistance. Capacitor choices need to be evaluated first based on inductance, then ESR and finally total capacitance required. Basically all technologies meet the maximum loop resistance so the focus is on inductance. Table 1 is a list a typical ESL, ESR and capacitance values for different capacitor technologies and allows the designer to choose what will work as output filter capacitors for each design. Table 1. Output Filter Capacitor Technology & Typical Electrical Parameters Technology Size ESL ESR Capacitance Range 1210 MLCC 900 ph <10 mω 1 100 uf L x W x T.120 x.100 x.100 or 3.2mm x 2.5mm x 2.5mm 1812 MLCC 1.4 nh <10 mω 10-100 uf L x W x T.180 x.120 x.110 or 4.5mm x 3.2mm x 2.8mm D Case Tantalum/Niobium Oxide 2.2 nh <10 mω 10-680 uf L x W x T.287 x.170 x.110 7.3mm x 4.5mm x 2.8mm D Case Aluminum Polymer 1.8 nh <20 mω 47-220 uf L x W x T.287 x.170 x.110 or 7.3mm x 4.5mm x 2.8mm MLCC or multi-layer ceramic capacitors have the clear edge in size, lead free process compatibility and inductance. Tantalum and polymer aluminum capacitors have the edge in capacitance but that gap is shrinking as dielectric layer thickness is reduced in ceramic capacitors. Converter size is shrinking and switching frequencies are increasing reducing filter capacitance and maximum inductance. These requirements preclude the use of the larger case size of tantalum/niobium oxide and polymer aluminum capacitors from many Dc-Dc converter applications. 1 March 2006 Rev 1.03 5

Appendix JOHANSON DIELECTRICS INC. Locations of Voltage Injection Points and Loads on Test Board for Power Plane Voltage Drop Simulation. 7.5 2 10 4 7.5 7.5 15 60A Insertion Point 15 10 3 3.5 Notice: Specifications are subject to change without notice. Contact your nearest Johanson Dielectrics Sales Office for the latest specifications. All statements, information and data given herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patents. The user should not assume that all safety measures are indicated or that other measures may not be required. Specifications are typical and may not apply to all applications. 1 March 2006 Rev 1.03 6