Research Article Gain Enhancement of Low-Profile, Electrically Small Capacitive Feed Antennas Using Stacked Meander Lines

Similar documents
Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

Research Article Embedded Spiral Microstrip Implantable Antenna

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Research Article CPW-Fed Slot Antenna for Wideband Applications

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

A Compact Dual Band Microstrip Antenna for GPS L1/GS Applications

Research Article Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Research Article A MIMO Reversed Antenna Array Design for gsm1800/td-scdma/lte/wi-max/wilan/wifi

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Research Article Small-Size Wearable High-Efficiency TAG Antenna for UHF RFID of People

Research Article Compact Multiantenna

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs

Research Article Small Size and Low Cost UHF RFID Tag Antenna Mountable on Metallic Objects

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Modeling of cable for measurements of small monopole antennas. Liu, L; Weng, YF; Cheung, SW; Yuk, TI; Foged, LJ

A Broadband Omnidirectional Antenna Array for Base Station

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

Application Article Improved Low-Profile Helical Antenna Design for INMARSAT Applications

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

Research Article A UWB Band-Pass Antenna with Triple-Notched Band Using Common Direction Rectangular Complementary Split-Ring Resonators

Experimental Study of Sleeve Antennas Using Variable Capacitors

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

Research Article Yagi Array of Microstrip Quarter-Wave Patch Antennas with Microstrip Lines Coupling

ENHANCEMENT OF PRINTED DIPOLE ANTENNAS CHARACTERISTICS USING SEMI-EBG GROUND PLANE

A Compact Wideband Slot Antenna for Universal UHF RFID Reader

First-Order Minkowski Fractal Circularly Polarized Slot Loop Antenna with Simple Feeding Network for UHF RFID Reader

Research Article Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

Research Article A Reconfigurable Coplanar Waveguide Bowtie Antenna Using an Integrated Ferroelectric Thin-Film Varactor

Research Article SAR Reduction Using Integration of PIFA and AMC Structure for Pentaband Mobile Terminals

Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

A Minimized Triangular Meander Line PIFA Antenna for DCS1800/WIMAX Applications

Research Article Tunable Compact UHF RFID Metal Tag Based on CPWOpenStubFeedPIFAAntenna

Research Article Design of a Novel UWB Omnidirectional Antenna Using Particle Swarm Optimization

Design of a Short/Open-Ended Slot Antenna with Capacitive Coupling Feed Strips for Hepta-Band Mobile Application

Antenna Theory and Design

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

Application Article Dual-Beam Antenna Design for Autonomous Sensor Network Applications

Research Article A Broadband Circularly Polarized Stacked Probe-Fed Patch Antenna for UHF RFID Applications

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

Research Article Low-Profile Repeater Antenna with Parasitic Elements for On-On-Off WBAN Applications

Compact Dual-band Balanced Handset Antenna for WLAN Application

Research Article UWB Directive Triangular Patch Antenna

Research Article A Compact Experimental Planar Antenna with a USB Connector for Mobile Phone Application

Research Article A High Gain Omnidirectional Antenna Using Negative Permeability Metamaterial

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

A Compact Dual-Polarized Antenna for Base Station Application

R. Zhang, G. Fu, Z.-Y. Zhang, and Q.-X. Wang Key Laboratory of Antennas and Microwave Technology Xidian University, Xi an, Shaanxi , China

DESIGN OF LEAKY WAVE ANTENNA WITH COM- POSITE RIGHT-/LEFT-HANDED TRANSMISSION LINE STRUCTURE FOR CIRCULAR POLARIZATION RADIA- TION

Citation Electromagnetics, 2012, v. 32 n. 4, p

Research Article Suppression of Cross-Polarization of the Microstrip Integrated Balun-Fed Printed Dipole Antenna

A dual-band antenna for wireless USB dongle applications

Low-Profile Wideband Circularly Polarized Patch Antenna Using Asymmetric Feeding

High gain W-shaped microstrip patch antenna

Loop and Slot Antennas

Compact Microstrip UHF-RFID Tag Antenna on Metamaterial Loaded with Complementary Split-Ring Resonators

International Journal for Research in Applied Science & Engineering Technology (IJRASET) Circular Microstrip Patch Antenna for RFID Application

Small-Size Monopole Antenna with Dual Band-Stop Function for Ultra-Wideband Wireless Communications

Research Article Compact Two-Section Half-Wave Balun Based on Planar Artificial Transmission Lines

Low-Profile and Small Capacitively Fed VHF Antenna

A Directional, Low-Profile Zero-Phase-Shift-Line (ZPSL) Loop Antenna for UHF Near-Field RFID Applications

Research Article Quad Band Handset Antenna for LTE MIMO and WLAN Application

Chapter 7 Design of the UWB Fractal Antenna

Dual-slot feeding technique for broadband Fabry- Perot cavity antennas Konstantinidis, Konstantinos; Feresidis, Alexandros; Hall, Peter

A COMPACT DUAL INVERTED C-SHAPED SLOTS ANTENNA FOR WLAN APPLICATIONS

On the Design of Slot Cut Circularly Polarized Circular Microstrip Antennas

NOVEL TWO-DIMENSIONAL (2-D) DEFECTED GROUND ARRAY FOR PLANAR CIRCUITS

Research Article A Broadband Single-Feed Circularly Polarized Patch Antenna with Wide Beamwidth

A Simple Dual-Wideband Magneto-Electric Dipole Directional Antenna

BANDWIDTH AND GAIN ENHANCEMENT OF A SLOTTED BOWTIE ANTENNA USING PARTIAL SUBSTRATE REMOVAL

A Coupled-Fed Reconfigurable Antenna for Internal LTE Mobile Phone Applications

Couple-fed Circular Polarization Bow Tie Microstrip Antenna

Research Article Design and Analysis of Printed Yagi-Uda Antenna and Two-Element Array for WLAN Applications

Research Article Triband Omnidirectional Circularly Polarized Dielectric Resonator Antenna with Top-Loaded Alford Loop

BANDWIDTH ENHANCEMENT OF CIRCULAR MICROSTRIP ANTENNAS

A Novel UHF RFID Dual-Band Tag Antenna with Inductively Coupled Feed Structure

Broadband Designs of a Triangular Microstrip Antenna with a Capacitive Feed

Research Article A Novel SIW H-Plane Horn Antenna Based on Parabolic Reflector

Research Article Quadrature Oscillators Using Operational Amplifiers

SMALL SEMI-CIRCLE-LIKE SLOT ANTENNA FOR ULTRA-WIDEBAND APPLICATIONS

CHAPTER 4 EFFECT OF DIELECTRIC COVERS ON THE PERFORMANCES OF MICROSTRIP ANTENNAS 4.1. INTRODUCTION

Transcription:

Antennas and Propagation Volume 21, Article ID 66717, 8 pages doi:1.1155/21/66717 Research Article Gain Enhancement of Low-Profile, Electrically Small Capacitive Feed Antennas Using Stacked Meander Lines Kazuki Ide, Satoshi Ijiguchi, and Takeshi Fukusako Department of Computer Science and Electrical Engineering, Kumamoto University, 2-39-1, Kurokami, Kumamoto 86-8555, Japan Correspondence should be addressed to Takeshi Fukusako, fukusako@cs.kumamoto-u.ac.jp Received 25 February 21; Accepted 5 August 21 Academic Editor: Miguel Ferrando Copyright 21 Kazuki Ide et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The present paper describes the gain enhancement of a small and low-profile linear antenna with capacitive feed (C-feed) using three metallic layers. The antenna has very small leakage current on the outer conductor of the coaxial cable and can easily control the imaginary part of the input impedance. The gain of the stacked three-layer meander line antenna, with the meander line in the middle layer being opposite to that of the other two layers, has increased by around 7 db compared to the single layered C- feed antenna. The antenna gain is discussed based on simulated and measured results, which demonstrates that the antenna has successfullyachieved theacceptable impedance and sufficient gain for mobile terminals and RFID tags. 1. Introduction Small [1 3], low-profile antennas [4 6] with back reflectors have been widely studied in recent years. The antenna which is close to the back conductor can reduce the electrical effects from the backing material when the antenna is installed on IC chips, human body, or any metallic or lossy materials. Using a folded line such as meander lines [7 9] and incorporating capacitances [1, 11] are effective ways to make electrically small antennas to operate at the serial resonance frequency. A small, low-profile antenna having an electrically small and low-profile structure that uses a capacitive coupling with a back conductor and that can be operated at the serial frequency has been presented in [12]. However, the coupling terminal with small area easily generates leakage current on the feeding coaxial cable unless a ferrite choke on the cable is used. The leakage current existing on the outer surface of a coaxial cable causes drastic changes in antenna characteristics [13, 14] when the feed is unbalanced. Moreover, typical electrically small and low-profile antennas have disadvantages of low radiation efficiency [15], and it is difficult to attain impedance matching characteristics [16]. The problems of the leakage current and the impedance matching can be improved by a capacitive feed (C-feed) technique in [17]. This paper pr oposes the techniques to enhance the antenna gain of the C-feed mender line antenna (CFMA) shown in [17]. Additional meander line layers are stacked on the CFMA to enhance the antenna gain. The gain of the two-layered CFMA (2L-CFMA) with opposite meander lines has increased by around 6 db compared to the CFMA. Furthermore, a three-layered CFMA (3L-CFMA) with a reversed meander line to that of the adjacent layers incorporated at the feed plate can enhance the gain by around 7 db as compared to the CFMA. 2. Low-Profile, Electrically Small Meander Antenna Using a Capacitive Feed Structure A design of electrically small and low-profile linear antenna with a reflector has been reported in [12, 17]. The antenna yields capacitive impedance at low frequency and approximates the parallel resonant frequency as the serial resonant frequency. Figures 1(a) and 1(b) show the top and bird s-eye view of dismantled CFMA. The antenna has a height (the distance between the antenna and the back conductor) of 2 mm (.8λ <.25λ, λ :wavelengthat resonance frequency) and uses RT/Duroid 588 substrate with a permittivity (ε r ) of 2.2 and dielectric loss (tan δ)

2 Antennas and Propagation.5 mm Meander line fw fl (a) Top view Antenna element Input impedance (Ω) 1 8 6 4 2 2 4 6 8 1 12 14 16 1 1.1 1.2 1.3 1.4 Re ( fl=2 mm) Im ( fl=2 mm) Re ( fl=7 mm) Im ( fl=7 mm) Re ( fl=) Im ( fl=) Dielectric substrate Th1 Meander line fl Ground plane fw Th2 (b) Dismantled structure (ml) (c) Extended meander line λ/4 <l<λ/2 Back metal-ground (d) Equivalent circuit Figure 1: Small and low-profile capacitive feed meander line antenna (CFMA). of.1. The substrate dimension is fixed at (.91λ.57λ ) and satisfies the condition of electrically small antennas (ka =.338 <.5 (k:wavenumber and a: radius of a sphere surrounding the antenna) [1]. The meander line has a width (W m )ofandspaced (W d ) at.5 mm with the adjacent lines. A metallic feed S11 (db) Figure 2: Variation in input impedance of the CFMA with fl. 1 12 14 16 18 2 1 1.1 1.2 1.3 1.4 2 4 6 8 Sim Meas-without touching Meas-with touching Figure 3: S 11 characteristics with and without touching the SMA connector connected to the CFMA. plate is installed in between the meander line and the back conductor. The back conductor, which acts as the ground plane, is 14mm.Thefeedplatehasalength(fl) of and width (fw) of 2 mm. The imaginary part of the input impedance of the antenna is controlled primarily by varying the fl and fw, substrate thicknesses Th1 and Th2, and the length of the extended meander line (ml), as shown in Figure 1(c). The imaginary part of the input impedance can be independently controlled using these parameters as shown in Figure 2. This corresponds to the variation in capacitors in the equivalent circuit shown in Figure 1(d). In addition, the antenna generates very small leakage current on the outer conductor surface of the connected coaxial cable. The effect of touching the SMA connector with the human hand is also investigated, and the results are shown in Figure 3. The antenna shows stable S 11 characteristics even if the SMA connector is touched with the hand. However, the antenna

Antennas and Propagation 3.5 mm Meander line fw fl (a) CFMA stacked a meander line in the same direction (2L- CFMA1).5 mm Meander line fw fl (b) CFMA stacked a meander line in the opposite direction (2L- CFMA2) #1 Antenna element Ground plane Dielectric substrate #1 Antenna element Ground plane Dielectric substrate (c) Expanded figure of 2L- CFMA1 (d) Expanded figure of 2L- CFMA2 (e) Dismantled structure for 2L- CFMA1 (f) Dismantled structure for 2L- CFMA2 Figure 4: Proposed stacked structures with two layers. shows low antenna gain of around 1 dbi. Therefore, novel structures are presented in the next section in order to enhance the antenna gain. 3. Enhancement of Gain 3.1. Two-Layer Stacked Structure. A meander line is stacked on the presented CFMA to enhance the gain. So, the structure has two layers of meander lines. Two kinds of stacked structures are proposed. In Figures 4(a) and 4(c), the two meander lines of the antenna are in the same direction (2L- CFMA1). But in Figures 4(b) and 4(d), the second meander line is reversed and placed on the first layer (2L-CFMA2). The 2L-CFMA2 has regions where the meander lines of the two layers are not overlapped as shown in Figure 4(d). Since an additional meander line layer is used in this stacked structure, the height of these antennas is increased by.8 mm and is shown in Figures 4(e) and 4(f). 3.2. Simulated Results. The simulated results for the input characteristics of these antennas are shown in Figure 5. In Figure5(a), the resonance frequency is shifted to higher frequency by stacking a meander line. This shift in the frequency is due to the capacitance incorporated by the stacked meander line layer. Moreover, the resonance frequency of 2L-CFMA2 is shifted more to the higher frequency than the 2L-CFMA1, because of the reduced capacitance between the two meander layers due to the reduction of the overlapped metal area. Figures 5(b) 5(d) show the Smith chart expressions of the input impedance and radiation impedance for CFMA, 2L-CFMA1, and 2L-CFMA2. The radiation resistance shown here of the CFMA is lower than that of the other two structures. In Figure 5(b), the self-resonance condition is satisfied at around 1.252 GHz (serial resonance) and 1.26 GHz (parallel resonance) for CFMA. Similarly, this condition is satisfied at 1.52 and 1.51 GHz for 2L-CFMA1 and 1.695 GHZ and 1.75 GHz for 2L-CFMA2. The resonance frequencies of input impedance are different from the self-resonance frequencies. This is probably due to the skin depth of the metallic loss. Figure 6 shows the simulated antenna gain of these antennas. The antenna characteristics at the resonance frequency are presented in Table 1. The gain of the CFMA is enhanced by stacking the meander line. The gain of the 2L-CFMA2 has increased by around 6 db as compared to the CFMA. This is due to the electric field generated at the left and right edges of the structure where the meander lines of the two layers are not overlapped as shown in Figure 7. This region behaves like slot antennas and contributes to higher gain.

4 Antennas and Propagation 1 1.2 1.4 1.6 1.8 2 1.2-1.3 GHz j1 1.255 GHz 1.2575 GHz j2 j.5 S11 (db) 1 2 1.2525 GHz j.2 1.2125 GHz.2.5 1.25 GHz 1.215 GHz 1 2 5 j5 1.26 GHz j.2 j5 3 j.5 j2 CFMA 2L-CFMA1 2L-CFMA2 (a) S 11 characteristics j1 Input impedance Radiation impedance (b) Smith chart expression for CFMA 1.5-1.6 GHz j1 1.65-1.75 GHz j1 j.5 1.55 GHz j2 1.575 GHz 1.525 GHz j.2 1.5625 GHz 1.565 GHz.2.5 1 2 5 j5 1.51 GHz j.5 1.7 GHz j2 1.725 GHz 1.6975 GHz j.2 1.71 GHz.2.5 1 2 5 1.695 GHz 1.7125 GHz j5 1.75 GHz j.2 j5 j.2 j5 1.5 GHz j.5 j2 j.5 j2 j1 j1 Input impedance Radiation impedance Input impedance Radiation impedance (c) Smith chart expression for 2L-CFMA1 (d) Smith chart expression for 2L-CFMA2 Figure 5: Simulated input characteristics: (a) S11 characteristics, (b) Smith chart expression for CFMA, (c) Smith chart expression for 2L-CFMA1, and (d) Smith chart expression for 2L-CFMA2. 3.3. Three-Layer Stacked Structure. Based on the previous section, an additional meander line, which is opposite to that of the adjacent layer, is installed with the same height of the feed plate at the feed plate layer of the 2L-CFMA2 to enhance the antenna gain as shown in Figure 8. Therefore, the structure, three-layered CFMA (3L-CFMA), has three layers of meander line although the height of the antenna is the same as that of the 2L-CFMA. The simulated results of input characteristics and the antenna gain are shown in Figures 9 and 1, respectively. The resonance frequency of 3L-CFMA is shifted more to the higher frequency than the 2L-CFMA2 by installing a meander line. A small resonance occurs at around 1.55 GHz where the antenna gain has minimum. This may be due to the capacitance between the

Antennas and Propagation 5 1 1.2 1.4 1.6 1.8 2 Antenna gain 1 2 CFMA 2L-CFMA1 2L-CFMA2 Figure 6: Simulated antenna gain characteristics. (a) 2L-CFMA1 7e + 4 6.75e + 4 6.5e + 4 6.25e + 4 6e + 4 5.75e + 4 5.5e + 4 5.25e + 4 5e + 4 4.75e + 4 4.5e + 4 4.25e + 4 4e + 4 3.75e + 4 3.5e + 4 3.25e + 4 3e + 4 Efield(V/m) (b) 2L-CFMA1 7e + 4 6.75e + 4 6.5e + 4 6.25e + 4 6e + 4 5.75e + 4 5.5e + 4 5.25e + 4 5e + 4 4.75e + 4 4.5e + 4 4.25e + 4 4e + 4 3.75e + 4 3.5e + 4 3.25e + 4 3e + 4 E field (V/m) Figure 7: Electric field on the meander lines two meander lines in the same direction and the inductance offered by the two meander lines. In Figure 9(b), the Smith chart expression shows the input and radiation impedance. The radiation resistance shown here is higher than 2L- CFMA1 and 2. Furthermore, the self-resonance condition is satisfied at 1.727 GHz and 1.735 GHz. These frequencies are higher than those of the other three structures and closer to the serial and parallel resonance frequencies of the input impedance. These differences show that the effect of the metallic loss is smaller than that in other structures. The gain

6 Antennas and Propagation 1.7 mm.5 mm.3 mm #1 2.5 mm #1 Antenna element Ground plane Dielectric substrate (a) (b) (c) (d) Figure 8: Dismantled structure of the 3L-CFMA S11 (db) 1 2 1 1.2 1.4 1.6 1.8 2 j.5 1.73 GHz j.2 1.7-1.8 GHz j1 1.7325 GHz j2 1.735 GHz 1.735 GHz 1.7375 GHz.2.5 1 2 5 1.7275 GHz j.2 j5 1.7375 GHz j5 3 j.5 j1 j2 CFMA 2L-CFMA2 3L-CFMA (a) S 11 characteristics Input impedance Radiation impedance (b) Smith chart expression for 3L-CFMA Figure 9: Simulated input characteristics. Table 1: The antenna characteristics at the resonance frequency. Antenna Resonance frequency (GHz) ka Antenna gain CFMA 1.215.338 9.79 2L-CFMA1 1.57.438 4.84 2L-CFMA2 1.725.481 3.81 Table 2: The antenna characteristics at the resonance frequency. Antenna Resonance frequency (GHz) ka Antenna gain CFMA 1.215.338 9.79 2L-CFMA2 1.725.481 3.81 3L-CFMA 1.7375.485 2.76 of the 3L-CFMA has increased by around 7 db as compared to the CFMA. The antenna characteristics at the resonance frequency are presented in Table 2. 3.4. Measured Results. The 3L-CFMA ( (.13λ.81λ ) with a thickness of 2.8 mm (.16λ <.25λ )andka =.485 <.5) is fabricated and measured. Figure 11 shows the fabricated 3L-CFMA. The simulated and measured results of the S 11 characteristics of the antennas are shown in Figure 12. It could be noticed that measured resonance frequency is shifted to the lower frequency when comparedtothe simulated results. Figure 13 shows the radiation patterns of the antenna. The simulated maximum gain is 2.76 dbi, and the measured gain is 3.81 dbi. Table 3 shows

Antennas and Propagation 7 1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2 Antenna gain 1 S11 (db) 1 2 2 3 CFMA 2L-CFMA2 3L-CFMA Sim (CFMA) Meas (CFMA) Sim (3L-CFMA) Meas (3L-CFMA) Figure 1: Simulated antenna gain characteristics. Figure 12: Simulated and measured S 11 characteristics. 33 3 1 3 6 2 3 4 (mm) 27 9 SMA connector 24 12 Figure 11: Photograph of the 3L-CFMA. Table 3: The antenna characteristics at the resonance frequency. 21 18 Sim-co pol Sim-cross pol Mea-co pol Mea-cross pol 15 Antenna Resonance frequency (GHz) ka Antenna gain (a) yz-plane Sim(CFMA) 1.215.338 9.79 Meas(CFMA) 1.18.328 1.6 Sim(3L-CFMA) 1.7375.485 2.76 Meas(3L-CFMA) 1.4714.411 3.81 3 33 3 6 1 2 3 4 27 9 the simulated and measured antennas characteristics at the resonance frequency. The differences between simulated and measured results are due to fabrication error and slight leakage current. Also, the adhesive used to stack the meander line layers greatly influences the performance of the antenna because the electric field is concentrated at this region. This causes the shift in the resonance frequency and the reduction in the antenna gain. The 3L-CFMA can enhance the gain by around 7 db as compared to the CFMA in measurement. Although the antenna has the same radiation pattern as a dipole antenna, the front-back ratio can be improved by using larger back conductor. 24 21 18 Sim-co pol Sim-cross pol Mea-co pol Mea-cross pol (b) xz-plane 15 12 Figure 13: Radiation patterns of the 3L-CFMA.

8 Antennas and Propagation 4. Conclusion The techniques to enhance the gain of a low-profile, electrically small meander antenna using a capacitive feed structure with stacked layers have been presented. The antenna gain of 9.8 dbi in the CFMA structure can be enhanced by a twolayered stacked meander line antenna with opposite meander lines (2L-CFMA2). The gain of 2L-CFMA2 has increased to 3.81 dbi. Finally, a three-layered meander line antenna (3L-CFMA), which has the same height as that of the 2L- CFMA, could achieve a gain of 2.76 dbi, which is around 7 db higher as compared to the CFMA. These antennas can find their application in RFIDs and mobile terminals. Acknowledgments The authors would like to acknowledge the Japan Science and Technology Agency (JST) for its financial support with the Collaborative Development of Innovative Seeds Program. They would also thank Mr. Kazuki Iwata, Technologist of Kumamoto University, for his technical supports. References [11]C.R.RowellandR.D.Murch, AcapacitivelyloadedPIFA for compact mobile telephone handsets, IEEE Transactions on Antennas and Propagation, vol. 45, no. 5, pp. 837 842, 1997. [12] T.Terada,K.Ide,K.Iwata,andT.Fukusako, Designofasmall, low-profile print antenna using a Peano line, Microwave and Optical Technology Letters, vol. 51, no. 8, pp. 1833 1838, 29. [13] S.-I. Sekine and H. Shoki, Characteristics of T-type monopole antenna with parallel resonance mode, Electronics and Communications in Japan, Part I: Communications, vol. 87, no. 2, pp. 28 36, 24 (Japanese). [14] C. Icheln, J. Krogerus, and P. Vainikainen, Use of balun chokes in small-antenna radiation measurements, IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 2, pp. 498 56, 24. [15] J. C.-E. Sten, A. Hujanen, and P. K. Koivisto, Quality factor of an electrically small antenna radiatingcloseto aconducting plane, IEEE Transactions on Antennas & Propagation, vol. 49, no. 5, pp. 829 837, 21. [16] S.-L. Chen and K.-H. Lin, A folded dipole with a closed loop antenna for RFID applications, in Proceedings of the IEEE Antennas and Propagation Society International Symposium (AP-S 7), pp. 2281 2284, June 27. [17] K. Ide, A small and low profile meander antenna using capacitive feed structure, in Proceedings of the International Symposium on Antennas and Propagation (ISAP 9), pp. 353 356, Bangkok, Thailand, October 29. [1] S. R. Best, A discussion on the properties of electrically small self-resonant wire antennas, IEEE Antennas and Propagation Magazine, vol. 46, no. 6, pp. 9 22, 24. [2] A. Erentok and R. W. Ziolkowski, Metamaterial-inspired efficient electrically small antennas, IEEE Transactions on Antennas and Propagation, vol. 56, no. 3, pp. 691 77, 28. [3] K.V.S.Rao,P.V.Nikitin,andS.F.Lam, Antennadesignfor UHF RFID tags: a review and a practical application, IEEE Transactions on Antennas and Propagation, vol. 53, no. 12, pp. 387 3876, 25. [4] T. Tsukiji and Y. Kumon, Modified transmission line type antennas for mobile communication, IEICE Transactions on Communications, vol. E75-B, no. 8, pp. 775 78, 1992. [5] A. Thumvichit, T. Takano, and Y. Kamata, Ultra low profile dipole antenna with a simplified feeding structure and a parasitic element, IEICE Transactions on Communications, vol. E89-B, no. 2, pp. 576 579, 26. [6] A. Thumvichit, T. Takano, and Y. Kamata, Impedance matching of a half-wavelength dipole in proximity to a PEC plane, in Proceedings of the IEICE General Conference, March 24, B-1-129. [7] S. R. Best, A comparison of the resonant properties of small space-filling fractal antennas, IEEE Antennas and Wireless Propagation Letters, vol. 2, pp. 197 2, 23. [8] W. Choi, S. Kwon, and B. Lee, Ceramic chip antenna using meander conductor lines, Electronics Letters, vol. 37, no. 15, pp. 933 934, 21. [9] A. Galehdar, D. V. Thiel, S. G. O Keefe, and S. P. Kingsley, Efficiency variations in electrically small, meander line RFID antennas, in Proceedings of the IEEE Antennas and Propagation Society International Symposium (AP-S 7), pp. 2273 2276, June 27. [1] G. A. E. Vandenbosch and A. R. Van de Capelle, Study of the capacitively fed microstrip antenna element, IEEE Transactions on Antennas and Propagation, vol. 42, no. 12, pp. 1648 1652, 1994.

Rotating Machinery Engineering The Scientific World Journal Distributed Sensor Networks Sensors Control Science and Engineering Advances in Civil Engineering Submit your manuscripts at Electrical and Computer Engineering Robotics VLSI Design Advances in OptoElectronics Navigation and Observation Chemical Engineering Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Volume 21 Modelling & Simulation in Engineering Shock and Vibration Advances in Acoustics and Vibration