Inductive Power Supply for On-line Monitoring Device

Similar documents
A Novel Method of Auxiliary Power Supply Used in Wide-Range High Voltage Input DC-DC Converter

Study on Power Supply System by Using CT in High-Voltage Transmission Lines

Design and simulation of AC-DC constant current source with high power factor

Optimization of unipolar magnetic couplers for EV wireless power chargers

Research on DC Power Transformer

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

Multilevel inverter with cuk converter for grid connected solar PV system

A fully autonomous power management interface for frequency upconverting harvesters using load decoupling and inductor sharing

ELECTRONICS AND ELECTRICITY

Asymmetrical Half Bridge Double Input DC/DC Converter Adopting More Than One Renewable Energy Sources

Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

SHENZHEN DONGKE SEMICONDUCTOR CO., LTD SPECIFICATION

DESIGN AND ANALYSIS OF LOW POWER CHARGE PUMP CIRCUIT FOR PHASE-LOCKED LOOP

DESIGN FEATURES. Linear Technology Magazine December Figure 1. Simplified application schematic and key waveforms T D 1 T V SP LT3710 PWM RAMP

Hybrid control of high power factor AC/DC regulated power supply

Control simulation of a single phase Boost PFC circuit

A High Voltage Gain DC-DC Boost Converter for PV Cells

Study on the isolated test technologies

Performance Evaluation of Isolated Bi-directional DC/DC Converters with Buck, Boost operations

Highly Efficient step-up Boost-Flyback Coupled Magnetic Integrated Converter for Photovoltaic Energy

Vishay Siliconix AN724 Designing A High-Frequency, Self-Resonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller.

A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER

SHENZHEN DONGKE SEMICONDUCTOR CO., LTD HIGH PERFORMANCE SWITCH MODE POWER CONTROLLER-DK112 SPECIFICATION

Separately Excited DC Motor for Electric Vehicle Controller Design Yulan Qi

Design of Signal Conditioning Circuit for Photoelectric Sensor. , Zhennan Zhang

ULTRA-SMALL PACKAGE PWM/PFM SWITCHING CONTROL STEP-UP SWITCHING REGULATOR. Feature. transistor PACKAGE:SOT23-5. V1.0 Page 1.

2015 International Future Energy Challenge Topic B: Battery Energy Storage with an Inverter That Mimics Synchronous Generators. Qualification Report

CHAPTER 3 MODIFIED FULL BRIDGE ZERO VOLTAGE SWITCHING DC-DC CONVERTER

1.5MHz, 800mA, High-Efficiency PWM Synchronous Step-Down Converter

Enhanced RF to DC converter with LC resonant circuit

PS7516. Description. Features. Applications. Pin Assignments. Functional Pin Description

CR6842. Green-Power PWM Controller with Freq. Jittering. Features. Applications. General Description. Leading-edge blanking on Sense input

Chapter 3 HARD SWITCHED PUSH-PULL TOPOLOGY

SIMULATION OF A BI-DIRECTIONAL DC-DC CONVERTER FOR PV APPLICATIONS

A Study on Energy Harvesting from Sub Transmission System to Power Wireless Sensor Nodes

High-Power-Density 400VDC-19VDC LLC Solution with GaN HEMTs

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

A7221A DC-DC CONVERTER/BUCK (STEP-DOWN) 600KHz, 16V, 2A SYNCHRONOUS STEP-DOWN CONVERTER

Application Note. Low Power DC/DC Converter AN-CM-232

TYPICALLY, a two-stage microinverter includes (a) the

Design of Voltage Regulating Control Device of Improved PID Algorithm for the Vehicle AC Generator Based on DSP

Simulation Analysis of Control System in an Innovative Magnetically-Saturated Controllable Reactor

23V 3A Step-Down DC/DC Converter

Features MIC2193BM. Si9803 ( 2) 6.3V ( 2) VDD OUTP COMP OUTN. Si9804 ( 2) Adjustable Output Synchronous Buck Converter

GS SS14 AIC AIC AIC AIC EXT GND. 100mA Load Current Step-Up Converter

A Novel Integrated Circuit Driver for LED Lighting

AIC AIC AIC AIC EXT GND. 100mA Load Current Step-Up Converter

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India.

MIC2296. General Description. Features. Applications. High Power Density 1.2A Boost Regulator

Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design procedure and concern

Research on the smart measuring system for DC resistance box

(VDD OVP), Cycle-by-cycle Current Limiting (OCP), Short Load Protection (SLP), On-Chip Thermal Shutdown, VDD Clamping, etc.

D1 GS SS12 AIC AIC AIC AIC VOUT GND. One Cell Step-Up DC/DC Converter

ACE726C. 500KHz, 18V, 2A Synchronous Step-Down Converter. Description. Features. Application

ENGR4300 Fall 2005 Test 4A. Name solutions. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points)

Figure.1. Block of PV power conversion system JCHPS Special Issue 8: June Page 89

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion

AT V Synchronous Buck Converter

Coal Mine Lead-acid Battery Intelligent Charger

Analysis and comparison of two high-gain interleaved coupled-inductor boost converters

FP V, 3.1A, 550KHz High Efficiency Low Ripple Synchronous Step-Up Converter. Description. Features. Applications.

SHENZHEN DONGKE SEMICONDUCTOR CO., LTD HIGH PERFORMANCE SWITCH MODE POWER CONTROLLER-DK112 SPECIFICATION

AT V,3A Synchronous Buck Converter

Controlling Power Up and Power Down of the Synchronous MOSFETs in a Half-Bridge Converter

ME A, 1.2MHz Synchronous Step-Up DC/DC Controller. Description. Feature. Selection Guide. Typical Application

AT2596 3A Step Down Voltage Switching Regulators

Isolated Power Supplies for PLC I/O Modules. Industrial Systems - Factory Automation and Control

A Single Stage CCM Zeta Micro inverter for Solar Photovoltaic AC Module. Abstract

AT MHz 2A SOT-26 Step Up DC-DC Converter

Pak. J. Biotechnol. Vol. 14 (Special Issue II) Pp (2017) Sumithra M. and R. Kavitha

Review and Analysis of a Coupled Inductor Based Bidirectional DC-DC Converter

Designing and Implementing of 72V/150V Closed loop Boost Converter for Electoral Vehicle

A New Three-Phase Interleaved Isolated Boost Converter With Solar Cell Application. K. Srinadh

IN THE high power isolated dc/dc applications, full bridge

Open Access Parallel Resonant DC Link Inverter for Thermoacoustic Power Generation

FULL-BRIDGE THREE-PORT CONVERTERS WITH WIDE INPUT VOLTAGE RANGE FOR RENEWABLE POWER SYSTEMS

Photovoltaic Cells Mppt Algorithm and Design of Controller Monitoring System

AT MHz 2A Step Up DC-DC Converter

Design of Clamp Forward Converter Used in Computing Devices

Battery Powered, High Efficiency Synchronous DC/DC Boost Converter. Features

Design of an insulator leakage current measurement system based on PLC

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

ULTRA-SMALL PACKAGE PWM/PFM SWITCHING CONTROL STEP-UP SWITCHING REGULATOR. Feature PACKAGE:SOT23-5,SOT89-5,SOP8

Transformers. Objectives

A Study on Staggered Parallel DC/DC Converter Applied to Energy Storage System

Development of an analog read-out channel for time projection chambers

BM6312 FEATURES GENERAL DESCRIPTION APPLICATIONS. High-performance current mode PWM Controller. Product Specification

Integrated Circuit Approach For Soft Switching In Boundary-Mode Buck Converter

Minimized Standby Power Scheme For Forward Converter With Isolated Output- Feedback

High-Efficiency, 26V Step-Up Converters for Two to Six White LEDs

PWM Controlled, Step-up DC/DC Converter in Tiny Package

Simulation comparison of proportional integral derivative and fuzzy logic in controlling AC-DC buck boost converter

25 Watt DC/DC converter using integrated Planar Magnetics

MIC2290. General Description. Features. Applications. Typical Application. 2mm 2mm PWM Boost Regulator with Internal Schotty Diode

Simulation Comparison of Resonant Reset Forward Converter with Auxiliary Winding Reset Forward Converter

Three phase six-switch PWM buck rectifier with power factor improvement

VCC. UVLO internal bias & Vref. Vref OK. PWM Comparator. + + Ramp from Oscillator GND

LD7552. Green-Mode PWM Controller. Features. General Description. Applications. Typical Application 2/21/2005

Response characteristic of high-speed on/off valve with double voltage driving circuit

A New Method for Start-up of Isolated Boost Converters Using Magnetic- and Winding- Integration

Transcription:

Journal of Physics: Conference Series PAPER OPEN ACCESS Inductive Power Supply for On-line Monitoring Device To cite this article: i Long Xiao et al 018 J. Phys.: Conf. Ser. 1087 06005 View the article online for updates and enhancements. This content was downloaded from IP address 148.51.3.83 on 9/11/018 at 0:38

Inductive Power Supply for On-line Monitoring Device i Long XIAO, Yi Lin JIN, Xu Dong SONG, Xiao Jun CHEN, Xiao Ping HANG Electric Power Research Institute of Guangdong Power Grid Co. Ltd, Guangzhou, Guangdong 510080, China opl90100@163.com Abstract. The development of power supply technology is the key to improve the on-line monitoring device which ensures the reliability and intelligence of power grid. In this paper, a design scheme of inductive power supply for on-line monitoring device is proposed. The AC/DC converter circuit without rectifier bridge and the black-start circuit are designed. The control module uses the backup battery to solve the problem of insufficient power supply and control strategy adopts the principle of MPPT. The validity of scheme is verified by testing the prototype. Test results shows that prototype can not only work in a wide current range of line current and load but also work at maximum power point and change the working mode following the change of load and line current. 1. Introduction The development of smart grid requires on-line monitoring devices to be more intelligent and perfect to ensure the high reliability of power grid. However, the power supply for on-line monitoring devices still has many limitations need to improve. For example, the operating current of the Power Donut (on-line monitoring device manufactured by USI) is higher than 50A, while the load current of 110kV transmission line may appear as low as 0A which would cause the device to not work properly. Besides, some devices have sampling rate limitation due to the limitation of power supply. On the other hand, the weight of the on-line monitoring devices also need to be strictly controlled for the sake of line safety which means the energy density of the power supply should be increased to minimize the weight of the on-line monitoring devices. The power source option of on-line monitoring devices include magnetic fields, electric fields, solar energy and wind energy. The inductive power supply [1-3] based on current transformer is the best choice considering the cost, which is of small size, low cost and easy to install so that it has been widely applied. In this paper, a design scheme of inductive power supply for online monitoring device is proposed, which consists of electrical transformer [4-5], rectifier module, control module and backup battery. The efficiency of electrical transformer is improved by using high energy density magnetic core. The rectifier module adopts AC/DC circuit without rectifier bridge to reduces the loss caused by the rectifier bridge and black-start circuit which could activate the power supply system when the line current is very low. The control module adopts the FSM (Finite State Machine) control mode which ensure the system output stable voltage no matter how the line current changes and MPPT (Maximum Power Point Tracking) control strategy which could track the maximum power point of the magnetic core to improve the energy density of output power. The backup battery ensures the on-line monitoring devices work properly when line current is small even zero and charge itself when line current is large. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by Ltd 1

The inductive power supply designed in this paper can change working mode with the change of line current so that it can supply stable power to on-line monitoring device. This inductive power supply can solve the problem of power supply for on-line monitoring device, which can further improve the reliability of mart grid.. Hardware Design of Inductive Power Supply System The block diagram of inductive power supply system is shown in Figure 1 including transmission line, power coil, rectifier module, control module and load. This system acquires induced current through power coil and raises the voltage above the forward threshold voltage of rectifier transistor through transformer. Then the rectifier circuit which is controlled by DC bias produced by an astable multivibrator output DC voltage to DC/DC circuit. The DC/DC circuit consists of two parts. The first part converts the DC voltage output by rectifier circuit to 5V required for lithium battery charging. The second part converts the voltage to 3.3V required for load. Charge and discharge of lithium battery is controlled by the voltage signal from the secondary side of transformer and the current signal from transmission line, which are both input into MCU and MPPT circuit. Backup battery can supply power to load when power coil cannot get enough energy from line or load increase unexpected. Rectifier Module Power Coil Transformer Transmission Line AC/DC Circuit DC/DC Circuit Black-start Circuit Voltage Signal Load Current Signal MCU MPPT Control Circuit Backup Battery Control Module Figure 1 block diagram of inductive power supply system.1. The output characteristic of power coil The primary side traverse of transformer passes through the power coil, whose current is I 1 and turns number is N 1. The expression for the secondary side voltage E is as follows according to fundamental theory of electro-mechanics when transformer operates in a linear region: E = π fnφ m (1) Where N is the turns number of secondary side and φ m is the max main flux. According to the magnetomotive balance equation of the transformer: 1 1 m 1 I N + I N = I N () Where N 1 is 1, I is the secondary side current, I m is excitation current. The magnetization current I μ is equal to excitation current I m when load is resistive and ignoring the two side internal resistance and iron consumption. Therefore, the relation between the magnetizing current, primary side current and secondary side current is: I = I μ 1 ( NI) (3) The maximum main flux Φ m = BmS, where S is the sectional area of power coil. The magnetic

induction B m = μh m, where Hm = NI 1 μ / l according to Ampere's law. l is average length of magnetic path. Therefore, the output power of secondary side is: I1 Iμ P = EI = π fμiμs (4) l Let I μ be the independent variable and take a derivative of (6) with I μ. The maximum output power is shown in equation (5) when I I1 = : μ P = f SI l (5) π μ / max 1 According to the characteristics of output power, the relationship between the size and the material of the core can be studied. It is also possible to study the maximum power control strategies to achieve higher energy density... Design Scheme of Rectifier Circuit and Black-start circuit The schematic diagram of the rectifier module after power coli is shown in Figure. N1:N R1 R C0 S Ds D + - Rg R3 R4 Figure Schematic diagram of the rectifier module The induced current in power coil is above the forward threshold voltage of rectifier transistor after raised up by transformer, but the boosting capacity is limited by the withstand voltage and the design of the electromagnetic core. That s why there is an AC/DC circuit consisting of MOSFET and diode to boost the voltage again. Rectification is divided into four processes: charging, discharging, charging and discharging in a cycle. In the current path of charging and discharging, the inductance of the power coil and the leakage inductance of the transformer are used as energy storage elements which is charged when MOS is on and discharged when MOS is off. The output of the rectifier circuit is connected to an astable multivibrator which generates DC bias as the firing pulse by positive feedback to accomplish black-start. The voltage regulator tube maintain voltage within the safe operating range of the MOSFET to keep the stability of system. The capacitor is used for filtering and zener diode is for stabling the output voltage. The AC/DC part is more efficient and with lower loss without the rectifier bridge. Besides, the complexity of power management circuits is reduced by using the inductance of the energy core and the leakage inductance of the transformer as energy storage elements rather than another inductor. The schematic diagram of the black-start circuit is shown in Figure 3, which is an astable multivibrator. The input of oscillator is the DC output of AC/DC circuit and the output of black-start circuit is connected MOS through a resistor. The astable multivibrator can generate DC bias by positive feedback to control the on-off state of push-pull circuit when input voltage is very low. The duty cycle is controlled by controlling the ratio of the resistance and capacitance which guarantees the constant DC voltage output of rectifier module. 3

R3 Vin R1 R + - M Vout C0 R4 Figure 3 Schematic diagram of the black-start circuit.3. Design Scheme of Control Module There is a positive correlation between the power supplied by the coil and the line current so that the on-line monitoring devices won t work properly when line current is low. The black-start circuit solve the problem that rectifier module couldn t work without firing pulse when restoration after power failure. While the system still cannot work continuously in case of no-load and light-load which makes the backup battery necessary. The on-off state of the switch is controlled by control module with certain management strategy which is depends on the voltage and current signals of the front circuit. The backup battery is charged through PWM control when line current is large or supply to load when rectifier module cannot afford sufficient power. The block diagram of the control module is shown in Figure 4. UART CT_Volt BATT_Volt LTC_Volt ADC MCU DIGITAL I/O CT_switch Charge_switch BATT_switch Load_switch VDD GND TPS7333 CT_Volt K K3 K4 LM78H05 LITHIUM BATTERY BATT_Volt LT878 LOAD K1 LTC_Volt Figure 4 Block diagram of the control module MCU (Microprogram Control Unit) generates PWM signals to control the CT switch K1, charge switch K, battery switch K3 and load switch K4 by sampling signals including current, voltage and battery voltage. The programmable counting array output of MCU generates PWM wave with variable duty cycle to control the charge current of the battery. K1 is closed under normal situation that rectifier module is supplying power to load while K is closed in the meantime so that battery could be charged. The backup battery would supply power to load when line current is low and K3 is closed. 3. Control Strategy of Inductive Power Supply System The control strategy of inductive power supply system is FSM and MPPT which is implemented by MCU. FSM specifies a time step in advance, then executes instructions and output control signals according to the current and voltage of key point. The control signal remains unchanged until next time step. The power supply system has three operating modes, which are normal operation mode, charging mode and auxiliary power supply mode. The power coil get energy from transmission line to 4

supply power to load and lithium battery acts as backup power when line current is appropriate. The power coil supply power to load and charge the battery when line current is large enough. The battery supply power to load when line current is too low or load is too heavy that power coil cannot supply enough power. The switching criterion between each mode is mainly based on line current, still the maximum and minimum values of the battery voltage should be taken into consideration. The battery can supply power to load when system startup, which ensure the load get enough start power. Then the control module will check the working status of the system to determine which operating mode should the system be. The switch between three operating modes is shown as Figure 5. LOAD POWERED BY BATTERY SYSYTEM STARTUP OR BLACK- START I<10A I>15A I<10A 10A<I<15A LOAD POWERED BY POWER COIL AND BATTERY CHARGED 10A<I<15A or sufficient battery capacity I>15A and insufficient battery capacity LOAD POWERED BY POWER COIL Figure 5 Operating modes switch 3.1. Design Scheme of MPPT Circuit MPPT control refers to the dynamic control of the output power of power coil when the primary side current is small, so that it always operates at the maximum power point. The size and weight of the power coil is reduced by this control strategy. We can conclude that the output power of the power coil will reach to the maximum when I μ = I 1. Then the magnetizing current Iμ, output current I sec and output voltage V secpmax may be expressed as follows: I = I (6) sec μ πμ f NSI 1 Vsec p = (7) max l Therefore, the power coil will output maximum power when the output voltage is V secpmax as in (7) and lag the primary side current I 1 45 degrees (assuming the load is resistive). The block diagram of MPPT is shown in Figure 6. POWER COIL RECTIFIER Vsec K1 AC/DC Vsec1 DIODE MOSFET OUTPUT Vref COMPARATOR1 DIODE TRANSMISSION LINE RECTIFIER AND PHASE SHIFIT MODULE K Vset LOCK COMPARATOR Figure 6 Block diagram of MPPT BATTERY V sec1 is the output of power coil after rectification and amplification. V ref is the output of measuring coil after rectification, amplification and phase-shifting φ degrees. Let V ref is equal to V secpmax /K 1 and lag the primary side current I 1 45 degrees by setting the value of K and φ. The comparator 1 5

compares the value of V ref with V sec to control the state of MOS. The switch is on and battery supply power to load when V ref > V sec. The switch is off and load is supplied by power coil when V ref < V sec. The output voltage of the coil can be adjusted by changing the duty cycle of the switch so that the V sec always follow V ref which means the power coil always outputs the maximum power. V set is the minimum voltage that enables the AC/DC circuit to work. The comparator lock down the comparator 1 when V ref < V set to turn on the switch so that the load is supplied by battery. Diodes ensure the battery and AC/DC circuit only supply power to load. The maximum power tracking circuit cooperates with the MCU to realize power management of the system. 3.. Control Strategy of AC/DC circuit The AC/DC circuit proposed by this paper adopts MOSFET and diode instead of rectifier bridge, which needs corresponding control strategy. Rectification is divided into four processes: charging, discharging, charging and discharging in a cycle which is shown in Figure 7. The inductance of the power coil and the leakage inductance of the transformer are used as energy storage elements. The inductance is charged when 0<ωt<π/ and MOS is on as shown in process Ⅰ. The inductance is discharged and supply power to load when π/<ωt<π and MOS is off as shown in process Ⅱ. The inductance is charged when π<ωt< 3π/ and MOS is on as shown in process Ⅲ. Process Ⅳ is the same as process Ⅱ that the inductance is discharged and supply power to load. N1:N N1:N S Ds S Ds G D G D (a) Process Ⅰ (b)process Ⅱ N1:N N1:N S Ds S Ds G D G D (c)process Ⅲ (d)process Ⅳ Figure 7 Four process in rectification 4. System Test and Result Analysis A prototype of power supply system is developed and tested to verify the validity of design scheme proposed by this paper. The output power coil is tested when transmission line current is 5A,10A,15A and 0A. The result is shown in Figure 8. 6

Figure 8 Test result of output power The result shows that the output power is nearly 600mW when line current is 10A. The output power of power supply system is even more than 300mW considering the loss of system which meets most of the power requirements of on-line monitoring devices. The black-start and mode switching function of the power supply system is tested. The result shows that the system can work properly in a wide range of line current and load. Besides the system can maintain more than 75% power conversion efficiency in normal working mode. The prototype is shown in Figure 9. Figure 9 Prototype of power supply system 5. Conclusion This paper proposed a design scheme of inductive power supply including structure, hardware and control strategy. This paper studied the output characteristics of the power coil and MPPT control strategy to develop the global control strategy. Besides, this paper designed black-start circuit, backup battery and rectifier circuit without rectifier bridge. The test result shows that system can supply more than 300mW power when line current is 10A which meets most of the power requirements of on-line monitoring devices. The power supply can supply stable power when line current is very low which ensure the on-line monitoring device work properly when grid restore from power failure. Furthermore the control strategy ensure the power supply work at maximum power point and change the working mode following the change of load and line current. References [1] X Cao, C Yang, H zhang. The Designment of A Inductive Current Power Supply Applied on Wireless Temperature Measurement System for High Voltage Electrical Equipment [J]. Science Technology and Engineering, 013,18:5334-5338. [] Y Liu, G Sheng, K Wang, et al. A New Design of Current Transformer Energy Harvesting Power Supply Based on Phase Angle Control Method [J]. Automation of Electric Power System,010,03:70-74. [3] Y Liu, G Sheng, Y Wang, et al. Current Transformer Draw-out Power Supply Design Based on Power-controlled Method [J]. Automation of Electric Power System,010,03:70-74. 7

[4] S hen. Current Transformer Feeding Switching Power Supplies [D]. Xi an University of Science and Technology,013. [5] J Wei, Q hou, Y Li. An Application Research of the Technique of Taking Power from the Current Transformer in the Intelligent Distribution Network [J]. Enterprise Science And Technology & Development,013,08:5-8. 8