Transmit filter designs for ADSL modems

Similar documents
Transmit filter designs for ADSL modems

Integrators, differentiators, and simple filters

EK307 Active Filters and Steady State Frequency Response

EE 233 Circuit Theory Lab 4: Second-Order Filters

Sallen-Key_High_Pass_Filter -- Overview

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

EE 233 Circuit Theory Lab 2: Amplifiers

Experiment 8 Frequency Response

EE4902 C Lab 7

ECE4902 C Lab 7

2. BAND-PASS NOISE MEASUREMENTS

EE233 Autumn 2016 Electrical Engineering University of Washington. EE233 HW7 Solution. Nov. 16 th. Due Date: Nov. 23 rd

The above figure represents a two stage circuit. Recall, the transfer function relates. Vout

ECEN 325 Lab 5: Operational Amplifiers Part III

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1.

Laboratory Project 1: AC Circuit Measurements and Simulation

Build Your Own Bose WaveRadio Bass Preamp Active Filter Design

Butterworth Active Bandpass Filter using Sallen-Key Topology

FREQUENCY RESPONSE OF COMMON COLLECTOR AMPLIFIER

Laboratory 6. Lab 6. Operational Amplifier Circuits. Required Components: op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0.

EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab. Prelab Part I: RC Circuit

Introduction to Signals, Passive RC Filters and Opamps

ECE159H1S University of Toronto 2014 EXPERIMENT #2 OP AMP CIRCUITS AND WAVEFORMS ECE159H1S

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING

ECEN Network Analysis Section 3. Laboratory Manual

Lab 4: Analysis of the Stereo Amplifier

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 5 RC Circuits Frequency Response

LAB 4 : FET AMPLIFIERS

EE-2302 Passive Filters and Frequency Response

ELEG 205 Analog Circuits Laboratory Manual Fall 2016

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

Low_Pass_Filter_1st_Order -- Overview

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS

When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp

Welcome to your second Electronics Laboratory Session. In this session you will learn about how to use resistors, capacitors and inductors to make

PHYSICS 330 LAB Operational Amplifier Frequency Response

UNIVERSITY OF UTAH ELECTRICAL ENGINEERING DEPARTMENT

Operational Amplifiers

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp

ACTIVE FILTERS USING OPERATIONAL AMPLIFIERS

Step Response of RC Circuits

BME 3512 Bioelectronics Laboratory Six - Active Filters

EE351 Laboratory Exercise 4 Field Effect Transistors

EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope

Lab 9 Frequency Domain

Physics 303 Fall Module 4: The Operational Amplifier

Part VI: Requirements for Integrated Services Digital Network Terminal Equipment

Laboratory 2 (drawn from lab text by Alciatore)

EE 233 Circuit Theory Lab 3: First-Order Filters

Lab 2 Operational Amplifier

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope

Lab 6: Instrumentation Amplifier

FREQUENCY RESPONSE OF COMMON COLLECTOR AMPLIFIER

University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS

Lab 2: Discrete BJT Op-Amps (Part I)

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

EE 230 Lab Lab 9. Prior to Lab

EK307 Passive Filters and Steady State Frequency Response

Gechstudentszone.wordpress.com

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET

Digital Applications of the Operational Amplifier

Homework Assignment 03

15EEE282 Electronic Circuits and Simulation Lab - I Lab # 6

Experiment #7: Designing and Measuring a Common-Emitter Amplifier

LABORATORY 5 v3 OPERATIONAL AMPLIFIER

ECE 231 Laboratory Exercise 3 Oscilloscope/Function-Generator Operation ECE 231 Laboratory Exercise 3 Oscilloscope/Function Generator Operation

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore)

EE311: Electrical Engineering Junior Lab, Fall 2006 Experiment 4: Basic MOSFET Characteristics and Analog Circuits

Exercise 3 Operational Amplifiers and feedback circuits

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ISOlinear Architecture. Silicon Labs CMOS Isolator. Figure 1. ISOlinear Design Architecture. Table 1. Circuit Performance mv 0.

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

Lab 0: Introduction to basic laboratory instruments. Revised by Dan Hoang & Tai-Chang Chen 03/30/2009

Active Filter Design Techniques

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

Theory: The idea of this oscillator comes from the idea of positive feedback, which is described by Figure 6.1. Figure 6.1: Positive Feedback

ENSC 220 Lab #2: Op Amps Vers 1.2 Oct. 20, 2005: Due Oct. 24, 2004

Test No. 1. Introduction to Scope Measurements. Report History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 1

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis

Lab 9: Operational amplifiers II (version 1.5)

Sampling and Reconstruction

Lab Project EE348L. Spring 2005

Operational Amplifier Circuits

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers

Experiment 6: Biasing Circuitry

Assignment 8 Analyzing Operational Amplifiers in MATLAB and PSpice

EXPERIMENT NUMBER 8 Introduction to Active Filters

VCC. Digital 16 Frequency Divider Digital-to-Analog Converter Butterworth Active Filter Sample-and-Hold Amplifier (part 2) Last Update: 03/19/14

Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope

Introduction to basic laboratory instruments

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER

EE 230 Lab Lab nf C 2. A. Low-Q low-pass active filters. (a) 10 k! Figure 1. (a) First-order low-pass. (b) Second-order low-pass.

Chapter 1: DC circuit basics

EE431 Lab 1 Operational Amplifiers

Transcription:

Transmit filter designs for ADSL modems 1. OBJECTIVES... 2 2. REFERENCE... 2 3. CIRCUITS... 2 4. COMPONENTS AND SPECIFICATIONS... 3 5. DISCUSSION... 3 6. PRE-LAB... 4 6.1 RECORDING SPECIFIED OPAMP PARAMETERS FOR ANALYSIS AND DESIGN... 4 6.2 BASIC SALLEN-KEY FILTER SPECIFICATIONS... 4 6.3 DESIGN PROCEDURE... 4 7. EXPERIMENTAL PROCEDURES... 5 7.1 INSTRUMENTS NEEDED FOR THIS EXPERIMENT... 5 7.2 BASIC SALLEN-KEY FILTER... 5 8. DATA ANALYSIS... 5 8.1 BASIC SALLEN-KEY FILTER... 5 9. FURTHER RESEARCH... 5 10. SELF-TEST... 6-1 -

1. Objectives Design a filter from a given topology and specifications. Analyze the characteristics of the designed filter. Use SPICE to verify circuit designs before building the circuit. Measure the characteristics of the designed filter. 2. Reference The opamp characteristics and circuits are covered in the textbook. Make sure you know how to analyze circuits using the simple ideal opamp model. Review the materials on gain plotting (db vs. log frequency). Review the procedure to compute the transfer function and 3-dB frequency of a circuit. Review the usage of the dual power supply that can set two tracked supply values (e.g. +10V and 10V). The convention is to use V CC to denote the positive supply and V EE to denote the negative supply. The only knowledge required for this experiment is: time-domain analysis, basic opamp circuit analysis, impedance of components, frequency-domain analysis, plotting gain (db) as function of frequency, and transfer function. No general knowledge of filters is required. 3. Circuits You will design, analyze, simulate, and test the circuit in Figure 1. - 2 -

C2 Vi R1 Vf R2 C1 Vp Vo Vn R4 R3 4. Components and specifications Figure 1. Basic Sallen-Key filter. The components to be used are resistors, capacitors, and operational amplifiers. Resistors and capacitors come in pre-determined sizes, so their values cannot be arbitrarily selected. When you select a component value, make sure that the component of this specific value is available from the stockroom. Opamp specifications are available from the laboratory web site of this course or manufacturers web sites. Check your component and download the appropriate specifications. 5. Discussion Asymmetric-digital-subscriber-line (ADSL) modems are commonly used for internet connections with speed up to 100 times faster than 56K modems on existing phone lines. They also permit simultaneous phone and modem usage. The transmit filter at the front end of the ADSL modem is a very important circuit performing the following functions: 1. The transmit filter pre-processes the signal to limit its bandwidth. The filter output drives the digital-to-analog converter interfacing with the telephone line. 2. The transmit filter usually is a bandpass filter to eliminate low-frequency noise and to reduce interference in the receive band. The starting point of all transmit filters in ADSL modems is the basic Sallen-Key filter depicted in Figure 1. It has a minimum number of components and is simple to design. The standard - 3 -

specifications are a passband from 1.7 KHz to 119 KHz, with a very steep slope at higher frequencies to reduce interference. To simplify the design for this laboratory, we will design a low-pass filter instead of a bandpass filter. Several design procedures exist to select the component values to realize a given specification. We will choose the simplest of these design procedures in this experiment. 6. Pre-lab 6.1 Recording specified opamp parameters for analysis and design Go over the specifications of the opamp to be used and write down the typical values of the opamp parameters assuming the power supplies are ±12 V. 6.2 Basic Sallen-Key filter specifications The filter will be designed to be a low-pass filter, with a 3-dB frequency of 1 KHz and lowfrequency gain of 2. 6.3 Design procedure For the circuit in Figure 1 with power supplies V CC = 12 V, V EE = -12 V, and assuming an ideal opamp, answer the following questions: 1. Derive the transfer function H(s) of the filter. Hint: write KCL at the nodes Vf, Vp, and Vn. 2. From the equation in item 1 above, select the values of R3 and R4 so that the low-frequency gain of the circuit is 2 (from the gain specification in section 6.2). 3. To simplify the design procedure, assume R1=R2=R and C1=C2=C. Simplify the equation in item 1 above. 4. From the simplified equation in item 3, what is the expression for the 3-dB frequency in terms of R and C? Since the 3-dB frequency is specified in section 6.2 to be 1 KHz, select the component values for R and C. Hint: since the available capacitor values are more restricted than the available resistor values, pick the capacitor value first then pick the resistor value to satisfy the frequency specification. At this point, the design is completed since you have selected values for all the components of the circuit in Figure 1. 5. Plot the gain (db) of the circuit as function of frequency from 10 Hz to 50 KHz. From this plot, does your design have the correct values for the low-frequency gain and the 3-dB frequency as specified? If it does not, it is not a good design and will need to be re-designed. 6. Simulate the design with SPICE, still assuming an ideal opamp, to make sure the circuit works as designed. Use SPICE AC analysis to plot gain as function of frequency from 10 Hz to 50 KHz. From this plot, does your design have the correct values for the low-frequency gain and the 3-dB frequency as specified? If it does not, it is not a good design and will need to be re-designed. - 4 -

7. Experimental procedures 7.1 Instruments needed for this experiment The instruments needed for this experiment are: a power supply, a function generator, a multimeter, and an oscilloscope. Review the characteristics of ideal and non-ideal opamps and the proper handling of integrated circuit packages. In this lab, do not apply signals that exceed the slew rate limitation of the opamp. 7.2 Basic Sallen-Key filter 1. Build the circuit in Figure 1 using power supplies ±12 V and the component values from your design in the Pre-lab. 2. Use a sine wave input with small amplitude so that the output is not affected by the slew rate in this part. From the starting input frequency of 10 Hz and varying it using 1-2-5 sequence up to 50 KHz (i.e. set input frequency to 10 Hz, 20 Hz, 50 Hz, 100 Hz, 200 Hz, up to 50 KHz). Display the input and output waveforms (2 complete cycles) on the scope. For each frequency setting above, measure the gain of the circuit. 3. Near the specified 3-dB frequency of 1 KHz, take extra gain measurements at frequencies 800 Hz, 900 Hz, 1 KHz, 1.1 KHz, and 1.2 KHz so the corner can be estimated accurately. 4. Use a table to store the frequency and gain data from the measurements in items 2 and 3 above. 5. Get a hardcopy output from the scope display with both waveforms for each of these 3 frequencies: 100 Hz, 1 KHz, 10 KHz. Turn these 3 hardcopies in as part of your lab report. 8. Data analysis 8.1 Basic Sallen-Key filter 1. From the table of data in item 4 section 7.2, plot the gain (db) of this circuit versus frequency. 2. Compare the experimental gain plot in item 1 above with the calculated gain plot in the pre-lab (item 5 section 6.3) and with the gain as simulated by SPICE (item 6 section 6.3). Explain any difference between these 3 plots. 3. Is the measured value of the 3-dB frequency the same as the frequency specification in section 6.2? Explain any difference. 4. Is the measured value of the low-frequency gain the same as the gain specification in section 6.2? Explain any difference. 9. Further research 1. Select the resistors R3 and R4 so that the low-frequency gain of the circuit in the lab is much larger than 3. Build the circuit and see what it does (it does a very interesting thing!). 2. Look up the design of the same Sallen-Key filter in any opamp cookbook but use the bandpass case. Pick the component values and build the bandpass circuit used in ADSL modems. Push the - 5 -

performance limits (slew rate, frequency, different input signal types, etc.) and see what the circuit does when the opamp no longer operates in the ideal region. Measure the waveforms in the lab and correlate with the opamp characteristics. 10. Self-test 1. Apply a large signal to any of the circuit in this lab and see when the slew rate limitation begins to show up. At what amplitude if the frequency is low? At what frequency if the output amplitude is kept fixed (say at ±5 V)? 2. Use the digital multi-meter in the RMS measurement mode and see if you can measure the gain of an amplifier as function of frequency. Set the input frequency and measure the output RMS value at that frequency. From this RMS output value, calculate the gain, then from the data points (frequency, gain) as the frequency varies, reproduce the gain plot. How is this plot compared to the plots obtained from hand calculation, SPICE simulation, and scope data? - 6 -