Ultraprecision Operational Amplifier OP177

Similar documents
Ultralow Offset Voltage Operational Amplifier OP07

Ultraprecision Operational Amplifier OP177

Dual Low Offset, Low Power Operational Amplifier OP200

Ultralow Offset Voltage Operational Amplifier OP07

Ultralow Offset Voltage Dual Op Amp AD708

Quad Low Offset, Low Power Operational Amplifier OP400

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676

Quad Low Offset, Low Power Operational Amplifier OP400

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP

Dual Low Power Operational Amplifier, Single or Dual Supply OP221

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

150 μv Maximum Offset Voltage Op Amp OP07D

AD864/AD8642/AD8643 TABLE OF CONTENTS Specifications... 3 Electrical Characteristics... 3 Absolute Maximum Ratings... 5 ESD Caution... 5 Typical Perfo

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482

Next Generation OP07 Ultralow Offset Voltage Operational Amplifier OP77

Low Power, High Precision Operational Amplifier OP97

Micropower Precision CMOS Operational Amplifier AD8500

Low Power, Precision, Auto-Zero Op Amps AD8538/AD8539 FEATURES Low offset voltage: 13 μv maximum Input offset drift: 0.03 μv/ C Single-supply operatio

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084

Dual Picoampere Input Current Bipolar Op Amp AD706

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084

Low Voltage Micropower Quad Operational Amplifier OP490

Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD8641/AD8642/AD8643

Dual Precision, Low Cost, High Speed BiFET Op Amp AD712-EP

Dual Picoampere Input Current Bipolar Op Amp AD706. Data Sheet. Figure 1. Input Bias Current vs. Temperature

Low Cost, Precision JFET Input Operational Amplifiers ADA4000-1/ADA4000-2/ADA4000-4

Self-Contained Audio Preamplifier SSM2019

Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers

Dual Low Bias Current Precision Operational Amplifier OP297

Precision, Low Power, Micropower Dual Operational Amplifier OP290

Dual Picoampere Input Current Bipolar Op Amp AD706

Precision, Low Power, Micropower Dual Operational Amplifier OP290

Low Cost Low Power Instrumentation Amplifier AD620

Improved Second Source to the EL2020 ADEL2020

16 V, 4 MHz RR0 Amplifiers AD8665/AD8666/AD8668

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers AD8605/AD8606/AD8608

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628

Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps AD8597/AD8599 PIN CONFIGURATIONS FEATURES APPLICATIONS

Low Voltage, Micropower, Quad Operational Amplifier OP490

Precision Picoampere Input Current Quad Operational Amplifier OP497

Quad Matched 741-Type Operational Amplifiers OP11

AD8613/AD8617/AD8619. Low Cost Micropower, Low Noise CMOS Rail-to-Rail, Input/Output Operational Amplifiers PIN CONFIGURATIONS FEATURES APPLICATIONS

Very Low Distortion, Precision Difference Amplifier AD8274

Ultralow Input Bias Current Operational Amplifier AD549

Dual Picoampere Input Current Bipolar Op Amp AD706

AD8603/AD8607/AD8609. Precision Micropower, Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers

TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... 2 Specifications... 3 Absolute Maximum

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION

Quad 7 ns Single Supply Comparator AD8564

Ultralow Offset Voltage Dual Op Amp AD708

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

High Voltage, Current Shunt Monitor AD8215

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp AD820

OP SPECIFICATIONS ELECTRICAL CHARACTERISTICS (V S = ± V, T A = C, unless otherwise noted.) OPA/E OPF OPG Parameter Symbol Conditions Min Typ Max Min T

OBSOLETE. High-Speed, Dual Operational Amplifier OP271 REV. A. Figure 1. Simplified Schematic (One of the two amplifiers is shown.

Rail-to-Rail, High Output Current Amplifier AD8397

24 MHz Rail-to-Rail Amplifiers with Shutdown Option AD8646/AD8647/AD8648

10-Channel Gamma Buffer with VCOM Driver ADD8710

Precision Instrumentation Amplifier AD524

Low Cost, High Speed Differential Amplifier AD8132

Quad Picoampere Input Current Bipolar Op Amp AD704

1.8 V Low Power CMOS Rail-to-Rail Input/Output Operational Amplifier AD8515

Precision Micropower Single Supply Operational Amplifier OP777

16 V, 1 MHz, CMOS Rail-to-Rail Input/Output Operational Amplifier ADA4665-2

270 MHz, 400 μa Current Feedback Amplifier AD8005

High Voltage, Current Shunt Monitor AD8215

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

1.5 GHz Ultrahigh Speed Op Amp AD8000

6 db Differential Line Receiver

1.5 GHz Ultrahigh Speed Op Amp AD8000

High Speed, G = +2, Low Cost, Triple Op Amp ADA4862-3

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628

High Voltage, Low Noise, Low Distortion, Unity-Gain Stable, High Speed Op Amp ADA4898-1/ADA4898-2

High Accuracy 8-Pin Instrumentation Amplifier AMP02

4 MHz, 7 nv/ Hz, Low Offset and Drift, High Precision Amplifier ADA EP

High Common-Mode Voltage Programmable Gain Difference Amplifier AD628

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

OP07C PRECISION OPERATIONAL AMPLIFIERS

Zero Drift, Unidirectional Current Shunt Monitor AD8219

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD8276

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Low Cost, General Purpose High Speed JFET Amplifier AD825

High Precision 10 V Reference AD587

Low Cost, DC to 500 MHz, 92 db Logarithmic Amplifier AD8307

High-Speed, Low-Power Dual Operational Amplifier AD826

1.8 V, Micropower, Zero-Drift, Rail-to-Rail Input/Output Op Amp ADA4051-2

ADA485-/ADA485- TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... Specifications... 3 Spe

Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822

Single-Supply 42 V System Difference Amplifier AD8205

Ultralow Power, Rail-to-Rail Output Operational Amplifiers OP281/OP481

Dual Bipolar/JFET, Audio Operational Amplifier OP275*

TABLE OF CONTENTS Features... Applications... General Description... Pin Configurations... Driving Heavy Loads... 0 Direct Access Arrangement... 0 Sin

Precision, 16 MHz CBFET Op Amp AD845

Precision Low Power Single-Supply JFET Amplifier AD8627/AD8626/AD8625

Zero Drift, Digitally Programmable Instrumentation Amplifier AD8231-EP OP FUNCTIONAL BLOCK DIAGRAM FEATURES ENHANCED PRODUCT FEATURES

Transcription:

Ultraprecision Operational Amplifier FEATURES Ultralow offset voltage TA = 25 C, 25 μv maximum Outstanding offset voltage drift 0. μv/ C maximum Excellent open-loop gain and gain linearity 2 V/μV typical CMRR: 30 db minimum PSRR: 5 db minimum Low supply current 2.0 ma maximum Fits industry-standard precision op amp sockets GENERAL DESCRIPTION The features one of the highest precision performance of any op amp currently available. Offset voltage of the is only 25 μv maximum at room temperature. The ultralow VOS of the combines with its exceptional offset voltage drift (TCVOS) of 0. μv/ C maximum to eliminate the need for external VOS adjustment and increases system accuracy over temperature. The open-loop gain of 2 V/μV is maintained over the full ±0 V output range. CMRR of 30 db minimum, PSRR of 20 db minimum, and maximum supply current of 2 ma are just a few examples of the excellent performance of this PIN CONFIGURATION V OS TRIM IN 2 IN 3 V 4 TOP VIEW (Not to Scale) 8 V OS TRIM 7 V 6 OUT 5 NC NC = NO CONNECT Figure. 8-Lead PDIP (P-Suffix), 8-Lead SOIC (S-Suffix) operational amplifier. The combination of outstanding specifications of the ensures accurate performance in high closed-loop gain applications. This low noise, bipolar input op amp is also a cost effective alternative to chopper-stabilized amplifiers. The provides chopper-type performance without the usual problems of high noise, low frequency chopper spikes, large physical size, limited common-mode input voltage range, and bulky external storage capacitors. The is offered in the 40 C to 85 C extended industrial temperature ranges. This product is available in 8-lead PDIP, as well as the space saving 8-lead SOIC. 00289-00 FUNCTIONAL BLOCK DIAGRAM V R 2A * (OPTIONAL NULL) R 2B * C R7 R A R B 2B Q 9 Q 9 Q 0 NONINVERTING INVERTING R 3 R 4 Q 5 Q 2 Q 22 Q 7 Q 23 Q 24 Q 3 Q Q 6 Q 8 Q 4 Q 2 Q 27 Q 26 Q 25 Q Q 2 C 3 C 2 R 5 Q 4 Q 7 Q 6 Q 5 Q 8 R 9 Q 20 R 0 OUTPUT Q 3 R 6 R 8 V *R 2A AND R 2B ARE ELECTRONICALLY ADJUSTED ON CHIP AT FACTORY. 00289-002 Figure 2. Simplified Schematic Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. 2006 Analog Devices, Inc. All rights reserved.

SPECIFICATIONS ELECTRICAL CHARACTERISTICS @ VS = ±5 V, TA = 25 C, unless otherwise noted. Table. F G Parameter Symbol Conditions Min Typ Max Min Typ Max Unit OFFSET VOLTAGE VOS 0 25 20 60 μv LONG-TERM OFFSETT Voltage Stability ΔVOS/time 0.3 0.4 μv/mo OFFSET CURRENT IOS 0.3.5 0.3 2.8 na BIAS CURRENT IB 0.2.2 2 0.2.2 2.8 na NOISE VOLTAGE en fo = Hz to 00 Hz 2 8 50 8 50 nv rms NOISE CURRENT in fo = Hz to 00 Hz 2 3 8 3 8 pa rms RESISTANCE Differential Mode 3 RIN 26 45 8.5 45 MΩ RESISTANCE COMMON MODE RINCM 200 200 GΩ VOLTAGE RANGE 4 IVR ±3 ±4 ±3 ±4 V COMMON-MODE REJECTION RATIO CMRR VCM = ±3 V 30 40 5 40 db POWER SUPPLY REJECTION RATIO PSRR VS = ±3 V to ±8 V 5 25 0 20 db LARGE SIGNAL VOLTAGE GAIN AVO RL 2 kω, VO = ±0 V 5 5000 2,000 2000 6000 V/mV OUTPUT VOLTAGE SWING VO RL 0 kω ±3.5 ±4.0 ±3.5 ±4.0 V RL 2 kω ±2.5 ±3.0 ±2.5 ±3.0 V RL kω ±2.0 ±2.5 ±2.0 ±2.5 V SLEW RATE 2 SR RL 2 kω 0. 0.3 0. 0.3 V/μs CLOSED-LOOP BANDWIDTH 2 BW AVCL = 0.4 0.6 0.4 0.6 MHz OPEN-LOOP OUTPUT RESISTANCE RO 60 60 Ω POWER CONSUMPTION PD VS = ±5 V, no load 50 60 50 60 mw VS = ±3 V, no load 3.5 4.5 3.5 4.5 mw SUPPLY CURRENT ISY VS = ±5 V, no load.6 2.6 2 ma OFFSET ADJUSTMENT RANGE RP = 20 kω ±3 ±3 mv Long-term input offset voltage stability refers to the averaged trend line of VOS vs. time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in VOS during the first 30 operating days are typically less than 2.0 μv. 2 Sample tested. 3 Guaranteed by design. 4 Guaranteed by CMRR test condition. 5 To ensure high open-loop gain throughout the ±0 V output range, AVO is tested at 0 V VO 0 V, 0 V VO 0 V, and 0 V VO 0 V. Rev. E Page 3 of 6

@ VS = ±5 V, 40 C TA 85 C, unless otherwise noted. Table 2. F G Parameter Symbol Conditions Min Typ Max Min Typ Max Unit Input Offset Voltage VOS 5 40 20 00 μv Average Input Offset Voltage Drift TCVOS 0. 0.3 0.7.2 μv/ C Input Offset Current IOS 0.5 2.2 0.5 4.5 na Average Input Offset Current Drift 2 TCIOS.5 40.5 85 pa/ C Input Bias Current IB 0.2 2.4 4 2.4 ±6 na Average Input Bias Current Drift 2 TCIB 8 40 5 60 pa/ C Input Voltage Range 3 IVR ±3 ±3.5 ±3 ±3.5 V COMMON-MODE REJECTION RATIO CMRR VCM = ±3 V 20 40 0 40 db POWER SUPPLY REJECTION RATIO PSRR VS = ±3 V to ±8 V 0 20 06 5 db LARGE-SIGNAL VOLTAGE GAIN 4 AVO RL 2 kω, VO = ±0 V 2000 6000 000 4000 V/mV OUTPUT VOLTAGE SWING VO RL 2 kω ±2 ±3 ±2 ±3 V POWER CONSUMPTION PD VS = ±5 V, no load 60 75 60 75 mw SUPPLY CURRENT ISY VS = ±5 V, no load 20 2.5 2 2.5 ma TCVOS is sample tested. 2 Guaranteed by endpoint limits. 3 Guaranteed by CMRR test condition. 4 To ensure high open-loop gain throughout the ±0 V output range, AVO is tested at 0 V VO 0 V, 0 V VO 0 V, and 0 V VO 0 V. TEST CIRCUITS 200kΩ 50Ω V OS = V O 4000 V O Figure 3. Typical Offset Voltage Test Circuit 00289-003 20kΩ V V OUTPUT V OS TRIM RANGE IS TYPICALLY ±3.0mV Figure 4. Optional Offset Nulling Circuit 00289-004 20kΩ 20V PINOUTS SHOWN FOR P AND Z PACKAGES 20V Figure 5. Burn-In Circuit 00289-005 Rev. E Page 4 of 6

ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Ratings Supply Voltage ±22 V Internal Power Dissipation 500 mw Differential Input Voltage ±30 V Input Voltage ±22 V Output Short-Circuit Duration Indefinite Storage Temperature Range 65 C to 25 C Operating Temperature Range 40 C to 85 C Lead Temperature (Soldering, 60 sec) 300 C DICE Junction Temperature (TJ) 65 C to 50 C For supply voltages less than ±22 V, the absolute maximum input voltage is equal to the supply voltage. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. THERMAL RESISTANCE θja is specified for worst-case mounting conditions, that is, θja is specified for device in socket for PDIP; θja is specified for device soldered to printed circuit board for SOIC package. Table 4. Thermal Resistance Package Type θja θjc Unit 8-Lead PDIP (P-Suffix) 03 43 C/W 8-Lead SOIC (S-Suffix) 58 43 C/W ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. E Page 5 of 6

OUTLINE DIMENSIONS 0.400 (0.6) 0.365 (9.27) 0.355 (9.02) PIN 0.20 (5.33) MAX 0.50 (3.8) 0.30 (3.30) 0.5 (2.92) 0.022 (0.56) 0.08 (0.46) 0.04 (0.36) 8 0.00 (2.54) BSC 0.070 (.78) 0.060 (.52) 0.045 (.4) 5 0.280 (7.) 0.250 (6.35) 4 0.240 (6.0) 0.05 (0.38) MIN SEATING PLANE 0.005 (0.3) MIN 0.060 (.52) MAX 0.05 (0.38) GAUGE PLANE 0.325 (8.26) 0.30 (7.87) 0.300 (7.62) 0.430 (0.92) MAX 0.95 (4.95) 0.30 (3.30) 0.5 (2.92) 0.04 (0.36) 0.00 (0.25) 0.008 (0.20) COMPLIANT TO JEDEC STANDARDS MS-00-BA CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS. Figure 33. 8-Lead Plastic Dual In-Line Package (PDIP) P-Suffix (N-8) Dimensions show in inches and (millimeters) 5.00 (0.968) 4.80 (0.890) 4.00 (0.574) 3.80 (0.497) 8 5 4 6.20 (0.2440) 5.80 (0.2284) 0.25 (0.0098) 0.0 (0.0040) COPLANARITY 0.0.27 (0.0500) BSC SEATING PLANE.75 (0.0688).35 (0.0532) 0.5 (0.020) 0.3 (0.022) 0.25 (0.0098) 0.7 (0.0067) 8 0 0.50 (0.096) 0.25 (0.0099) 45.27 (0.0500) 0.40 (0.057) COMPLIANT TO JEDEC STANDARDS MS-02-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 34. 8-Lead Standard Small Outline Package (SOIC_N) S-Suffix (R-8) Dimensions shown in millimeters and( inches) Rev. E Page 3 of 6

ORDERING GUIDE Model Temperature Range Package Description Package Option FP 40 C to 85 C 8-Lead PDIP P-Suffix (N-8) FPZ 40 C to 85 C 8-Lead PDIP P-Suffix (N-8) GP 40 C to 85 C 8-Lead PDIP P-Suffix (N-8) GPZ 40 C to 85 C 8-Lead PDIP P-Suffix (N-8) FS 40 C to 85 C 8-Lead SOIC_N S-Suffix (R-8) FS-REEL 40 C to 85 C 8-Lead SOIC_N S-Suffix (R-8) FS-REEL7 40 C to 85 C 8-Lead SOIC_N S-Suffix (R-8) FSZ 40 C to 85 C 8-Lead SOIC_N S-Suffix (R-8) FSZ-REEL 40 C to 85 C 8-Lead SOIC_N S-Suffix (R-8) FSZ-REEL7 40 C to 85 C 8-Lead SOIC_N S-Suffix (R-8) GS 40 C to 85 C 8-Lead SOIC_N S-Suffix (R-8) GS-REEL 40 C to 85 C 8-Lead SOIC_N S-Suffix (R-8) GS-REEL7 40 C to 85 C 8-Lead SOIC_N S-Suffix (R-8) GSZ 40 C to 85 C 8-Lead SOIC_N S-Suffix (R-8) GSZ-REEL 40 C to 85 C 8-Lead SOIC_N S-Suffix (R-8) GSZ-REEL7 40 C to 85 C 8-Lead SOIC_N S-Suffix (R-8) Z = Pb-free part. Rev. E Page 4 of 6