EUP3452A. 2A,30V,300KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

Similar documents
EUP3410/ A,16V,380KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

EUP A,40V,200KHz Step-Down Converter

EUP A,30V,1.2MHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

EUP A,30V,500KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

idesyn id8802 2A, 23V, Synchronous Step-Down DC/DC

Techcode. 1.6A 32V Synchronous Rectified Step-Down Converte TD1529. General Description. Features. Applications. Package Types DATASHEET

FEATURES DESCRIPTION APPLICATIONS PACKAGE REFERENCE

SGM6132 3A, 28.5V, 1.4MHz Step-Down Converter

EUP A, 30V, 340KHz Synchronous Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

HM1410 FEATURES APPLICATIONS PACKAGE REFERENCE HM1410

SGM6232 2A, 38V, 1.4MHz Step-Down Converter

EUP3484A. 3A, 30V, 340KHz Synchronous Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

340KHz, 36V/2.5A Step-down Converter With Soft-Start

MP1482 2A, 18V Synchronous Rectified Step-Down Converter

MP9141 FEATURES DESCRIPTION APPLICATIONS PACKAGE REFERENCE

Alfa-MOS Technology. AF KHz, 3.0A / 23V Asynchronous Step-Down Converter

MP V Input, 2A Output Step Down Converter

SGM6130 3A, 28.5V, 385kHz Step-Down Converter

EUP A, Synchronous Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

MP2305 2A, 23V Synchronous Rectified Step-Down Converter

2A, 23V, 380KHz Step-Down Converter

MP2303 3A, 28V, 340KHz Synchronous Rectified Step-Down Converter

Analog Technologies. ATI2202 Step-Down DC/DC Converter ATI2202. Fixed Frequency: 340 khz

AIC2858 F. 3A 23V Synchronous Step-Down Converter

3A, 23V, 380KHz Step-Down Converter

MP2307 3A, 23V, 340KHz Synchronous Rectified Step-Down Converter

AT V,3A Synchronous Buck Converter

MP2355 3A, 23V, 380KHz Step-Down Converter

EUP3475 3A, 28V, 1MHz Synchronous Step-Down Converter

LSP5502 2A Synchronous Step Down DC/DC Converter

ZA3020LV 2A Step-Down,PWM,Switch-Mode DC-DC Regulator

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. 500KHz, 18V, 2A Synchronous Step-Down Converter

Pin Assignment Pin No. Pin Name Descripition 1 BS High-Side Gate Drive Boost Input. BS supplies the drive for the highside N-Channel MOSFET switch. Co

23V 3A Step-Down DC/DC Converter

Thermally enhanced Low V FB Step-Down LED Driver ADT6780

MP1484 3A, 18V, 340KHz Synchronous Rectified Step-Down Converter

EUP A, Synchronous Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

EUP2511. HQI Boost Converter With 2.1A Switch In Tiny SOT-23 Package FEATURES DESCRIPTION APPLICATIONS. Typical Application Circuit

2A, 23V, 380KHz Step-Down Converter

MP1570 3A, 23V Synchronous Rectified Step-Down Converter

HF A 27V Synchronous Buck Converter General Description. Features. Applications. Package: TBD

A7221A DC-DC CONVERTER/BUCK (STEP-DOWN) 600KHz, 16V, 2A SYNCHRONOUS STEP-DOWN CONVERTER

MP kHz, 55V Input, 2A High Power LED Driver

MP A, 15V, 800KHz Synchronous Buck Converter

MP2307 3A, 23V, 340KHz Synchronous Rectified Step-Down Converter

MP1482 2A, 18V Synchronous Rectified Step-Down Converter

ACE726C. 500KHz, 18V, 2A Synchronous Step-Down Converter. Description. Features. Application

2A, 23V, 340KHz Synchronous Step-Down Converter

MP2354 2A, 23V, 380KHz Step-Down Converter

NX7101 2A, High Voltage Synchronous Buck Regulator

MP2363 3A, 27V, 365KHz Step-Down Converter

TS3552 2A/350kHz Synchronous Buck DC/DC Converter

23V, 3A, 340KHz Synchronous Step-Down DC/DC Converter

24V, 2A, 340KHz Synchronous Step-Down DC/DC Converter

GS5484H. 40V,3A 350KHz Synchronous Step-Down DC/DC Converter. Product Description. Applications. Block Diagram GS5484H

PRODUCTION DATA SHEET

3A, 36V, Step-Down Converter

General Description BS SW LSP5526. C4 1.6nF R3 C5 NC 10K. shows a sample LSP5526 application circuit generating 5V/2A output

2.2A Step-Down Converter BM1410A

December 2010 Rev FEATURES. Fig. 1: XRP7664 Application Diagram

MP KHz/1.3MHz Boost Converter with a 2A Switch

EUP3010/A. 1.5MHz,1A Synchronous Step-Down Converter with Soft Start DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

1.2A, 23V, 1.4MHz Step-Down Converter

CEP8113A Rev 2.0, Apr, 2014

AT V Synchronous Buck Converter

MP1472 2A, 18V Synchronous Rectified Step-Down Converter

LSP A 23V Synchronous Buck Converter. General Description. Features. Applications. LSP5526 Rev of /8/1.

UNISONIC TECHNOLOGIES CO., LTD UCC36351 Preliminary CMOS IC

BS SW LSP5522. C4 16nF R3 C5 NC 10K. shows a sample LSP5522 application circuit generating 5V/2A output

EUP MHz, 800mA Synchronous Step-Down Converter with Soft Start

CEP8101A Rev 1.0, Apr, 2014

ELM614BA 2A, 18V, 500kHz, synchronous step down DC/DC converter

HM2259D. 2A, 4.5V-20V Input,1MHz Synchronous Step-Down Converter. General Description. Features. Applications. Package. Typical Application Circuit

A7221 DC-DC CONVERTER/ BUCK (STEP-DOWN) HIGH EFFICIENCY FAST RESPONSE, 2A, 16V INPUT SYNCHRONOUS STEP-DOWN CONVERTER

SPPL12420RH. 2 A Synchronous Rectified Step-Down Converter FEATURES DESCRIPTION RADIATION HARDNESS APPLICATIONS

ADT7351. General Description. Applications. Features. Typical Application Circuit. Oct / Rev0.

UNISONIC TECHNOLOGIES CO., LTD

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1

MP A, 28V, 1.4MHz Step-Down Converter

MP A, 55V, 100kHz Step-Down Converter with Programmable Output OVP Threshold

MP1482 2A, 18V Synchronous Rectified Step-Down Converter

3A 150KHZ PWM Buck DC/DC Converter. Features

MP2497-A 3A, 50V, 100kHz Step-Down Converter with Programmable Output OVP Threshold

Low-Noise 4.5A Step-Up Current Mode PWM Converter

MA V Synchronous Buck Converter GENERAL DESCRIPTION FEATURES APPLICATION CIRCUIT

SGM3736 PWM Dimming, 38V Step-Up LED Driver

APPLICATIONS GENERAL DESCRIPTION FEATURES TYPICAL APPLICATION DIAGRAM

HM3410D Low Noise, Fast Transient 1A Step-Down Converter

2A 150KHZ PWM Buck DC/DC Converter. Features

1.0MHz,24V/2.0A High Performance, Boost Converter

UNISONIC TECHNOLOGIES CO., LTD

AME. 40V CC/CV Buck Converter AME5244. n General Description. n Typical Application. n Features. n Functional Block Diagram.

MP MHz, 18V Step-Up Converter

MP2362 Dual 2A, 23V, 380KHz Step-Down Converter with Frequency Synchronization

AT V 5A Synchronous Buck Converter

MP A, 50V, 1.2MHz Step-Down Converter in a TSOT23-6

AME. 3A, 300KHz ~ 2MHz Synchronous Rectified Step-Down Converter AME5287. General Description. Typical Application. Features.

HM V 2A 500KHz Synchronous Step-Down Regulator

MP A, 15V, 800kHz Synchronous Buck Converter

AP Pin Assignments. Description. Features. Applications. Typical Applications Circuit LIGHT LOAD IMPROVED 4A 500KHZ SYNCH DC/DC BUCK CONVERTER

Transcription:

2A,30V,300KHz Step-Down Converter DESCRIPTION The is current mode, step-down switching regulator capable of driving 2A continuous load with excellent line and load regulation. The can operate with an input voltage range from 4.5V to 30V and the output can be externally set from 0.8V to 12V with a resistor divider. Fault condition protection includes cycle-by-cycle current limiting and thermal shutdown. In shutdown mode the regulator draws 1µA of supply current. Programmable soft-start minimizes the inrush supply current and the output overshoot at initial startup. The require a minimum number of external components. FEATURES 35V Input Surge Protection 2A Output Current 0.135Ω Internal DMOS Output Switch 4.5V to 30V Input Operating Range Output Adjustable from 0.8V to 12V Up to 95% Efficiency 1µA Shutdown Current Fixed 300KHz Frequency Thermal Shutdown and Overcurrent Protection Input Supply Overvoltage and Undervoltage Lockout Available SOP-8 Package RoHS Compliant and 100% Lead(Pb)-Free Halogen-Free APPLICATIONS PC Monitors Distributed Power Systems Networking Systems Portable Electronics Typical Application Circuit Figure 1. 12V to 3.3V/5V Application Circuit 1

Typical Application Circuit (continued) Pin Configurations Package Type Figure 2. 24V to 3.3V/5V Application Circuit Pin Configurations SOP-8 Pin Description Pin Name SOP-8 DESCRIPTION BS 1 High-Side Gate Driver Boostrap Supply. BS provides power to the gate driver of high-side n-channel MOSFET switch. Connect a 10nF or greater capacitor from SW to BS. IN 2 Input Supply Pin. IN supplies the power to the IC and the high side power switch. Connect IN to a 4.5V to 30V power source. Bypass IN to GND with a suitably large value capacitor to minimize input ripple to the IC. See Input Capacitor Section of the applications notes. SW 3 Power Switcher Output. Connect the output LC filter from SW to the output. GND 4 Ground. FB 5 Output Feedback Input. FB senses the output voltage to regulate that voltage. Connect FB to an external resistor divider to set the output voltage. The feedback threshold is 0.8V. See Setting the Output Voltage. COMP 6 Loop compensation pin. Connect a series RC network from COMP to GND to compensate the regulation control loop. See Compensation. EN 7 Enable Input. EN is a logic input that controls the regulator on or off. Drive EN logic high to turn on the regulator, and set EN logic low to turn it off. Don't leave EN pin floating. Directly connect EN to IN (or through a resistance) for automatic startup. SS 8 Soft-start. Connect SS to an external capacitor to program the soft-start. If unused,leave it open, which means internal soft-start function. 2

Ordering Information Order Number Package Type Marking Operating Temperature Range DIR1 SOP-8 xxxxx 3452A -40 C to +85 C Lead Free Code 1: Lead Free, Halogen Free 0: Lead Packing R: Tape & Reel Operating temperature range I: Industry Standard Package Type D: SOP Block Diagram Figure 3. Functional Block Diagram 3

Absolute Maximum Ratings (1) Input Voltage (V IN ) ----------------------------------------------------------------- -0.3V to 35V Enable Input (V EN ) ----------------------------------------------------------------- -0.3V to 35V Switch Voltage (V SW ) ------------------------------------------------------ -1V to V IN +0.3V Boot Strap Voltage (V BS ) ------------------------------------------------ V SW -0.3V to V SW +6V All Other Pins --------------------------------------------------------------------- -0.3V to 6V Junction Temperature ------------------------------------------------------------------- 150 C Storage Temperature ------------------------------------------------------ -65 C to +150 C Lead Temp (Soldering, 10sec) ------------------------------------------------------- 260 C Thermal Resistance JA (SOP-8) --------------------------------------------------- 125 C/W Recommend Operating Conditions (2) Supply Voltage (V IN ) ------------------------------------------------------------- 4.5V to 30V Operating Temperature Range ----------------------------------------------- -40 C to +85 C Note (1): Stress beyond those listed under Absolute Maximum Ratings may damage the device. Note (2): The device is not guaranteed to function outside the recommended operating conditions. Electrical Characteristics The denote specifications which apply over the full operating temperature range, otherwise specifications are T A =+25 C. V EN =5V, V IN =12V unless otherwise specified. Parameter Conditions Min. Typ. Max. Unit Feedback Voltage 4.5V V IN 30V 0.784 0.800 0.816 0.776 0.800 0.824 V Shutdown Supply Current V EN =0V 1 5 µa Operating Supply Current V FB =1V 0.45 0.9 ma Upper Switch On Resistance 0.135 Ω Lower Switch On Resistance 5.6 Ω Upper Switch Leakage V EN =0V, V SW =0V 5 µa Switch Peak Current Limit 2.8 3.6 A Oscillator Frequency 250 300 350 KHz Short Circuit Frequency V FB =0V 100 KHz Maximum Duty Cycle V FB =0.7V 90 % Minimum Duty Cycle V FB =1V 0 % Enable Threshold 0.62 1.1 1.52 0.36 1.1 1.76 V Enable Lockout Threshold EN Rising 2.3 2.5 2.8 2 2.5 3 V Enable Lockout Threshold Hysteresis 120 mv Input Undervoltage Lockout Threshold In Rising 3.8 4.1 4.4 V Input Overvoltage Lockout Threshold In Rising 35 V Input Overvoltage Lockout Threshold Hysteresis 2 V Soft-start Supply Current V SS =0V 6 µa Enable Leakage Current V EN =0V 0.1 5 µa Current Sense Transconductance Output Current to Comp Pin Voltage 6 A/V Error Amplifier Voltage Gain 400 V/V Error Amplifier Transconductance I C = ± 10µA 820 µa/v Thermal Shutdown 160 C 4

Typical Operating Characteristics See Figure1, C1 =10µF, C2=22µF, L=15µH, T A =+25 C. 5

Typical Operating Characteristics (continued) See Figure1, C1 =10µF, C2=22µF, L=15µH, T A =+25 C. 6

Typical Operating Characteristics (continued) See Figure1, C1 =10µF, C2=22µF, L=15µH, T A =+25 C. 7

Functional Description The is current-mode step-down switching regulator. The device regulates an output voltage as low as 0.8V from a 4.5V to 30V input power supply. The device can provide up to 2Amp continuous current to the output. The uses current-mode architecture to control the regulator loop. The output voltage is measured at FB through a resistive voltage divider and amplified through the internal error amplifier. The output current of the transconductance error amplifier is presented at COMP pin where a RC network compensates the regulator loop. Slope compensation is internally added to eliminate subharmonic oscillation at high duty cycle. The slope compensation adds voltage ramp to the inductor current signal which reduces maximum inductor peak current at high duty cycles. The device uses an internal Hside n-channel switch to step down the input voltage to the regulated output voltage. Since the Hside n-channel switch requires gate voltage greater than the input voltage, a boostrap BS capacitor is connected between SW and BS to drive the n-channel gate. The BS capacitor is internally charged while the switch is off. An internal 5.6Ω switch from SW to GND is added to insure that SW is pulled to GND when the switch is off to fully charge the BS capacitor. Application Information Setting the Output Voltage The output voltage is set through a resistive voltage divider (see Figure1 or 2). The voltage divider divides the output voltage down by the ratio: Thus the output voltage is : V OUT = 0.8V + ( R2 + R3) 0.8V VFB = VOUT R3/ = ( R2 R3) / R3 Choose R3 value in the range 10k to 100k, R2 is determined by : ( V / 0.8 1) R3 R2 = OUT For example, for a 3.3V output voltage, R3 is 10KΩ, and R2 is 31.25KΩ. Inductor The inductor is required to supply constant current to the output load while being driven by the switched input voltage. A larger value inductor results in less ripple current and lower output ripple voltage. However, the larger value inductor has a larger physical size, higher series resistance, and lower saturation current. Choose an inductor that does not saturate under the worst-case load conditions. A good rule for determining the inductance is to allow the peak-to- peak ripple current in the inductor to be approximately 30% of the maximum load current. Also, make sure that the peak inductor current (the load current plus half the peak-to-peak 8 inductor ripple current) is below the 3.6A minimum peak current limit. The inductance value can be calculated by the equation: Where V OUT is the output voltage, V IN is the input voltage, f is the switching frequency, and I is the peak-to-peak inductor ripple current. Input Capacitor The input current to the step-down converter is discontinuous, and therefore an input capacitor C1 is required to supply the AC current to the step-down converter while maintaining the DC input voltage. A low ESR capacitor is required to keep the noise minimum at the IC. Ceramic capacitors are preferred, but tantalum or low-esr electrolytic capacitors may also suffice. The input capacitor value should be greater than 10µF, and the RMS current rating should be greater than approximately 1/2 of the DC load current. In Figure 1 or 2, all ceramic capacitors should be placed close to the. Output Capacitor The output capacitor is required to maintain the DC output voltage. Low ESR capacitors are preferred to keep the output voltage ripple low. The characteristics of the output capacitor also affect the stability of the regulator control loop. In the case of ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance.the output voltage ripple is estimated to be: Where V RIPPLE is the output ripple voltage, V IN is the input voltage, f LC is the resonant frequency of the LC filter, f is the switching frequency. Output Rectifier Diode The output rectifier diode supplies the current to the inductor when the high-side switch is off. A schottky diode is recommended to reduce losses due to the diode forward voltage and recovery times. Loop Compensation The system stability is controlled through the COMP pin. COMP is the output of the internal transconductance error amplifier. A series capacitor-resistor combination sets a pole-zero combination to control the feedback loop. The DC loop gain is: A L = VDC Where: ( V ) ( V V )( / V f I) V = OUT RIPPLE IN ~ = 1.4 V OUT IN ( VFB / VOUT ) AVEA G CS R LOAD IN ( f / f ) 2 LC

V FB is the feedback threshold voltage, 0.8V V OUT is the desired output regulation voltage A VEA is the transconductance error amplifier voltage gain, 400 V/V G CS is the current sense gain, (roughly the output current divided by the voltage at COMP), 6A/V R LOAD is the load resistance (V OUT / I OUT where I OUT is the output load current) The system has 2 poles. One is due to the compensation capacitor (C3), and the other is due to the output capacitor (C2). These are: f P1 = G EA / ( 2π A C3) VEA Where P1 is the first pole, and G EA is the error amplifier transconductance (820µA/V). and f P2 = 1/ ( 2π R LOAD C2) The system has one zero of importance, due to the compensation capacitor (C3) and the compensation resistor (R1). The zero is: f Z1 = 1/ If a large value capacitor (C2) with relatively high equivalent-series-resistance (ESR) is used, the zero due to the capacitance and ESR of the output capacitor can be compensated by a third pole set by R1 and C4. The pole is: = 1/ 2π R1 C4 f P3 ( 2π R1 C3) ( ) The system crossover frequency (the frequency where the loop gain drops to 1, or 0dB) is important. A good rule of thumb is to set the crossover frequency to approximately 1/10 of the switching frequency. In this case, the switching frequency is 300KHz, therefore use a crossover frequency, f C, of 30KHz. Lower crossover frequency results in slower loop response and poor load transient performance. Higher crossover frequency can result in loop instability. Table 1. External components for typical designs Vin(V) Vout(V) L1(µH) C2(µF) R2(KΩ) R1(KΩ) C3(nF) C4(pF) 5 1.2 15 22 5 2 10 Open 5 1.8 15 22 12.5 2 10 Open 12 1.8 15 22 12.5 2 10 Open 12 3.3 15 22 31.25 6.8 10 Open 12 5 15 22 52.5 6.8 10 Open 24 3.3 15 22 31.25 2 10 Open 24 5 15 22 52.5 2 10 Open To simplify design efforts using the, the typical designs for common applications are listed in Table 1. 9

Packaging Information SOP-8 SYMBOLS MILLIMETERS INCHES MIN. MAX. MIN. MAX. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.004 0.010 D 4.90 0.193 E 5.80 6.20 0.228 0.244 E1 3.90 0.153 L 0.40 1.27 0.016 0.050 b 0.31 0.51 0.012 0.020 e 1.27 0.050 10