Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser

Similar documents
Ultrafast second-stokes diamond Raman laser

G. Norris* & G. McConnell

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

6.1 Thired-order Effects and Stimulated Raman Scattering

A new picosecond Laser pulse generation method.

Yellow nanosecond sum-frequency generating optical. parametric oscillator using periodically poled LiNbO 3

IEEE (2018) ISSN

Module 4 : Third order nonlinear optical processes. Lecture 24 : Kerr lens modelocking: An application of self focusing

Improving the efficiency of an optical parametric oscillator by tailoring the pump pulse shape

Vertical External Cavity Surface Emitting Laser

Single-crystal sum-frequency-generating optical parametric oscillator

Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015

Tera-Hz Radiation Source by Deference Frequency Generation (DFG) and TPO with All Solid State Lasers

Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices

High Power and Energy Femtosecond Lasers

Mira OPO-X. Fully Automated IR/Visible OPO for femtosecond and picosecond Ti:Sapphire Lasers. Superior Reliability & Performance. Mira OPO-X Features:

Designing for Femtosecond Pulses

Quantum-Well Semiconductor Saturable Absorber Mirror

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models

Fast Raman Spectral Imaging Using Chirped Femtosecond Lasers

Fundamental Optics ULTRAFAST THEORY ( ) = ( ) ( q) FUNDAMENTAL OPTICS. q q = ( A150 Ultrafast Theory

High-Power Femtosecond Lasers

High Average Power, High Repetition Rate Side-Pumped Nd:YVO 4 Slab Laser

Solid-State Laser Engineering

DISCRETE OPERATING MODES OF ND:YAG LASER

How to build an Er:fiber femtosecond laser

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband

1. INTRODUCTION 2. LASER ABSTRACT

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS

A Coherent White Paper May 15, 2018

Fiber Lasers for EUV Lithography

A CW seeded femtosecond optical parametric amplifier

Efficient, high-power, ytterbium-fiber-laser-pumped picosecond optical parametric oscillator

Generation of gigantic nanosecond pulses through Raman-Brillouin- Rayleigh cooperative process in single-mode optical fiber

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS

Pulse Shaping Application Note

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 13, NO. 3, MAY/JUNE M. Ebrahim-Zadeh, Member, IEEE.

Fiber Laser Chirped Pulse Amplifier

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1

Femtosecond to millisecond transient absorption spectroscopy: two lasers one experiment

High-power, fiber-laser-pumped, picosecond optical parametric oscillator based on MgO:sPPLT

taccor Optional features Overview Turn-key GHz femtosecond laser

Continuous-wave singly-resonant optical parametric oscillator with resonant wave coupling

dnx/dt = -9.3x10-6 / C dny/dt = -13.6x10-6 / C dnz/dt = ( λ)x10-6 / C

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual

A continuous-wave Raman silicon laser

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression

Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate

Dispersion and Ultrashort Pulses II

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser

Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser

Simultaneous stimulated Raman scattering second harmonic generation in periodically poled lithium niobate

High energy femtosecond OPA pumped by 1030 nm Nd:KGW laser.

Fiber Raman Lasers and frequency conversion to visible regime

UNMATCHED OUTPUT POWER AND TUNING RANGE

Passively Q-switched m intracavity optical parametric oscillator

Variable Pulse Duration Laser for Material Processing

THE TUNABLE LASER LIGHT SOURCE C-WAVE. HÜBNER Photonics Coherence Matters.

Applied Physics Springer-Verlag 1981

Yb-doped Mode-locked fiber laser based on NLPR Yan YOU

Synchronously pumped picosecond all-fibre Raman laser based on phosphorus-doped silica fibre

MgO:PPLN. Covesion Ltd catalogue 2.0/2011. Periodically Poled Lithium Niobate (PPLN) contract & custom manufacturing. temperature tuning ovens

DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE

Maria Smedh, Centre for Cellular Imaging. Maria Smedh, Centre for Cellular Imaging

All-fiber, all-normal dispersion ytterbium ring oscillator

Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span. Steven Wang, Tal Carmon, Eric Ostby and Kerry Vahala

End Capped High Power Assemblies

Multi-Wavelength, µm Tunable, Tandem OPO

Nd: YAG Laser Energy Levels 4 level laser Optical transitions from Ground to many upper levels Strong absorber in the yellow range None radiative to

Single frequency Ti:sapphire laser with continuous frequency-tuning and low intensity noise by means of the additional intracavity nonlinear loss

TIGER Femtosecond and Picosecond Ti:Sapphire Lasers. Customized systems with SESAM technology*

A continuous-wave optical parametric oscillator for mid infrared photoacoustic trace gas detection

High repetition rate, q-switched and intracavity frequency doubled Nd:YVO 4 laser at 671nm

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

All-Optical Signal Processing and Optical Regeneration

The Realization of Ultra-Short Laser Sources. with Very High Intensity

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton

PITZ Laser Systems. Light Amplification by Stimulated Emission of Radiation. Cavity. What is a Laser? General introduction: systems, layouts

High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals

Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier

Passive mode-locking performance with a mixed Nd:Lu 0.5 Gd 0.5 VO 4 crystal

Supplementary Materials for

Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO

VELA PHOTOINJECTOR LASER. E.W. Snedden, Lasers and Diagnostics Group

Controllable harmonic mode locking and multiple pulsing in a Ti:sapphire laser

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION:

Waveguide-based single-pixel up-conversion infrared spectrometer

Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators

Low threshold continuous wave Raman silicon laser

Singly resonant cw OPO with simple wavelength tuning

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

The All New HarmoniXX Series. Wavelength Conversion for Ultrafast Lasers

(2005) 13 (6) ISSN

Tunable erbium ytterbium fiber sliding-frequency soliton laser

880 Quantum Electronics Optional Lab Construct A Pulsed Dye Laser

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers

Transcription:

Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser Eduardo Granados, 1,* Helen M. Pask, 1 Elric Esposito, 2 Gail McConnell, 2 and David J. Spence 1 1 MQ Photonics Research Centre, Department of Physics and Engineering, Macquarie University, 2109 New South Wales, Australia 2 Centre for Biophotonics, Strathclyde Institute for Pharmacy and Biomedical Sciences, University Of Strathclyde, 27 Taylor St, Glasgow G4 0NR, United Kingdom * granados@ics.mq.edu.au Abstract: We demonstrate the operation of a cascaded continuous wave (CW) mode-locked Raman oscillator. The output pulses were compressed from 28 ps at 532 nm down to 6.5 ps at 559 nm (first Stokes) and 5.5 ps at 589 nm (second Stokes). The maximum output was 2.5 W at 559 nm and 1.4 W at 589 nm with slope efficiencies up to 52%. This technique allows simple and efficient generation of short-pulse radiation to the cascaded Stokes wavelengths, extending the mode-locked operation of Raman lasers to a wider range of visible wavelengths between 550 700 nm based on standard inexpensive picosecond neodymium-based oscillators. 2009 Optical Society of America OCIS codes: (140.3550) Lasers, Raman; (320.5520) Pulse compression; (180.0180) Microscopy References and links 1. J. M. Girkin, and G. McConnell, "Advances in laser sources for confocal and multiphoton microscopy," Microsc. Res. Tech. 67, 8-14 (2005). 2. G. McConnell, G. L. Smith, J. M. Girkin, A. M. Gurney, and A. I. Ferguson, "Two-photon microscopy of fura-2-loaded cardiac myocytes with an all-solid-state tunable and visible femtosecond laser source," Opt. Lett. 28, 1742-1744 (2003). 3. J. Palero, V. Boer, J. Vijverberg, H. Gerritsen, and H. J. C. M. Sterenborg, "Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source," Opt. Express 13, 5363-5368 (2005). 4. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, "Wavelength-versatile visible and UV sources based on crystalline Raman lasers," Prog. Quantum Electron. 32, 121-158 (2008). 5. R. Mildren, M. Convery, H. Pask, J. Piper, and T. McKay, "Efficient, all-solid-state, Raman laser in the yellow, orange and red," Opt. Express 12, 785-790 (2004). 6. E. Granados, H. M. Pask, and D. J. Spence, "Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm," Opt. Express 17, 569-574 (2009). 7. G. G. Grigoryan and S. B. Sogomonyan, "Synchronously pumped picosecond Raman laser utilizing an LiIO 3 crystal," Sov. J. Quantum Electron., 1402 (1989). 8. E. Granados, A. Fuerbach, D. Coutts, and D. Spence, "Asynchronous cross-correlation for weak ultrafast deep ultraviolet laser pulses," Appl. Phys. B (to be published). 9. A. Penzkofer, A. Laubereau, and W. Kaiser, "High intensity Raman interactions," Prog. Quantum Electron. 6, 55-140 (1979). 10. T. Basiev, P. Zverev, A. Karasik, V. Osiko, A. Sobol, and D. Chunaev, "Picosecond stimulated Raman scattering in crystals," J. Exp. Theor. Phys. 99, 934-941 (2004). 11. L. Lefort, K. Puech, S. D. Butterworth, Y. P. Svirko, and D. C. Hanna, "Generation of femtosecond pulses from order-of-magnitude pulse compression in a synchronously pumped optical parametric oscillator based on periodically poled lithium niobate," Opt. Lett. 24, 28-30 (1999).

1. Introduction There is considerable interest in the development of picosecond pulse laser sources in the visible region between 500 and 650 nm. Applications such as two-photon microscopy can use this radiation for matching the two-photon absorption bands of a wide range of biological samples, either capitalising upon endogenous autofluorescent structures or synthetic fluorophores that serve as the contrast mechanism. Given the nonlinear nature of the excitation, it is desirable to use a laser source generating picosecond or femtosecond pulses; such sources have high peak power to enhance the non-linear two photon process while maintaining a low average power to avoid damage to the biological sample under investigation. Perfect wavelength matching to the absorption bands of the fluorophores of interest is not usually required, since they tend to be fairly broad (20 30 nm) [1]. Several approaches have been explored to generate suitable laser pulses for this application. For example, optical parametric oscillators have been used to generate tunable ultrafast radiation from the UV to the IR [2], but such systems are typically expensive and complex. Photonic crystal fibers have been also employed to produce tunable pulses of several picoseconds in the 500 600 nm range [3], but the average power associated with this source was low, allowing only near-threshold two-photon absorption. A third possibility is to employ a femtosecond-pulsed Ti:Sapphire or Nd-based laser for three-photon absorption. However, the peak power requirements for three-photon absorption significantly exceed that for two-photon microscopy and hence this technique has limited applications in biological imaging. There is therefore keen interest and motivation to explore different alternatives that can offer increased simplicity and lower cost for two-photon microscopy. Raman shifting of conventional lasers to access new wavelengths is a well established technique [4]. In particular, stimulated Raman scattering (SRS) in crystalline media has been widely used in a variety of configurations to efficiently generate IR, visible and UV output [4, 5]. Using a cavity around a Raman medium allows effective control over the conversion and cascading of the SRS process to second and higher Stokes orders, allowing the desired Stokes order to be selectively output and even allowing several wavelengths to be output simultaneously. Synchronously pumped Raman lasers have been demonstrated as an efficient route for the generation of picosecond pulses at certain visible and IR wavelengths [6, 7]. In this Letter, we report a synchronously pumped mode locked Raman laser generating two different wavelengths using cascaded Raman shifting in a multi-cavity arrangement. We produced 2.4 W at 559 nm and 1.4 W at 589 nm, with slope efficiencies up to 52% for both Stokes wavelengths. The peak power of the generated pulses was almost as high as the pump pulses as a consequence of pulse shortening. 2. Experiments A 50 5 5 mm potassium gadolinium tungstate (KGW) crystal (anti reflection coated at 532 nm, normal incidence) was used in the experiments as the SRS gain medium. This crystal was pumped along its N m axis to match the 901 cm -1 Raman shift, corresponding to a first Stokes wavelength of 559 nm and a second Stokes wavelength of 589 nm. The resonator design is depicted in Fig 1, and was essentially a z-fold design. Concave mirrors (M 1, M 2 ), each with a 20 cm radius of curvature, were separated by approximately 23 cm. This mirror separation led to a mode waist radius of 33 μm centred in the KGW crystal. The angle of the z-fold cavity was kept small to minimize the astigmatism of the cavity mode. For effective control over the cascading process, we arranged a pair of high dispersion F5 prisms (P 1 and P 2 ) to spatially separate the Stokes wavelengths onto different end mirrors, thereby forming separate cavities with independent control of both cavity length and output coupling for each Stokes mode. The first Stokes mode impinged on M 4, while the second Stokes mode, when present, was directed to M 5 by a small scraper mirror. The mirrors M 1, M 2 and M 3 were high reflectors for the Stokes wavelengths. Although the laser was designed for the Stokes radiation to be output through mirrors M 4 and M 5 only, there was also some leakage at 559 and 589 nm through the other cavity mirrors. Accordingly, the reported output powers are the

sum from the output coupler and the small leakages through the other imperfect mirrors. Mirrors M 4 and M 5 were translated to achieve the correct cavity length to ensure that the circulation of the intracavity fields was synchronized with the inter pulse period of the pump laser, as required for synchronous mode locking. Fig. 1. Setup for the multi-cavity continuous-wave mode-locked Raman oscillator. The pump laser was a CW mode-locked Nd:YAG laser producing 22 W at 1064 nm with a repetition rate of 78 MHz. The pump radiation was frequency doubled by non-critically phase-matched second harmonic generation in a 3.5 cm long lithium triborate (LBO) crystal. The generated output power at 532 nm was approximately 7 W with a pulse duration of 28 ps. When optimized to output first Stokes only, mirror M 4 was an 80% transmission output coupler at 559 nm. There was no further cascading to the second Stokes wavelength. Figure 2 shows the slope efficiency for the first Stokes (open circles): The maximum CW output power was 2.5 W at 559 nm for an incident power of 6.5 W, reaching a maximum green to yellow optical conversion efficiency of 38.4%, and with a slope efficiency of 52%. Fig. 2. Slope efficiencies for optimized resonators for 1st Stokes (open circles) and 2nd Stokes (open squares) When optimized to cascade to the second Stokes wavelength, both fields were overlapped in the laser crystal but spatially separated onto mirrors M 4 and M 5 ; M 4 was a high reflector at 559 nm and M 5 was an 80% output coupler at 589 nm. Fine adjustment of each cavity length was necessary to effectively match the optimum cavity length at each Stokes wavelengths. Figure 2 shows the slope efficiency for the second Stokes (open squares): The maximum

output power at 589 nm was 1.4 W, which was an optical conversion efficiency of 21.5%. The slope efficiency in this case was also 52%. We note that by adding a third cavity, aligned for third Stokes, we were able to generate more than 100 mw at 620 nm. In this the case the output coupler for the second Stokes was replaced with a high reflector; however substantial leakage of the second Stokes field through the other mirrors acted as a substantial loss for that field and so the laser was far from optimized for generating 620 nm. Higher output powers at 620 nm can be anticipated by optimization of the resonator mirror coatings. Fig. 3 Output pulse duration (filled circles) and Output power (open squares) changing the cavity length for the 1st Stokes. (inset) Cross correlations of the output yellow pulses for different cavity length detunings. For the above results, the cavity lengths were optimized to achieve the highest output powers. However, for different cavity lengths, the laser displayed substantial pulse compression, due to the complex interplay between the non-instantaneous Raman effect and the depletion of the pump field. Accurate retrieval of the output pulse shapes has significant importance to correctly interpret the intracavity dynamics of the laser; to recover the pulse profiles we used an asynchronous cross-correlation technique [8]. Figure 3 shows the dependence of pulse duration and output power on the cavity length detuning for the first Stokes output ( x 1 ). We define the cavity length detuning ( x 1 and x 2 ) for each wavelength as the difference in the cavity length from that corresponding to the minimum threshold for laser operation for each wavelength. We observed that the pulse compression reached its maximum when the cavity detuning was approximately x 1 = +500 μm. The shortest pulses had a duration of 6.5 ps (compression factor >4). The temporal pulse shape is shown inset in Fig 3, and it can be seen that the pulse was asymmetric, with a steep leading edge. In regions of strong compression, the peak power was increased even though the output power was reduced: the highest peak power at 559 nm was 1.92 kw for a cavity length of x 1 = +450 μm. For cavity length detunings x 1 < +200 μm, the output power and pulse duration showed a long plateau that extended down to x 1 = -2500 μm (well beyond the range of the figure). In this region, the peak power was approximately 1.4 kw.

Fig. 4 Output pulse duration (filled circles) and Output power (open squares) changing the cavity length for the 2nd Stokes. (inset) Cross correlations of the output orange pulses for different cavity length detunings. For the next measurements, the cavity lengths of the 1 st Stokes and 2 nd Stokes were first adjusted simultaneously to maximize the output power at 589 nm, found for first-stokes cavity length of x 1 = 280 μm. Figure 4 then shows the output power and pulse duration as a function of 2 nd Stokes cavity length x 2. We observed that the orange pulses where shortest when the cavity detuning was approximately x 2 = +200 μm. Those pulses had a duration of 5.5 ps (compression factor >5 from green to orange), and exhibited a small shoulder as shown in the inset cross-correlated traces of Figure 4. In contrast with the behavior of the compression of the 1 st Stokes pulses, in this case, the output power was close to its maximum when the pulse compression occurred, suggesting that the compression mechanism for 2 nd Stokes was different from the 1 st Stokes. The maximum peak power of 2.95 kw was measured at x 2 = +100 μm, and the maximum output power was 1.4 W. Table 1 summarizes the results for 1 st and 2 nd Stokes in different arrangements. Table 1. Summary of results λ Max Peak Min Pulse Max Output Power duration Power Pump 532 nm 3.2 kw 28 ps 6.5 W 1 st Stokes 559 nm 1.92 kw ( x 1 = +450 μm) 6.5 ps ( x 1 = +500 μm) 2.5 W ( x 1 = -100 μm) 2 nd Stokes 589 nm 2.95 kw 5.5 ps 1.4 W ( x 2 = +100 μm) ( x 2 = +200 μm) ( x 2 = -200 μm) 3. Discussion and conclusion Separate optimization of the physical cavity lengths for the different wavelengths is vital for effective operation of this cascaded Raman laser. The group delay difference traversing the 50 mm KGW crystal between first Stokes and pump is 4.2 ps, with a similar delay between the second and first Stokes. This is normal dispersion with the longer wavelength travelling faster. The substantial difference between the first and second Stokes is the reason that separately adjustable cavities were required to optimize second Stokes generation. The successive compression of the generated pulses is caused in part by this group delay mismatch through the crystal, although in this case the mismatch was relatively small in comparison with the pump pulse duration, and so compression of the 1 st Stokes pulse was not as effective as for shorter pump pulses [6]. The group delay differences (GDD) created by the prism pair

was approximately -1 ps between the first and second Stokes, and so partially compensates for the GDD of the KGW. In principle, with a much longer prism separation, the prism pair could be used to optimize the relative cavity lengths of the first and second Stokes. However using the prisms to separate the wavelengths onto different end mirrors allows much greater flexibility, both to tune the path lengths and to individually tailor the reflectivity of each mirror. It is important to understand the effect of cavity length detuning on the behavior of the pulses in the cavity. Consider first the behavior of the pump and first stokes pulses. If the cavity detuning is zero, then the round trip time at the Stokes group velocity is exactly equal to the interpulse period of the pump laser. The group delay difference between the wavelengths means that the Stokes pulse overtakes the pump pulse by 2.2 ps during the pass through the crystal, but the cavity length is such that the relative positions of the pulses are the same after each round trip. If the cavity is lengthened, it would at first appear that the Stokes pulse must arrive later and later compared to the pump pulse on each round trip. However, the relative positions of the pump and Stokes pulses after each round trip must actually still be the same since the laser is operating in steady-state. The lag is actually counteracted on each round trip by a reshaping of the Stokes pulse during the pass through crystal in this case by preferential amplification of the leading edge of the Stokes pulse so that the amplified Stokes pulse is formed at a slightly advanced position. As the cavity detuning becomes more severe, a more severe pulse reshaping must take place requiring higher gain, and eventually the laser drops below threshold. There is a strong asymmetry of the laser behavior with the sign of the cavity length detuning. This is due to fact that we are in the regime of transient Raman scattering; according to [9], transient effects have to be taken into account for pulse durations less than 20 times the dephasing time for the molecular transition. Our pump pulse duration is 28 ps and the dephasing time of KGW is 2.1 ps [10]), and so we must account for the accumulation of phonons during each pulse. This accumulation makes the Stokes gain far higher for the trailing edge of the Stokes pulse. Negative detuning corresponds to the Stokes pulse arriving at the crystal a little early on each round trip and therefore needing to be mostly amplified on the trailing edge - this is also favored transient scattering regime and means that much more negative detuning can be tolerated than positive detuning. The pulse compression results from the Stokes pulse sweeping through the pump pulse during the crystal transit owing to the differing velocities, allowing a shorter Stokes pulse to sweep the energy out of a longer pump pulse [11]. Compression is most effective for positive detuning, corresponding to the Stokes pulse arriving at the crystal a little after the pump pulse. In this case, the reshaping of the pulse to advance its position reinforces the sweep of the Stokes pulse through the pump pulse, enhancing the compression effect. Since the leading edge of the Stokes pulse is advancing through undepleted regions of the pump pulse, we see steepening of the leading edge, as measured for positive detunings in Figure 3. To fully understand this compression and the effect of transient Raman scattering, numerical modeling is required. In conclusion, we have demonstrated a cascaded continuous-wave mode-locked Raman laser producing 2.5 W at 559 nm and 1.4 W at 589 nm. Slope efficiencies up to 52% were obtained for both 1 st and 2 nd Stokes by independent optimization of the output coupling and cavity length for each Stokes order. By adding a third cavity to the setup, we were able to generate 3 rd Stokes radiation, producing more than 100 mw at 620 nm. We anticipate the possibility of further cascading to red wavelengths using this technique; generating an infrared cascade using 1064 nm pump radiation is also clearly available. Overall green-yellow and green-orange efficiencies of up to 38.4% and 21.5% respectively were demonstrated, and the shortest pulses obtained correspond to 6.5 ps at 559 nm and 5.5 ps at 589 nm. These flexible and robust picosecond laser pulses should find many applications, particularly in biological imaging.