Data Sheet. HSDL-44xx IR Emitter Series HSDL-54xx IR Detector Series High-Performance IR Emitter and IR PIN Photodiode in Subminiature SMT Package

Similar documents
High-Performance IR Emitter and IR PIN Photodiode in Subminiature SMT Package

Copper Leadframe for Improved Thermal and Optical Characteristics

Dome Packages The HLMX-QXXX dome lamps use an untinted, nondiffused lens to provide a high luminous intensity within a narrow radiation pattern.

Subminiature LED Lamps. Technical Data. HLMP-Pxxx Series HLMP-Qxxx Series HLMP-6xxx Series HLMP-70xx Series

Data Sheet. HLMP-Pxxx Subminiature LED Lamps. HLMP-Pxxx Series, HLMP-Qxxx Series HLMP-6xxx Series, HLMP-70xx Series

Data Sheet. ASDL-4560 High Performance Infrared Emitter (875nm) ChipLED. Description. Features. Applications. Ordering Information

Data Sheet. HLMP-Pxxx Series, HLMP-Qxxx Series HLMP-6xxx Series, HLMP-70xx Series Subminiature LED Lamps. Features. Description

Data Sheet. HLMP-D101/D105, HLMP-K101/K105 T-1 3 / 4 (5 mm), T-1 (3 mm), High Intensity, Double Heterojunction AlGaAs Red LED Lamps.

Silicon PIN Photodiode

Silicon PIN Photodiode

Features. Application. Camera 0.15

Silicon PIN Photodiode

SME/SMD Series. Infrared Components Ceramic Discrete Surface Mount Emitters and Detectors. Honeywell Sensing and Control

Silicon PIN Photodiode

T-13/4 (5 mm), Wide Viewing Angle, High Intensity LED Lamps Technical Data

Features. Applications SQUARE TYP (0.022) 0.40 (0.016) 0.65 (0.026) max CATHODE LEAD 25.40(1.00) MINIMUM 1.52 (.060) 1.02 (.

Data Sheet. HLMP-132x Series, HLMP-142x Series, HLMP-152x Series T-1 (3 mm) High Intensity LED Lamps. Features. Description.

Silicon PIN Photodiode

Data Sheet. HLMP-132x Series, HLMP-142x Series, HLMP-152x Series T-1 (3 mm) High Intensity LED Lamps. Features. Description. Package Dimensions

Silicon PIN Photodiode

T-1 3 /4 (5 mm) Precision Optical Performance AlInGaP LED Lamps. Technical Data. SunPower Series HLMP-EG55 HLMP-EG57

[MILLIMETERS] INCHES DIMENSIONS ARE IN:

Silicon PIN Photodiode

Silicon PIN Photodiode, RoHS Compliant

Silicon PIN Photodiode

Silicon PIN Photodiode, RoHS Compliant

HLMP-D150, HLMP-D155, HLMP-K150 and HLMP-K155 T-13/4 (5 mm), T-1 (3 mm), Low Current, Double Heterojunction AlGaAs Red LED Lamps.

High Power Infrared Emitting Diode, 850 nm, Surface Emitter Technology

Silicon PIN Photodiode

BPW41N. Silicon PIN Photodiode. Vishay Semiconductors

High Speed Infrared Emitting Diode, 850 nm, Surface Emitter Technology

Silicon PIN Photodiode

Silicon PIN Photodiode

SUBMINIATURE T-3/4 LED DIFFUSED AND CLEAR LAMPS

High Speed Infrared Emitting Diodes, 940 nm, Surface Emitter Technology

Silicon PIN Photodiode

Silicon PIN Photodiode

Silicon PIN Photodiode, RoHS Compliant, Released for Lead (Pb)-free Reflow Soldering, AEC-Q101 Released

Data Sheet. HLMP-331x, HLMP-341x, HLMP-351x Series T-1 3 / 4 (5 mm) High Intensity LED Lamps. Description. Features.

Silicon PIN Photodiode, RoHS Compliant

BP104. Silicon PIN Photodiode. Vishay Semiconductors

High Speed Infrared Emitting Diode, 890 nm, GaAlAs, DH

Data Sheet. HLMP-3707 T-1 3 /4 (5 mm), T-1 (3 mm), Ultra-Bright LED Lamps

Silicon PIN Photodiode, RoHS Compliant

Chip Type Material Emitted Color Intensity Typ. mcd R AlInGaP Red 300 G InGaN Green 450 B InGaN Blue 110 [MILLIMETERS] INCHES

115.2 Kb/s and RXD-B for signal rates of 576 Kb/s and 4.0 Mb/s.

4.8mm Semi-Lens Silicon PIN Photodiode EAPDLP04SCAA1

High Speed Infrared Emitting Diodes, 850 nm, Surface Emitter Technology

Applications General Purpose Consumer Goods Indicator Lights

BPV23NF(L) Silicon PIN Photodiode. Vishay Semiconductors

Silicon PIN Photodiode

Property of Lite-On Only. Features

High Speed Infrared Emitting Diodes, 940 nm, Surface Emitter Technology

Data Sheet. HLMP-1301, HLMP-1401, HLMP-1503, HLMP-K401, HLMP-K600 T-1 (3 mm) Diffused LED Lamps. Description. Features. Package Dimensions

LedEngin, Inc. High Efficacy 365nm UV LED Emitter LZ1-00U605. Key Features. Typical Applications. Description

High Speed Infrared Emitting Diodes, 940 nm, Surface Emitter Technology

BPW41N. Silicon PIN Photodiode. Vishay Semiconductors

Silicon PIN Photodiode, RoHS Compliant, Released for Lead (Pb)-free Solder Process, AEC-Q101 Released

Silicon PIN Photodiode

Silicon PIN Photodiode

Silicon PIN Photodiode

Silicon PIN Photodiode

High Speed Infrared Emitting Diodes, 940 nm, GaAlAs, MQW

High Speed Infrared Emitting Diodes, 940 nm, GaAlAs, DH

High Speed Infrared Emitting Diodes, 850 nm, Surface Emitter Technology

Silicon PIN Photodiode

2.0x1.25 mm INFRARED EMITTING DIODE. Features. Description. Package Dimensions. Part Number: APT2012SF4C-PRV

BPV22NF(L) Silicon PIN Photodiode. Vishay Semiconductors

Precision Optical Performance AlInGaP II LED Lamps. Technical Data. SunPower Series HLMP-ELxx HLMP-EHxx HLMP-EDxx

Data Sheet. HLMP-KA45 T-1 (3 mm) High Intensity InGaN Lamp. Features. Description. Applications. Package Dimensions

High Speed Infrared Emitting Diodes, 940 nm, GaAlAs, MQW

Data Sheet. HLMP-KA45 T-1 (3 mm) High Intensity InGaN Lamp. Description. Features. Applications. Package Dimensions

High Power Infrared Emitting Diode, 850 nm, Surface Emitter Technology

The module has been designed to the IrDA (Infrared Data Association) LED BUTTRESS LEAD* TXD GND

Agilent HLMP-3301 T-1 3 / 4 (5 mm) Diffused LED Lamps

Infrared Product Data Sheet LTE-C1901-ZF LITE-ON DCC RELEASE

High Speed Infrared Emitting Diode, 940 nm, GaAlAs, MQW

Silicon PIN Photodiode

LITE-ON TECHNOLOGY CORPORATION

HLMP-40xx, HLMP-08xx T-1 3/4, 2 mm x 5 mm Rectangular Bicolor LED Lamps. Features

Silicon PIN Photodiode, RoHS Compliant

LTV-M701 Small Outline, 5 Lead Low Input Current, High Gain Optocoulplers

All of these devices are spectrally and mechanically matched to the OP593 and OP598 series phototransistors.

High Power Infrared Emitting Diode, 940 nm, Surface Emitter Technology

Agilent Sun Power Series HLMP-CB15, HLMP-CM15, HLMP-CB30, HLMP-CM30 T-1 3 / 4 (5 mm) Precision Optical Performance InGaN Blue and Green Lamps

High Power Infrared Emitting Diode, 850 nm, Surface Emitter Technology

Data Sheet. HLMA-KL00 & HLMA-KH00 SunPower Series T-1 (3 mm), High Performance AlInGaP LED Lamps. Description. Features.

Silicon PIN Photodiode

Features. Applications

High Speed Infrared Emitting Diode, 940 nm, GaAlAs Double Hetero

Applications Lighted Switches Backlighting Front Panels Light Pipe Sources Keyboard Indicators

Silicon PIN Photodiode

Silicon PIN Photodiode

SPECIFICATION CHIP LED DEVICE. [Contents]

S186P. Silicon PIN Photodiode. Vishay Semiconductors

High Speed Infrared Emitting Diode, 940 nm, GaAlAs Double Hetero

High Power Infrared Emitting Diode, 940 nm, GaAlAs, MQW

Silicon PIN Photodiode

Amber PLCC4 Surface Mount LED with Domed Lens

Through Hole Lamp Product Data Sheet LTL-4231N-002 Spec No.: DS Effective Date: 03/25/2000 LITE-ON DCC RELEASE

Transcription:

HSDL-44xx IR Emitter Series HSDL-54xx IR Detector Series High-Performance IR Emitter and IR PIN Photodiode in Subminiature SMT Package Data Sheet Description Flat Top Package The HSDL-44 Series of flat top IR emitters uses an untinted, nondiffused, truncated lens to provide a wide radiation pattern that is useful for short distance communication where alignment of the emitter and detector is not critical. The HSDL-54 Series of flat top IR detectors uses the same truncated lens design as the HSDL-44 Series of IR emitters with the added feature of a black tint that acts as an optical filter to reduce the effects of ambient light, such as sun, incandescent and fluorescent light from interfering with the IR signal. Dome Package The HSDL-442 Series of dome IR emitters uses an untinted, nondiffused lens to provide a 24 degree viewing angle with high on-axis intensity. The HSDL-542 Series of IR detectors uses the same lens design as the HSDL-442 IR emitter and optical filter used in the HSDL-54 IR detector. Lead Configuration All of these devices are made by encapsulating LED and PIN photodiode chips on axial lead frames to form molded epoxy subminiature packages. A variety of lead configurations is available and includes: surface mount gull wing, yoke lead, or Z-bend and through hole lead bends at 2.54 mm (.1 inch) center spacing. Features Subminiature flat top and dome package Size 2x2 mm IR emitter 875 nm TS AlGaAs Intensity 17 mw/sr Speed 4 ns Wide range of drive currents 5 µa to 5 ma IR detector PIN photodiode High sensitivity Speed 7.5 ns Flexible lead configurations Surface mount or through hole Applications Short distance IR links IrDA compatible Small handheld devices Pagers Industrial handhelds Diffuse LANs Wireless audio Technology The subminiature solid state emitters utilize a highly optimized LED material, transparent substrate aluminum gallium arsenide, TS AlGaAs. This material has a very high radiant efficiency, capable of producing high light output over a wide range of drive currents and temperature.

Device Selection Guide IR Emitters Part Number Device Description [1] Device Outline Drawing HSDL-44 LED, Flat Top, 11 deg A HSDL-442 LED, Dome, 24 deg B IR Detectors Part Number Device Description [1] Device Outline Drawing HSDL-54 PIN Photodiode, Flat Top, 11 deg C HSDL-542 PIN Photodiode, Dome, 28 deg D Package Configuration Options Option Package Code Package Configuration Description Outline Drawing 11 Gull Wing Lead, Tape and Reel [2] E, J, M 21 Yoke Lead, Tape and Reel [2] Surface Mount Lead F, K, M 31 Z-Bend, Tape and Reel [2] G, L, M 1L1 2.54 mm (.1 in) Center Long Leads; 1.4 mm (.41 in) Thru Hole Lead H 1S1 Lead Spacing Short Leads; 3.7 mm (.145 in) I No Option Straight Leads [3] Prototyping A, B, C, D Notes: 1. IR Emitters have untinted, nondiffused lenses and IR Detectors have black tinted, nondiffused lenses. 2. Emitters and detectors are supplied in 12 mm embossed tape on 178 mm (7 inch) diameter reels, with 15 units per reel. Minimum order quantity and order increment are in quantity of reels only. 3. Emitters and detectors are supplied in bulk form in bags of 5 units. 4. The HSDL-44xx and HSDL-54xx families are not designed to be used in medical devices with life support functions or in safety equipment (or similar applications where components failures would result in loss of life or physical harm), eg. in automotive, medical or airline industries. 2

Package Dimensions (A) Flat Top Emitters 1.91 (.75) 2.41 (.95) 1.14 (.45) 1.4 (.55).58 (.23).43 (.17) 1.4 (.55) 1.65 (.65).5 (.2) REF. 11.68 (.46) 1.67 (.42) BOTH SIDES NOTE 3 ANODE 2.8 (.82) 2.34 (.92) CATHODE STRIPE NOTE 4.76 (.3) MAX..18 (.7).23 (.9) 1.91 (.75) 2.16 (.85) CATHODE 1.65 (.65) 1.91 (.75) DIA..2 (.8) MAX..46 (.18).56 (.22).25 (.1) MAX.* NOTE 2 (B) Dome Emitters.76 (.3).89 (.35) R..94 (.37) 1.24 (.49).18 (.7).23 (.9) 2.92 (.115) MAX. 2.3 (.8) 1.78 (.7) 2.8 (.82) 2.34 (.92) CATHODE STRIPE NOTE 4.79 (.31).53 (.21) 1.91 (.75) 2.16 (.85).63 (.25).38 (.15).5 (.2) REF. 11.68 (.46) 1.67 (.42) BOTH SIDES NOTE 3 ANODE CATHODE 1.65 (.65) 1.91 (.75) DIA..2 (.8) MAX..46 (.18).56 (.22).25 (.1) MAX.* NOTE 2 NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES). 2. PROTRUDING SUPPORT TAB IS CONNECTED TO ANODE LEAD. 3. LEAD POLARITY FOR THESE TS AlGaAs SUBMINIATURE LAMPS IS OPPOSITE TO THE LEAD POLARITY OF SUBMINIATURE LAMPS USING OTHER LED TECHNOLOGIES. 4. CATHODE STRIPE MARKING IS DARK BLUE. 3

(C) Flat Top Detectors.5 (.2) REF. 1.4 (.55) 1.65 (.65) 1.91 (.75) 2.41 (.95) 1.14 (.45) 1.4 (.55).58 (.23).43 (.17) 11.68 (.46) 1.67 (.42) BOTH SIDES CATHODE 2.8 (.82) 2.34 (.92) CATHODE STRIPE NOTE 3.76 (.3) MAX..18 (.7).23 (.9) 1.91 (.75) 2.16 (.85) ANODE 1.65 (.65) 1.91 (.75) DIA..2 (.8) MAX..46 (.18).56 (.22).25 (.1) MAX.* NOTE 2 (D) Dome Detectors.76 (.3).89 (.35) R..94 (.37) 1.24 (.49).18 (.7).23 (.9) 2.92 (.115) MAX. 2.3 (.8) 1.78 (.7) 2.8 (.82) 2.34 (.92) CATHODE STRIPE NOTE 3.79 (.31).53 (.21) 1.91 (.75) 2.16 (.85).63 (.25).38 (.15).5 (.2) REF. 11.68 (.46) 1.67 (.42) BOTH SIDES CATHODE ANODE 1.65 (.65) 1.91 (.75) DIA..2 (.8) MAX..46 (.18).56 (.22).25 (.1) MAX.* NOTE 2 NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES). 2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD. 3. CATHODE STRIPE MARKING IS DARK BLUE. 4

Package Dimensions The following notes affect the package outline drawings E through I. 1. The pinout represents the HSDL-54xx IR detectors where the protruding support tab is closest to the anode lead. While the pinout is reversed for the HSDL-44xx IR emitters where the protruding support tab is closest to the cathode lead. 2. The protruding support tab of the HSDL-54xx is connected to the cathode lead. While the protruding support tab of the HSDL-44xx is connected to the anode lead. (E) Gull Wing Lead, Option 11.76 (.3) MAX. (F) Yoke Lead, Options 21.76 (.3) MAX. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES) 5

(G) Z-Bend Lead, Options 31.76 (.3) MAX. (H) Thru Hole Lead Option 1L1 (I) Thru Hole Lead Option 1S1 6

Package Dimensions: Surface Mount Tape and Reel Options (J) 12 mm Tape and Reel, Gull Wing Lead, Option 11 GULL WING LEAD SUBMINIATURE PACKAGE NOTES: 1. EMPTY COMPONENT POCKETS SEALED WITH TOP COVER TAPE. 2. 7 INCH REEL 15 PIECES PER REEL. 3. MINIMUM LEADER LENGTH AT EITHER END OF THE TAPE IS 5 mm. 4. THE MAXIMUM NUMBER OF CONSECUTIVE MISSING DEVICES IS TWO. 5. IN ACCORDANCE WITH ANSI/EIA RS-481 SPECIFICATIONS, THE CATHODE IS ORIENTED TOWARDS THE TAPE SPROCKETS HOLE. 7

(K) 12 mm Tape and Reel, Yoke Lead, Option 21 YOKE LEAD SUBMINIATURE PACKAGE 8

(L) 12 mm Tape and Reel, Z-Bend Lead, Option 31 Z-BEND LEAD SUBMINIATURE PACKAGE 9

(M) 12 mm Tape and Reel Convective IR Reflow Soldering For information on IR reflow soldering, refer to Application Note 16, Surface Mounting SMT LED Components. 1

HSDL-44xx Absolute Maximum Ratings Parameter Symbol Min. Max. Unit Ref. Peak Forward Current (Duty Factor = 2%, I FPK 5 ma Fig. 7, 8 Pulse Width = 1 µs) DC Forward Current I FDC 1 ma Fig. 6 Power Dissipation P DISS 1 mw Reverse Voltage (I R = 1 µa) V R 5 V Transient Forward Current (1 µs Pulse) I FTR 1. A [1] Operating Temperature T O -4 85 C Storage Temperature T S -55 1 C Junction Temperature T J 11 C Lead Solder Temperature 26/5 s C [1.6 mm (.63 in.) from body] Reflow Soldering Temperatures Convection IR 235/9 s C Fig. 2 Vapor Phase 215/18 s C Note: 1. The transient peak current in the maximum nonrecurring peak current the device can withstand without damaging the LED die and the wire bonds. HSDL-44xx Electrical Characteristics at T A = 25 C Parameter Symbol Min. Typ. Max. Unit Condition Ref. Forward Voltage V F 1.3 1.5 1.7 V I FDC = 5 ma Fig. 2 2.15 I FPK = 25 ma Forward Voltage V F / T -2.1 mv/ C I FDC = 5 ma Fig. 3 Temperature Coefficient -2.1 I FDC = 1 ma Series Resistance R S 2 Ω I FDC = 1 ma Diode Capacitance C O 5 pf V, 1 MHz Reverse Voltage V R 5 2 V I R = 1 µa Thermal Resistance, Rq jp 17 C/W Junction to Pin 11

HSDL-44XX Optical Characteristics at T A = 25 C Parameter Symbol Min. Typ. Max. Unit Condition Ref. Radiant On-Axis Intensity HSDL-44 I E 1 3 8 mw/sr I FDC = 5 ma Fig. 4, 5 6 I FDC = 1 ma 15 I FPK = 25 ma HSDL-442 I E 9 17 3 mw/sr I FDC = 5 ma Fig. 4, 5 32 I FDC = 1 ma 85 I FPK = 25 ma Radiant On-Axis Intensity I E / T -.35 %/ C I FDC = 5 ma Temperature Coefficient -.35 I FDC = 1 ma Viewing Angle HSDL-44 2q 1/2 11 deg I FDC = 5 ma Fig. 9 HSDL-442 2q 1/2 24 deg I FDC = 5 ma Fig. 1 Peak Wavelength l PK 85 875 9 nm I FDC = 5 ma Fig. 1 Peak Wavelength l/ T.25 nm/ C I FDC = 5 ma Temperature Coefficient Spectral Width at FWHM l 37 nm I FDC = 5 ma Fig. 1 Optical Rise and Fall t r /t f 4 ns I FPK = 5 ma Times, 1%-9% Bandwidth f c 9 MHz I FDC = 5 ma Fig. 11 ± 1 ma 12

HSDL-54xx Absolute Maximum Ratings Parameter Symbol Min. Max. Unit Power Dissipation P DISS 15 mw Reverse Voltage (I R = 1 µa) V R 4 V Operating Temperature T O -4 85 C Storage Temperature T S -55 1 C Junction Temperature T J 11 C Lead Solder Temperature [1.6 mm (.63 in.) from body] 26/5 s C Reflow Soldering Temperatures Convection IR 235/9 s C Vapor Phase 215/18 s C HSDL-54xx Electrical Characteristics at T A = 25 C Parameter Symbol Min. Typ. Max. Unit Condition Ref. Forward Voltage V F.8 V I FDC = 1 ma Breakdown Voltage V BR 4 V I R = 1 µa, E e = mw/cm 2 Reverse Dark Current I D 1 5 na V R = 5 V, Fig. 12 E e = mw/cm 2 Series Resistance R S 2 Ω V R = 5 V, E e = mw/cm 2 Diode Capacitance C O 5 pf V R = V, Fig. 16 E e = mw/cm 2 f = 1 MHz Open Circuit Voltage V OC 375 mv E e = 1 mw/cm 2 l PK = 875 nm Temperature Coefficient of V OC V OC / T -2.2 mv/k E e = 1 mw/cm 2 l PK = 875 nm Short Circuit Current I SC E e = 1 mw/cm 2 HSDL-54 1.6 µa l PK = 875 nm HSDL-542 4.3 µa Temperature Coefficient of I SC I SC / T.16 %/K E e = 1 mw/cm 2 l PK = 875 nm Thermal Resistance, Rq jp 17 C/W Junction to Pin 13

HSDL-54xx Optical Characteristics at T A = 25 C Parameter Symbol Min. Typ. Max. Unit Condition Ref. Photocurrent E e = 1 mw/cm 2 Fig 14, HSDL-54 I PH.8 1.6 µa l PK = 875 nm 15 HSDL-542 3. 6. V R = 5 V Temperature Coefficient of I PH I PH / T.1 %/K E e = 1 mw/cm 2 Fig. 13 l PK = 875 nm V R = 5 V Radiant Sensitive Area A.15 mm 2 Absolute Spectral Sensitivity S.5 A/W E e = 1 mw/cm 2 l PK = 875 nm V R = 5 V Viewing Angle HSDL-54 2q 1/2 11 deg Fig. 18 HSDL-542 28 Fig. 19 Wavelength of Peak Sensitivity l PK 875 nm E e = 1 mw/cm 2 Fig. 17 V R = 5 V Spectral Bandwidth l 77- nm E e = 1 mw/cm 2 Fig. 17 1 V R = 5 V Quantum Efficiency h 7 % E e = 1 mw/cm 2 l PK = 875 nm, V R = 5 V Noise Equivalent Power NEP 6.2 x W/Hz 1/2 V R = 5 V 1-15 l PK = 875 nm Detectivity D 6.3 x cm* V R = 5 V 1 12 Hz 1/2 /W l PK = 875 nm Optical Rise and Fall Times, 1%-9% t r /t f 7.5 ns V R = 5 V R L = 1 kω l PK = 875 nm Bandwidth f c 5 MHz V R = 5 V R L = 1 kω l PK = 875 nm 14

IFPK PEAK FORWARD CURRENT ma RELATIVE RADIANT INTENSITY 1.5 1..5 8 T A = 25 C I FDC = 5 ma 85 9 95 1, 1 1 1 TA = 25 C.5 1. 1.5 2. 2.5 3. V F FORWARD VOLTAGE V 2. 1.8 1.6 1.4 1.2 1. -2 I FDC = 1 ma I FDC = 5 ma I FDC = 1 ma 2 4 6 8 λ WAVELENGTH nm VF FORWARD VOLTAGE V T A AMBIENT TEMPERATURE C Figure 1. Relative radiant intensity vs. wavelength. Figure 2. Peak forward current vs. forward voltage. Figure 3. Forward voltage vs. ambient temperature. NORMALIZED RADIANT INTENSITY 5. 4.5 PULSE WIDTHS < 1 µs 4. T A = 25 C 3.5 3. 2.5 2. 1.5 1..5 1 2 3 4 5 I FPK PEAK FORWARD CURRENT ma NORMALIZED RADIANT INTENSITY 1. T A = 25 C.1.1.1 1 1 I FPK FORWARD CURRENT ma I FDC MAXIMUM DC FORWARD CURRENT ma 12 1 Rθ ja = 22 C/W 8 Rθ ja = 27 C/W Rθ ja = 37 C/W 6 4 2-4 -2 2 4 6 8 1 T A AMBIENT TEMPERATURE C Figure 4. Normalized radiant intensity vs. peak forward current. Figure 5. Normalized radiant intensity vs. peak forward current ( to 1 ma). Figure 6. Maximum DC forward current vs. ambient temperature. Derated based on T JMAX = 11 C. I FPK PEAK FORWARD CURRENT ma 5 4 3 2 1 DUTY FACTOR 7 % 1 % 2 % 5 %.1.1 1 1 I FPK PEAK FORWARD CURRENT ma 6 5 4 3 2 1 DUTY FACTOR 1 % 1 % 2 % 5 % 2 % 5 % PULSE WIDTHS < 1 µs -4-2 2 4 6 8 1 t PW PULSE WIDTH ms T A AMBIENT TEMPERATURE C Figure 7. Maximum peak forward current vs. duty factor. Figure 8. Maximum peak forward current vs. ambient temperature. Derated based on T JMAX = 11 C. 15

RELATIVE RADIANT INTENSITY 1. I F = 5 ma.9 T A = 25 C.8.7.6.5.4.3.2.1-1 -8-6 -4-2 2 4 6 8 1 θ ANGLE FROM OPTICAL CENTERLINE DEGREES (CONE HALF ANGLE) Figure 9. Relative radiant intensity vs. angular displacement HSDL-44. RELATIVE RADIANT INTENSITY 1..9.8.7 I F = 5 ma T A = 25 C.6.5.4.3.2.1-5 -4-3 -2-1 1 2 3 4 5 θ ANGLE FROM OPTICAL CENTERLINE DEGREES (CONE HALF ANGLE) Figure 1. Relative radiant intensity vs. angular displacement HSDL-442. RELATIVE RADIANT INTENSITY 2 1 T A = 25 C -1-2 -3 9 MHz -4-5 -6-7 -8-9 -1 1E+5 1E+6 1E+7 1E+8 I D REVERSE DARK CURRENT na 1. V R = 5 V 1..1.1.1 2 4 6 8 1 NORMALIZED PHOTOCURRENT 1.4 1.3 V R = 5 V 1.2 1.1 1..9.8.7.6-4 -2 2 4 6 8 1 f FREQUENCY Hz T A AMBIENT TEMPERATURE C T A AMBIENT TEMPERATURE C Figure 11. Relative radiant intensity vs. frequency. Figure 12. Reverse dark current vs. ambient temperature. Figure 13. Relative reverse light current vs. ambient temperature. 16

1 1.4 NORMALIZED PHOTOCURRENT 1.1 V R = 5 V T A = 25 C NORMALIZED PHOTOCURRENT 1.3 1.2 1.1 1..9.8.7 T A = 25 C.1.1.1 1 1.6 5 1 15 2 25 3 35 4 E e IRRADIANCE mw/cm 2 V R REVERSE VOLTAGE V Figure 14. Reverse light current vs. irradiance Figure 15. Reverse light current vs. reverse voltage. C O DIODE CAPACITANCE pf 5 4 3 2 1 E e = mw/cm 2 f = 1 MHz T A = 25 C.1 1 1 1 NORMALIZED PHOTOCURRENT 1.2 V R = 5 V 1. T A = 25 C.8.6.4.2 7 75 8 85 9 95 1 15 11 V R REVERSE VOLTAGE V λ WAVELENGTH nm Figure 16. Diode capacitance vs. reverse voltage. Figure 17. Relative spectral sensitivity vs. wavelength. At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN6825-1. Please refer to Application Brief I-8 for more information. 17

NORMALIZED PHOTOCURRENT 1..9 V R = 5 V.8 T A = 25 C.7.6.5.4.3.2.1-1 -8-6 -4-2 2 4 6 8 1 θ ANGLE FROM OPTICAL CENTERLINE DEGREES (CONE HALF ANGLE) Figure 18. Relative radiant intensity vs. angular displacement. HSDL-54. NORMALIZED PHOTOCURRENT 1..9.8.7.6.5.4.3.2.1-5 -4-3 -2-1 1 2 3 4 5 θ ANGLE FROM OPTICAL CENTERLINE DEGREES (CONE HALF ANGLE) Figure 19. Relative radiant intensity vs. angular displacement. HSDL-542. 18

255 MAX. 26 C R3 R4 T TEMPERATURE ( C) 23 22 2 18 16 12 8 R1 R2 6 sec. MAX. ABOVE 22 C R5 25 P1 HEAT UP 5 1 15 2 25 3 t-time (SECONDS) P2 SOLDER PASTE DRY P3 SOLDER REFLOW P4 COOL DOWN Process Zone Symbol DT Maximum DT/Dtime Heat Up P1, R1 25 C to 16 C 4 C/s Solder Paste Dry P2, R2 16 C to 2 C.5 C/s Solder Reflow P3, R3 2 C to 255 C (26 C at 1 seconds max) 4 C/s P3, R4 255 C to 2 C -6 C/s Cool Down P4, R5 2 C to 25 C -6 C/s Figure 2. Evaluation soldering profiles (polyled). For company and product information, please go to our web site: WWW.liteon.com or http://optodatabook.liteon.com/databook/databook.aspx Data subject to change. Copyright 27 Lite-On Technology Corporation. All rights reserved.

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Lite-On: HSDL-442#11 HSDL-44 HSDL-44#1S1 HSDL-542#1L1 HSDL-44#31 HSDL-44#1L1 HSDL- 442#31 HSDL-442#1L1 HSDL-44#11 HSDL-442 HSDL-54#31 HSDL-54#1L1 HSDL-54#11 HSDL-542 HSDL-54 HSDL-542#11 HSDL-542#21