HYBRID ARRAY ANTENNA FOR BROADBAND MILLIMETER-WAVE APPLICATIONS

Similar documents
DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS

PRINTED BLUETOOTH AND UWB ANTENNA WITH DUAL BAND-NOTCHED FUNCTIONS

A COMPACT CPW-FED MONOPOLE ANTENNA WITH A U-SHAPED STRIP AND A PAIR OF L-SLITS GROUND FOR WLAN AND WIMAX APPLICATIONS

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

DOUBLE-RIDGED ANTENNA FOR WIDEBAND APPLI- CATIONS. A. R. Mallahzadeh and A. Imani Electrical Engineering Department Shahed University Tehran, Iran

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

Design of a Wideband Sleeve Antenna with Symmetrical Ridges

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

A COMPACT DUAL INVERTED C-SHAPED SLOTS ANTENNA FOR WLAN APPLICATIONS

A NOVEL LOOP-LIKE MONOPOLE ANTENNA WITH DUAL-BAND CIRCULAR POLARIZATION

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

X. Li, L. Yang, S.-X. Gong, and Y.-J. Yang National Key Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi, China

Design and Application of Triple-Band Planar Dipole Antennas

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

A Pattern Reconfigurable Antenna for WLAN and WiMAX Systems

A Modified Elliptical Slot Ultra Wide Band Antenna

A Compact Dual-Polarized Antenna for Base Station Application

NOVEL PLANAR INVERTED CONE RING MONOPOLE ANTENNA FOR UWB APPLICATIONS

A MINIATURIZED INTERNAL WIDEBAND ANTENNA FOR WIRELESS USB DONGLE APPLICATION

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

Compact UWB Planar Antenna with Triple Band EMI Reduction Characteristics for WiMAX/WLAN/X-Band Satellite Downlink Frequency

A Compact Band-selective Filter and Antenna for UWB Application

R. Zhang, G. Fu, Z.-Y. Zhang, and Q.-X. Wang Key Laboratory of Antennas and Microwave Technology Xidian University, Xi an, Shaanxi , China

CPW- fed Hexagonal Shaped Slot Antenna for UWB Applications

International Journal of Microwaves Applications Available Online at

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 14 No. 1, June 2015

COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS

UWB ANTENNA WITH DUAL BAND REJECTION FOR WLAN/WIMAX BANDS USING CSRRs

SINGLE-FEEDING CIRCULARLY POLARIZED TM 21 - MODE ANNULAR-RING MICROSTRIP ANTENNA FOR MOBILE SATELLITE COMMUNICATION

NOVEL DESIGN BROADBAND CPW-FED MONOPOLE ANTENNA WITH TRAPEZIUM SHAPED-STUB FOR COMMUNICATION SYSTEM

Progress In Electromagnetics Research Letters, Vol. 25, 77 85, 2011

Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

SIZE REDUCTION AND BANDWIDTH ENHANCEMENT OF A UWB HYBRID DIELECTRIC RESONATOR AN- TENNA FOR SHORT-RANGE WIRELESS COMMUNICA- TIONS

UTM-LOGO WIDEBAND PRINTED MONOPOLE AN- TENNA SURROUNDED WITH CIRCULAR RING PATCH

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

A CIRCULARLY POLARIZED QUASI-LOOP ANTENNA

A New UWB Antenna with Band-Notched Characteristic

Wideband Double-Layered Dielectric-Loaded Dual-Polarized Magneto-Electric Dipole Antenna

CYLINDRICAL-RECTANGULAR MICROSTRIP ARRAY WITH HIGH-GAIN OPERATION FOR IEEE J MIMO APPLICATIONS

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Small-Size Monopole Antenna with Dual Band-Stop Function for Ultra-Wideband Wireless Communications

A NOVEL COMPACT ARCHIMEDEAN SPIRAL ANTENNA WITH GAP-LOADING

CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS

Design of a Wideband Planar Microstrip-Fed Quasi-Yagi Antenna

A NOVEL NOTCHED ULTRA WIDEBAND PATCH ANTENNA FOR MOBILE MICROCELLULAR NETWORK

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Single, Dual and Tri-Band-Notched Ultrawideband (UWB) Antenna Using Metallic Strips

Bandpass-Response Power Divider with High Isolation

BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR

Development of a directional dual-band planar antenna for wireless applications

A NOVEL G-SHAPED SLOT ULTRA-WIDEBAND BAND- PASS FILTER WITH NARROW NOTCHED BAND

RCS Reduction of Patch Array Antenna by Complementary Split-Ring Resonators Structure

ANALYSIS OF ELECTRICALLY SMALL SIZE CONICAL ANTENNAS. Y. K. Yu and J. Li Temasek Laboratories National University of Singapore Singapore

Parametric Analysis of Planar Circular Monopole Antenna for UWB Communication Systems

A Low-Cost Microstrip Antenna for 3G/WLAN/WiMAX and UWB Applications

A New Compact Printed Triple Band-Notched UWB Antenna

Wide Slot Antenna with Y Shape Tuning Element for Wireless Applications

Ultrawideband Elliptical Microstrip Antenna Using Different Taper Lines for Feeding

A Broadband Reflectarray Using Phoenix Unit Cell

Application of protruded Γ-shaped strips at the feed-line of UWB microstrip antenna to create dual notched bands

A CPW-FED ULTRA-WIDEBAND PLANAR INVERTED CONE ANTENNA

Design of CPW-Fed Slot Antenna with Rhombus Patch for IoT Applications

A PERTURBED CIRCULAR MONOPOLE ANTENNA WITH CIRCULAR POLARIZATION FOR ULTRA WIDEBAND APPLICATIONS

A PRINTED DISCONE ULTRA-WIDEBAND ANTENNA WITH DUAL-BAND NOTCHED CHARACTERISTICS

A CPW-fed triangular monopole antenna with staircase ground for UWB applications

A Compact Low-Profile and Quad-Band Antenna with Three Different Shaped Slots

International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials Proceedings. Copyright IEEE.

S. Zhou, J. Ma, J. Deng, and Q. Liu National Key Laboratory of Antenna and Microwave Technology Xidian University Xi an, Shaanxi, P. R.

Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points

L-slotted Microstrip Patch Antenna for WiMAX and WLAN Applications

A Compact Dual-Band CPW-Fed Planar Monopole Antenna for GHz Frequency Band, WiMAX and WLAN Applications

SELF-COMPLEMENTARY CIRCULAR DISK ANTENNA FOR UWB APPLICATIONS

Ultra-Wideband Monopole Antenna with Multiple Notch Characteristics

High gain W-shaped microstrip patch antenna

Triple Band-Notched UWB Planar Monopole Antenna Using Triple-Mode Resonator

DUAL BAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

H And U-Slotted Rectangular Microstrip Patch Antenna

Fractal-Based Triangular Slot Antennas with Broadband Circular Polarization for RFID Readers

Design of Multilayer Microstrip Patch Antenna Using T-probe for UWB Communications

A NEW TRIPLE BAND CIRCULARLY POLARIZED SQUARE SLOT ANTENNA DESIGN WITH CROOKED T AND F-SHAPE STRIPS FOR WIRELESS APPLICATIONS

Performance Analysis of Different Ultra Wideband Planar Monopole Antennas as EMI sensors

NEW DESIGN OF COMPACT SHORTED ANNULAR STACKED PATCH ANTENNA FOR GLOBAL NAVIGA- TION SATELLITE SYSTEM APPLICATION

DUAL-WIDEBAND MONOPOLE LOADED WITH SPLIT RING FOR WLAN APPLICATION

Couple-fed Circular Polarization Bow Tie Microstrip Antenna

DUAL TRIDENT UWB PLANAR ANTENNA WITH BAND NOTCH FOR WLAN

Printed Egg Curved Slot Antennas for Wideband Applications

A Compact Wide slot antenna with dual bandnotch characteristic for Ultra Wideband Applications

Slot Tapered Vivaldi Antenna with Corrugated Edges

Compact Ultra-Wideband Antenna With Dual Band Notched Characteristic

Design of Integrated Triple Band Notched for Ultra-Wide Band Microstrip Antenna

Broadband Circular Polarized Antenna Loaded with AMC Structure

Transcription:

Progress In Electromagnetics Research, PIER 83, 173 183, 2008 HYBRID ARRAY ANTENNA FOR BROADBAND MILLIMETER-WAVE APPLICATIONS S. Costanzo, I. Venneri, G. Di Massa, and G. Amendola Dipartimento di Elettronica, Informatica e Sistemistica Universitá della Calabria 87036 Rende (CS), Italy Abstract A hybrid array configuration suitable for wideband millimeter-wave applications is presented in this work. The proposed structure is based on the use of circular waveguide elements electromagnetically coupled trough circular apertures to a stripline distribution network. The adopted excitation mechanism avoids the use of transition components generally reducing the overall antenna efficiency. Simulated and measured results on a K a -band prototype are discussed to prove the wideband radiation behavior. 1. INTRODUCTION The millimeter wave portion of the electromagnetic spectrum is established today as an excellent choice to satisfy actual requirements imposed by modern wireless communication systems, such as small profile, high data rates, low cost and short radio links. As it is well known, signal wavelength becomes shorter as the frequency increases, so smaller antennas can be used at millimeter frequencies to give the required gain overcoming attenuation effects. Due to their appealing features, such as light weight, low cost, ease of fabrication and integration, planar microstrip antennas [1] are largely adopted in millimeter wave systems. However, the main disadvantage in terms of narrow bandwidth has induced researchers to look at new configurations suitable for broadband applications, such as printed dipole [2, 3] planar monopole [4 12], circular ring [13, 14] or slot [15, 16] antennas. A conformal planar array has been recently proposed [6] which combines manufacturing advantages of microstrip technology with efficiency and wideband features of waveguides. The design presented in [17] employs an array of circular waveguide radiators with a stripline distribution network fed by a rectangular waveguide. A

174 Costanzo et al. wideband low-profile concept is demonstrated in [17], but the overall efficiency of the array is strongly limited by undesired reflections due to the presence of circular waveguides-to-stripline and striplineto-rectangular waveguide transitions. A hybrid configuration is proposed in this work which uses an array of circular waveguides electromagnetically coupled through circular apertures to a stripline feeding network. Transition components are completely avoided, as the excitation mechanism is assured through the apertures etched on the top and the bottom ground planes of the stripline. As a consequence of this, a wide percentage bandwidth is obtained, while strongly preventing loss mechanisms. To show the effectiveness of the proposed hybrid configuration, a K a -band prototype is completely designed, realized and experimentally tested. The large operating bandwidth is demonstrated on both the measured return loss and the radiation patterns at different operating frequencies. 2. HYBRID ARRAY CONFIGURATION AND DESIGN The basic configuration for the single radiating element is illustrated in Figure 1, where the stripline feed is sandwiched between the top circular waveguide radiator of height h 1 and a bottom shorted circular waveguide having the same radius r and height h 2 = λ g /4 for optimal coupling, where λ g is the wavelength into the waveguide. The excitation mechanism is realized by electromagnetically coupling the stripline pad of dimensions W p and L p to the upper radiating waveguide through circular apertures of radius r etched on the top and the bottom ground planes of the stripline (Figure 1). This approach avoids the use of transition components, as those adopted in [17], so preventing undesired reflections and interactions affecting the radiator efficiency. A proper design for the single radiating element is performed by fixing the longitudinal length h 1 and the aperture radius r to simultaneously guarantee the propagation of the fundamental mode TE 11 and the attenuation of 40 db at least for the higher order modes. Cutoff and attenuation expressions are used at this purpose as given by the theory of standard circular waveguides [18]. Simulations on commercial computer software package Ansoft HFSS are performed to optimize the pad dimensions W p and L p for good matching. On the basis of the single hybrid radiator design, a planar array of 3 6 elements (Figure 2) is considered to obtain a focused pattern in the H-plane (y-z), with a distance d along both x and y axes and a stripline power distribution network optimized by simulations to give accurate matching conditions within the operating frequency band.

Progress In Electromagnetics Research, PIER 83, 2008 175 h1 2r B B Wp Lp Ground plane z h2 x y Figure 1. Geometry of the single hybrid radiator. W d d L Figure 2. Hybrid array configuration.

176 Costanzo et al. 3. NUMERICAL AND EXPERIMENTAL RESULTS The proposed hybrid array configuration is numerically and experimentally tested on a K a -band prototype with a central operating frequency f o = 30 GHz. First, the single radiating element is dimensioned with a longitudinal waveguide length h 1 = 14 mm and a radius r =3.3mm to guarantee the fundamental TE 11 mode propagation (Figure 3) and impose a strong attenuation of higher order modes. A dielectric Arlon Diclad 870 with ɛ r =2.33, tan δ =0.0013 and height 2B =0.508 mm (Figure 1) is assumed for the stripline. Simulations are performed on Ansoft HFSS to optimize the pad dimensions W p = L p =0.3mm (Figure 1) for achieving good matching conditions when assuming feeding lines with characteristic impedance equal to 100Ω. The simulated return loss in Figure 4 shows a 10-dB operating bandwidth for the single radiator approximately going from 28 GHz to 31 GHz. A correct 100Ω matched impedance value can be also observed in Figure 5 at the central design frequency f o = 30 GHz. The computed co-polarized radiation patterns in the E-plane (x-z) and the H-plane (y-z) are also reported under Figure 6. Figure 3. TE 11 mode distribution on the circular radiating aperture (HFSS simulation). The simulated hybrid radiator is then used as single element for the array illustrated in Figure 7, with overall dimensions L = 59.5 mm, W = 34 mm and inter-element spacing d = 0.85λ o at the central frequency f o. Pictures of the exploded view of the hybrid array and the single components are reported under Figures 8 and 9, while the feeding line network is shown under Figure 10. A satisfactory agreement between the simulated and the measured return loss of the K a -band array can be observed in Figure 11, where the 10-dB

Progress In Electromagnetics Research, PIER 83, 2008 177 0-10 -20 return loss [db] -30-40 -50-60 27 28 29 30 31 32 33 Frequency [GHz] Figure 4. Simulated return loss of the single radiating element. 250 200 Real Imaginary 150 100 [Ω] 50 0-50 -100 27 27.5 28 28.5 29 29.5 30 30.5 31 31.5 32 Frequency [GHz] Figure 5. Simulated input impedance of the single radiating element.

178 Costanzo et al. 120 90 1 60 0.8 150 0.6 0.4 30 0.2 180 0 210 E-plane H-plane 330 240 300 270 Figure 6. Computed co-polarized radiation patterns for the single radiating element. Figure 7. Picture of assembled hybrid array. Figure 8. hybrid array. Exploded view of bandwidth is approximately equal to 3.5 GHz (11.6%), from 28.5 GHz to 32 GHz. To further demonstrate the wideband behavior of hybrid array, far-field and gain measurements have been performed into the anechoic chamber of Microwave Laboratory at University of Calabria (Figure 12). A standard WR 28 rectangular waveguide operating in the frequency range 26.5 40 GHz has been used as measuring probe to obtain the far-field patterns of Figure 13. Similar curves with almost

Progress In Electromagnetics Research, PIER 83, 2008 179 Top radiating waveguides Bottom shorted waveguides Feeding line network Coupling apertures on the ground plane Figure 9. Single components of hybrid array. Figure 10. Feeding line network. coincident main lobes can be observed at three different operating frequencies in the range 27.5 32 GHz. To measure the array gain, twoantenna method has been used which is based on the Friis transmission formula [19]. A calibrated pyramidal horn M.P.I. 261A/599, working in the frequency band 26.5 40 GHz, with the radiating aperture of dimensions 72.1mm 59.7 mm, has been used as known antenna to obtain the boresight gain of hybrid array successfully compared in

180 Costanzo et al. 0-5 -10-15 return loss [db] -20-25 -30 Simulated Measured -35-40 28 28.5 29 29.5 30 30.5 31 31.5 32 Frequency [GHz] Figure 11. Measured and simulated return loss of hybrid array. Figure 12. Picture of hybrid array into the anechoic chamber. Figure 14 with simulation results. An average gain value of 20 db at broadside can be observed within the operating frequency band, from 28 GHz to 32 GHz.

Progress In Electromagnetics Research, PIER 83, 2008 181 0-5 27.51GHz 29.55GHz 32.025GHz -10-15 Normalized amplitude [db] -20-25 -30-35 -40-45 -50-80 -60-40 -20 0 20 40 60 80 Angle [deg] Figure 13. frequencies. Measured H-plane pattern of hybrid array at different 50 45 40 Simulated Measured 35 30 Gain [db] 25 20 15 10 5 0 28 28.5 29 29.5 30 30.5 31 31.5 32 Frequency [GHz] Figure 14. Measured and simulated boresight gain of hybrid array.

182 Costanzo et al. 4. CONCLUSIONS The use of circular waveguide radiators electromagnetically coupled to a stripline distribution network is proposed as hybrid array structure suitable for millimeter-wave applications. When compared to similar configurations existing in literature, the assumed excitation mechanism avoids the use of transition components responsible for undesired reflections. Simulated and measured results on a K a -band prototype are discussed to show the wideband radiating behavior of the proposed array configuration. REFERENCES 1. Pozar, D. M., Microstrip Antennas: The Analysis and Design of Microstrip Antennas and Arrays, IEEE Press, New York, 1995. 2. Kuo, L.-C., H.-R. Chuang, Y.-C. Kan, T.-C. Huang, and C.- H. Ko, A study of planar printed dipole antennas for wireless communication applications, Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 637 652, 2007. 3. Wang, F. J. and J.-S. Zhang, Wideband printed dipole antenna for multiple wireless services, Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1469 1477, 2007. 4. Shan, D. M., Z. N. Chen, and X. H. Wu, Signal optimization for UWB radio systems, IEEE Trans. Antennas Propag., Vol. 53, 2178 2184, 2005. 5. Ren, W., Z.-G. Shi, and K. S. Chen, Novel planar monopole UWB antenna with 5-GHz band-notched characteristic, Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1645 1652, 2007. 6. Fu, F., L. Yan, K. Huang, and J. Dong, Design and implement of a CPW-fed meander monopole antenna with V-shape notched ground for WLAN, Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2129 2136, 2007. 7. Zhang, G.-M., J.-S. Hong, B.-Z. Wang, Q.-Y. Qin, B. He, and D.- M. Wan, A novel planar monopole antenna with an H-shaped ground plane for dual-band WLAN applications, Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2229 2239, 2007. 8. Peng, L. and C.-L. Ruang, A microstrip fed monopole patch antenna with three stubs for dual-band WLAN applications, Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2359 2369, 2007.

Progress In Electromagnetics Research, PIER 83, 2008 183 9. Liu, W. C. and C.-F. Hsu, CPW-fed notched monopole antenna for UMTS/IMT-2000/WLAN applications, Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 841 851, 2007. 10. Ren, W., J. Y. Deng, and K. S. Chen, Compact PCB monopole antenna for UWB applications, Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1411 1420, 2007. 11. Liu, Y.-T., Wideband omnidirectional operation monopole antenna, Progress In Electromagnetics Research Letters, Vol. 1, 255 261, 2008. 12. Yin, X.-C., C.-L. Ruan, C.-Y. Ding, and J.-H. Chu, A planar U type monopole antenna for UWB applications, Progress In Electromagnetics Research Letters, Vol. 2, 1 10, 2008. 13. Ren, Y.-J. and K. Chang, An ultrawideband microstrip dualring antenna for millimeter-wave applications, IEEE Antennas and Wireless Propagat. Letters, Vol. 6, 457 459, 2007. 14. Yang, G.-M., R. Jin, J. Geng, and W. He, Planar broadband millimeter-wave antenna based on open loop ring resonators, Microwave and Optical Technology Letters, Vol. 50, No. 2, 324 328, 2008. 15. Chen, Y.-L., C.-L. Ruan, and L. Peng, A novel ultra-wideband bow-tie slot antenna in wireless communication systems, Progress In Electromagnetics Research Letters, Vol. 1, 101 108, 2008. 16. Lao, J., R. Jin, J. Geng, and Q. Wu, An ultra-wideband microstrip elliptical slot antenna excited by a circular patch, Microwave and Optical Technology Letters, Vol. 50, No. 4, 845 846, 2008. 17. Navarro, J., Wide-band, low-profile millimeter-wave antenna array, Microwave and Optical Technology Letters, Vol. 34, No. 4, 253 255, 2002. 18. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley and Sons, New York, 1989. 19. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley and Sons, New York, 1997.