Computer Networks Lecture -4- Transmission Media. Dr. Methaq Talib

Similar documents
Maximum date rate=2hlog 2 V bits/sec. Maximum number of bits/sec=hlog 2 (1+S/N)

Class 4 ((Communication and Computer Networks))

William Stallings Data and Computer Communications. Bab 4 Media Transmisi

Module 2. Studoob.in - Where Learning is Entertainment

William Stallings Data and Computer Communications 7 th Edition. Chapter 4 Transmission Media

Data and Computer Communications Chapter 4 Transmission Media

Transmission Media. - Bounded/Guided Media - Uubounded/Unguided Media. Bounded Media

Transmission Media. Beulah A L/CSE. 2 July 2008 Transmission Media Beulah A. 1

Figure 4-1. Figure 4-2 Classes of Transmission Media

Transmission Medium/ Media

DATA TRANSMISSION. ermtiong. ermtiong

Jaringan Komputer. Outline. The Physical Layer

Contents. ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications. Transmission Media and Spectrum.

ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications

In this section of my blog, I will be discussing different transmission methods and why those particular methods are used in particular situations:

Department Of Computer Science ASSAM UNIVERSITY, SILCHAR

Transmission Media. Transmission Media 12/14/2016

Data and Computer Communications. Tenth Edition by William Stallings

Data Communication & Networking CSCI Dr. Thomas Hicks Computer Science Department Trinity University 1

Chapter 4: Transmission Media

Local Networks. Lecture 2 23-Mar-2016

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum

Unguided Media and Matched Filter After this lecture, you will be able to Example?

Section 1 Wireless Transmission

Books: 1. Data communications by William L Schweber 2. Data communication and Networking by Behrouz A F0rouzan

Unguided Transmission Media

Introduction to LAN/WAN. Physical Layer

Media. Twisted pair db/km at 1MHz 2 km. Coaxial cable 7 db/km at 10 MHz 1 9 km. Optical fibre 0.2 db/km 100 km

Antenna & Propagation. Basic Radio Wave Propagation

C05a: Transmission Media

Overview. Chapter 4. Design Factors. Electromagnetic Spectrum

Point-to-Point Communications

Transmission Media. Two main groups:

WIRELESS TRANSMISSION

Data Communication Prof. Ajit Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture No # 6 Unguided Media

Chapter 2. Physical Layer

Chapter 1: Telecommunication Fundamentals

CS311 -Data Communication Unguided Transmission Media

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Nguyễn Đức Thái

LE/EECS 3213 Fall Sebastian Magierowski York University. EECS 3213, F14 L8: Physical Media

Chapter 1 Introduction

3C5 Telecommunications. what do radios look like? mobile phones. Linda Doyle CTVR The Telecommunications Research Centre

E-716-A Mobile Communications Systems. Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna

EEC484/584. Computer Networks

TRANSMISSION MEDIA CHAPTER Guided Transmission Media. 4.2 Wireless Transmission. 4.3 Wireless Propagation. 4.4 Line-of-Sight Transmission

Data and Computer Communications

Communications II. Mohammad Fathi Text book: J.G. Proakis and M. Salehi, Communication System Engineering (2 nd Ed) Syllabus

Physical Layer. Networked Systems Architecture 3 Lecture 6

Physical Layer. Networked Systems 3 Lecture 5

Technician Licensing Class. Antennas

Wireless Transmission Rab Nawaz Jadoon

A bluffer s guide to Radar

Lectureo5 FIBRE OPTICS. Unit-03

SAMPLE. UEENEEH046B Solve fundamental problems in electronic communications systems. Learner Workbook. UEE07 Electrotechnology Training Package

Technician Licensing Class T9

Chapter-15. Communication systems -1 mark Questions

CS441 Mobile & Wireless Computing Communication Basics

Unbounded Transmission Media

CPSC Network Programming. How do computers really communicate?

UNDER STANDING RADIO FREQUENCY Badger Meter, Inc.

UNIT 2 DATA TRANSMISSION

Industrial Automation

Lecture 2: Links and Signaling. CSE 123: Computer Networks Stefan Savage

Technician License. Course

14. COMMUNICATION SYSTEM

2. The Basic principle of optical fibre (Or) Working principle of optical fibre (or) Total internal reflection

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

COMP211 Physical Layer

4/25/2012. Supplement T9. 2 Exam Questions, 2 Groups. Amateur Radio Technician Class T9A: T9A: T9A: T9A:

Last Time. Transferring Information. Today (& Tomorrow (& Tmrw)) Application Layer Example Protocols ftp http Performance.

What is a Communications System?

Computer Networks and ITCP/IP Protocols 1

Uses of Electromagnetic Waves

ECE 435 Network Engineering Lecture 16

Antenna Engineering Lecture 0: Introduction

UNIT-1. Basic signal processing operations in digital communication

Technician License Course Chapter 4. Lesson Plan Module 9 Antenna Fundamentals, Feed Lines & SWR

UNIT Derive the fundamental equation for free space propagation?

Class Overview. Antenna Fundamentals Repeaters Duplex and Simplex Nets and Frequencies Cool Radio Functions Review

WIRELESS LINKS AT THE SPEED OF LIGHT

Objectives of transmission lines

is a method of transmitting information from one place to another by sending light through an optical fiber. The light forms an electromagnetic

Chapter 2: Computer Networks

Lecture 2: Links and Signaling"

Antenna Engineering Lecture 0: Introduction

Chapter 12: Transmission Lines. EET-223: RF Communication Circuits Walter Lara

Radio Propagation Fundamentals

Optical Fiber. n 2. n 1. θ 2. θ 1. Critical Angle According to Snell s Law

Antennas and Propagation Chapters T4, G7, G8 Antenna Fundamentals, More Antenna Types, Feed lines and Measurements, Propagation

COM 46: ADVANCED COMMUNICATIONS jfm 07 FIBER OPTICS

An Introduction to Electrical and Electronic Engineering Communication. Dr. Cahit Karakuş, 2018

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System

Lecture 5 Transmission

Lecture 3: Transmission Media

Ham Radio Training. Level 1 Technician Level. Presented by Richard Bosch KJ4WBB

Lecture 5 Transmission. Physical and Datalink Layers: 3 Lectures

Outline. EEC-682/782 Computer Networks I. The OSI Reference Model. Review of Lecture 2

Chapter-1: Introduction

Chapter 13: Wave Propagation. EET-223: RF Communication Circuits Walter Lara

Technician License. Course

Transcription:

Computer Networks Lecture -4- Transmission Media Dr. Methaq Talib

Transmission Media A transmission medium can be broadly defined as anything that can carry information from a source to a destination.

Categories of Transmission Media Each one has its own niche in terms of bandwidth, delay, cost, and ease of installation and maintenance.

Magnetic Media One of the most common ways to transport data from one computer to another is to write them onto magnetic tape or removable media (e.g., recordable DVDs), physically transport the tape or disks to the destination machine, and read them back in again. Although this method is not as sophisticated as using a geosynchronous communication satellite, it is often more cost effective, especially for applications in which high bandwidth or cost per bit transported is the key factor. Bandwidth of magnetic tape is excellent, but the delay is poor.

Twisted Pairs For many applications an online connection is needed. One of the oldest and still most common transmission media is twisted pair. A twisted pair consists of two insulated copper wires, typically about 1 mm thick. The wires are twisted together in a helical form. One of the wires is used to carry signals to the receiver, and the other is used only as a ground reference. The purpose of twisting the wires is to reduce electrical interference from similar pairs that may be close by.

Twisted Pairs The most common application of the twisted pair is the telephone system and LANs. Twisted pairs can run several kilometers without amplification, but for longer distances the signal becomes too attenuated and repeaters are needed. Twisted pairs can be used for transmitting either analog or digital information. The bandwidth depends on the thickness of the wire and the distance traveled, but several megabits/sec can be achieved for a few kilometers in many cases. Due to their adequate performance, easy to install and low cost, twisted pairs are widely used and are likely to remain so for years to come.

Twisted Pair - Transmission Characteristics Analog Amplifiers every 5km to 6km Digital repeater every 2km or 3km Limited distance Limited bandwidth (1MHz) Limited data rate (100MHz) Susceptible to interference and noise

Twisted Pairs Twisted-pair cabling comes in several varieties. 1- Unshielded Twisted Pair (UTP): they consist simply of wires and insulators. 2- Shielded Twisted Pair (STP): have shielding on the individual twisted pairs, as well as around the entire cable (but inside the plastic protective sheath). Shielding reduces the susceptibility to external interference and crosstalk with other nearby cables to meet demanding performance specifications.

Unshielded and Shielded TP Unshielded Twisted Pair (UTP) Ordinary telephone wire Cheapest Easiest to install Suffers from external EM interference Shielded Twisted Pair (STP) Metal braid or sheathing that reduces interference More expensive Harder to handle (thick, heavy)

Coaxial Cable A coaxial cable consists of a stiff copper wire as the core, surrounded by an insulating material. The insulator is encased by a cylindrical conductor, often as a closely woven braided mesh. The outer conductor is covered in a protective plastic sheath.

Coaxial Cable It has better shielding and greater bandwidth than unshielded twisted pairs, so it can span longer distances at higher speeds. Two kinds of coaxial cable are widely used. One kind, 50-ohm cable, is commonly used when it is intended for digital transmission from the start. The other kind, 75-ohm cable, is commonly used for analog transmission and cable television.

Coaxial Cable Applications Coaxial cable was widely used in analog telephone networks where a single coaxial network could carry 10,000 voice signals. Later it was used in digital telephone networks where a single coaxial cable could carry digital data up to 600 Mbps. Cable TV networks also use coaxial cables. Another common application of coaxial cable is in traditional Ethernet LANs.

Fiber Optic Cables Fiber optic cables are similar to coax, except without the braid. Figure shows a single fiber viewed from the side. At the center is the glass core through which the light propagates. Side view of a single fiber In single-mode fibers, the core is 8 to 10 microns.

Fiber Optic Cables In multimode fibers, the core is typically 50 microns in diameter, about the thickness of a human hair. End view of a sheath with three fibers. The core is surrounded by a glass cladding with a lower index of refraction than the core, to keep all the light in the core. Next comes a thin plastic jacket to protect the cladding. Fibers are typically grouped in bundles, protected by an outer sheath.

Fiber Optic Cables To understand optical fiber, we first need to explore several aspects of the nature of light. Light travels in a straight line as long as it is moving through a single uniform substance. Optical fibers use reflection to guide light through a channel

Fiber Optic Cables Single Mode fiber optic cable has a small diametral core that allows only one mode of light to propagate. This application is typically used in long distance. Multimode fiber optic cable has a large diametral core that allows multiple modes of light to propagate. This application is typically used for short distance.

Fiber Optic Cables Advantages of Fiber optic cable are: high capacity (laser bandwidth), immune to interference (electromagnetic), and can go long distances (low attenuation). Its disadvantages are: costly, difficult to join, and expensive to install and greater skill is required.

Comparison of Fiber Optics and Copper Wire Fiber has many advantages. It can handle much higher bandwidths than copper. Fiber also has the advantage of not being affected by power surges, electromagnetic interference, or power failures. Telephone companies like fiber for a different reason: it is thin and lightweight. fibers do not leak light and are difficult to tap. These properties give fiber good security against potential wiretappers.

Comparison of Fiber Optics and Copper Wire On the downside, fiber is a less familiar technology requiring skills not all engineers have. fibers can be damaged easily by being bent too much. Since optical transmission is inherently unidirectional, two-way communication requires either two fibers or two frequency bands on one fiber. Finally, fiber interfaces cost more than electrical interfaces.

Wireless Communication advantages: mobility a wireless communication network is a solution in areas where cables are impossible to install (e.g. hazardous areas, long distances etc.) easier to maintain disadvantages: has security vulnerabilities high costs for setting the infrastructure unlike wired comm., wireless comm. is influenced by physical obstructions, climatic conditions, interference from other wireless devices

The Electromagnetic Spectrum When electrons move, they create electromagnetic waves that can propagate through space. VLF = Very Low Frequency LF = Low Frequency MF = Medium Frequency HF = High Frequency VHF = Very High Frequency UHF = Ultra High Frequency SHF = Super High Frequency EHF = Extra High Frequency UV = Ultraviolet Light

Ranges of Bands

The Electromagnetic Spectrum The radio, microwave, infrared, and visible light portions of the spectrum can all be used for transmitting information by modulating the amplitude, frequency, or phase of the waves. Ultraviolet light, X-rays, and gamma rays would be even better, due to their higher frequencies, but they are hard to produce and modulate, do not propagate well through buildings, and are dangerous to living things.

Radio Transmission Radio frequency (RF) waves are: easy to generate, can travel long distances, and can penetrate buildings easily, so they are widely used for communication in both indoors and outdoors. Radio waves also are omnidirectional, meaning that they travel in all directions from the source, so the transmitter and receiver do not have to be carefully aligned physically.

Radio propagation In the VLF, LF, and MF bands, radio waves follow the ground. These waves can be detected for perhaps 1000 km at the lower frequencies. The main problem with using these bands for data communication is their low bandwidth. In the HF and VHF bands, the ground waves tend to be absorbed by the earth. The waves that reach the ionosphere, a layer of charged particles circling the earth at a height of 100 to 500 km, are refracted by it and sent back to earth. Under certain atmospheric conditions, the signals can bounce several times. Amateur radio operators (hams) use these bands to talk long distance. The military also communicate in the HF and VHF bands.

Modulation modulation = adding information (e.g. voice) to a carrier electromagnetic (radio) signal

Modulation The Modulation types are: Frequency Modulation (FM). Amplitude Modulation (AM). Phase Modulation (PM)

Microwave Transmission Above 100 MHz, the waves travel in nearly straight lines and can therefore be narrowly focused. Concentrating all the energy into a small beam by means of a parabolic antenna (like the familiar satellite TV dish) gives a much higher signalto-noise ratio, but the transmitting and receiving antennas must be accurately aligned with each other. Microwaves travel in a straight line, so if the towers are too far apart, the earth will get in the way. Thus, repeaters are needed periodically. The higher the towers are, the farther apart they can be. The distance between repeaters goes up very roughly with the square root of the tower height. For 100-meter-high towers, repeaters can be 80 km apart.

Microwave Features Unlike radio waves at lower frequencies, microwaves do not pass through buildings well. Microwave communication is so widely used for longdistance telephone communication, mobile phones, television distribution. It has several key advantages over fiber. The main one is that no right of way is needed to lay down cables. By buying a small plot of ground every 50 km and putting a microwave tower on it, one can bypass the telephone system entirely. Microwave is also relatively inexpensive. Putting up two simple towers and putting antennas on each one may be cheaper than burying 50 km of fiber through a congested urban area or up over a mountain. Transmissions are very susceptible to weather effects, particularly rain.

Infrared Transmission infrared waves are widely used for short-range communication. The remote controls used for televisions use infrared communication. They are relatively directional, cheap, and easy to build. Major drawback: they do not pass through solid objects. In general, the waves behave more and more like light and less and less like radio. Security of infrared systems against eavesdropping is better than that of radio systems. No government license is needed to operate an infrared system, in contrast to radio systems, which must be licensed outside.