A Five-Level Single-Phase Grid-Connected Converter for Renewable Distributed Systems

Similar documents
Transformerless Grid-Connected Inverters for Photovoltaic Modules: A Review

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

SIMULATION, DESIGN AND CONTROL OF A MODIFIED H-BRIDGE SINGLE PHASE SEVEN LEVEL INVERTER 1 Atulkumar Verma, 2 Prof. Mrs.

A Novel Cascaded Multilevel Inverter Using A Single DC Source

SVPWM Buck-Boost VSI

Multilevel Inverter for Single Phase System with Reduced Number of Switches

SINGLE PHASE THIRTY ONE LEVEL INVERTER USING EIGHT SWITCHES TOWARDS THD REDUCTION

High Efficiency Single Phase Transformer less PV Multilevel Inverter

Design and Development of Prototype Three Level NPC Inverter for Industrial Application

DC Link Capacitor Voltage Balance and Neutral Point Stabilization in Diode Clamped Multi Level Inverter

Phase Shift Modulation of a Single Dc Source Cascaded H-Bridge Multilevel Inverter for Capacitor Voltage Regulation with Equal Power Distribution

Pulse width modulated (PWM) inverters are mostly used power electronic circuits in

A Five Level Inverter for Grid Connected PV System Employing Fuzzy Controller

DESIGN AND IMPLEMENTATION OF DC-DC CONVERTER USING H6 BRIDGE

IMPROVED TRANSFORMERLESS INVERTER WITH COMMON-MODE LEAKAGE CURRENT ELIMINATION FOR A PHOTOVOLTAIC GRID-CONNECTED POWER SYSTEM

ADVANCED PWM SCHEMES FOR 3-PHASE CASCADED H-BRIDGE 5- LEVEL INVERTERS

A New Transistor Clamped 5-Level H-Bridge Multilevel Inverter with voltage Boosting Capacity

Improved H6 Transformerless Inverter for PV Grid tied power system

International Journal Of Engineering And Computer Science ISSN: Volume 2 Issue 12 December, 2013 Page No Abstract

A Modified Apod Pulse Width Modulation Technique of Multilevel Cascaded Inverter Design

A New Multilevel Inverter Topology of Reduced Components

Modified Multilevel Inverter Topology for Driving a Single Phase Induction Motor

A Fifteen Level Cascade H-Bridge Multilevel Inverter Fed Induction Motor Drive with Open End Stator Winding

Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive

A New 5 Level Inverter for Grid Connected Application

Single-Phase Nine-Level Grid-Connected Inverter for Photo-Voltaic System

PERFORMANCE ANALYSIS OF SEVEN LEVEL INVERTER WITH SOFT SWITCHING CONVERTER FOR PHOTOVOLTAIC SYSTEM

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 04, 2016 ISSN (online):

Harmonic mitigation in secondary distribution by using cascaded based nine-level inverters in solar generation stations

Modelling of Five-Level Inverter for Renewable Power Source

A Comparative Study of SPWM on A 5-Level H-NPC Inverter

Analysis of IM Fed by Multi-Carrier SPWM and Low Switching Frequency Mixed CMLI

Harmonic Reduction in Induction Motor: Multilevel Inverter

Design and Development of Multi Level Inverter

Hybrid Five-Level Inverter using Switched Capacitor Unit

MPPT based New Transformer Less PV Inverter Topology with Low Leakage Current

A NOVEL APPROACH TO ENHANCE THE POWER QUALITY USING CMLI BASED CUSTOM POWER DEVICES

Speed Control of Induction Motor using Multilevel Inverter

Bhanutej Jawabu Naveez Assistant Professor, Vignana Bharathi Institute of Technology, Aushapur, Ghatkesar, Hyderabad.

MMC based D-STATCOM for Different Loading Conditions

Low Order Harmonic Reduction of Three Phase Multilevel Inverter

DESIGN 3-PHASE 5-LEVELS DIODE CLAMPED MULTILEVEL INVERTER USING MATLAB SIMULINK

Analysis And Comparison Of Flying Capacitor And Modular Multilevel Converters Using SPWM

A New Multilevel Inverter Topology with Reduced Number of Power Switches

Nine-Level Cascaded H-Bridge Multilevel Inverter Divya Subramanian, Rebiya Rasheed

Hardware Implementation of SPWM Based Diode Clamped Multilevel Invertr

Simulation of Single Phase Grid Connected Photo Voltaic System Based On PWM Control Of Switched Boost Inverter For DC Nanogrid Applications

Modeling of Single Stage Grid-Connected Buck-Boost Inverter for Domestic Applications Maruthi Banakar 1 Mrs. Ramya N 2

Three Phase Parallel Multilevel Inverter Fed Induction Motor Using POD Modulation Scheme

SEVEN LEVEL HYBRID ACTIVE NEUTRAL POINT CLAMPED FLYING CAPACITOR INVERTER

Hybrid PWM switching scheme for a three level neutral point clamped inverter

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

MATLAB Implementation of a Various Topologies of Multilevel Inverter with Improved THD

Speed control of Induction Motor drive using five level Multilevel inverter

International Journal of Advance Engineering and Research Development

A COMPARITIVE STUDY OF THREE LEVEL INVERTER USING VARIOUS TOPOLOGIES

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER

Literature Survey: Multilevel Voltage Source Inverter With Optimized Convention Of Bidirectional Switches

Multilevel Current Source Inverter Based on Inductor Cell Topology

Modified Multilevel Inverter Topology for Grid Connected Pv Systems

Reduction of Power Electronic Devices with a New Basic Unit for a Cascaded Multilevel Inverter fed Induction Motor

A Comparative Analysis of Multi Carrier SPWM Control Strategies using Fifteen Level Cascaded H bridge Multilevel Inverter

Simulation of Cascade H-Bridge Multilevel Inverter With Equal DC Voltage Source

A SOLUTION TO BALANCE THE VOLTAGE OF DC-LINK CAPACITOR USING BOOST CONVERTER IN DIODE CLAMPED MULTILEVEL INVERTER

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) ISSN: Volume 11 Issue 1 NOVEMBER 2014.

A Novel Five-level Inverter topology Applied to Four Pole Induction Motor Drive with Single DC Link

Simulation and Experimental Results of 7-Level Inverter System

Hybrid Modulation Technique for Cascaded Multilevel Inverter for High Power and High Quality Applications in Renewable Energy Systems

Analysis and Simulation of Multilevel DC-link Inverter Topology using Series-Parallel Switches

Simulation and Comparison of Twenty Five Level Diode Clamped & Cascaded H-Bridge Multilevel Inverter

A New Single-Phase Multilevel Inverter with Reduced Number of Switches for Solar Applications

Level Shifted Pulse Width Modulation in Three Phase Multilevel Inverter for Power Quality Improvement

Single Phase Multi- Level Inverter using Single DC Source and Reduced Switches

HIGH EFFICIENCY TRANSFORMER LESS INVERTER FOR SINGLE-PHASE PHOTOVOLTAIC SYSTEMS USING SWITCHING CONVERTER

An Advanced Multilevel Inverter with Reduced Switches using Series Connection of Sub Multilevel Inverters

Simulation & Implementation Of Three Phase Induction Motor On Single Phase By Using PWM Techniques

SINGLE PHASE GRID CONNECTED PV SYSTEM EMPLOYED BY A NOVEL MODIFIED H BRIDGE INVERTER

MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER

SINGLE PHASE HYBRIDIZED NINE-LEVEL INVERTER

COMPARISON STUDY OF THREE PHASE CASCADED H-BRIDGE MULTI LEVEL INVERTER BY USING DTC INDUCTION MOTOR DRIVES

Generating 17 Voltage Levels Using a Three Level Flying Capacitor Inverter and Cascaded Hbridge

Modular Grid Connected Photovoltaic System with New Multilevel Inverter

HIGH RELIABILITY AND EFFICIENCY OF GRID-CONNECTED PHOTOVOLTAIC SYSTEMS USING SINGLE-PHASETRANSFORMERLESS INVERTER. Abstract

Levels of Inverter by Using Solar Array Generation System

TRANSFORMERLESS THREE LEVEL DIODE CLAMPED INVERTER FOR SINGLE PHASE GRID CONNECTED PHOTOVOLTAIC SYSTEM

Experimental Analysis of Single-Phase Non- Transformer Photovoltaic Inverter with Optimum Efficiency

Single-Carrier Modulation for 9-Level Neutral Point Clamped Inverters in Three Phase Transformerless Photovoltaic Systems

Switching of Three Phase Cascade Multilevel Inverter Fed Induction Motor Drive

Online Dynamic Topology Type PV Grid - Connected Inverter for Efficiency Expansion

Multilevel Inverter for Grid-Connected PV SystemEmploying MPPT and PI Controller

Multilevel Cascade H-bridge Inverter DC Voltage Estimation Through Output Voltage Sensing

CAPACITOR VOLTAGE BALANCING IN SINGLE PHASE SEVEN-LEVEL PWM INVERTER

MULTILEVEL INVERTER WITH LEVEL SHIFTING SPWM TECHNIQUE USING FEWER NUMBER OF SWITCHES FOR SOLAR APPLICATIONS

New model multilevel inverter using Nearest Level Control Technique

Study of Unsymmetrical Cascade H-bridge Multilevel Inverter Design for Induction Motor

A Series-Connected Multilevel Inverter Topology for Squirrel-Cage Induction Motor Drive

Available online at ScienceDirect. Procedia Technology 21 (2015 ) SMART GRID Technologies, August 6-8, 2015

ISSN Vol.05,Issue.05, May-2017, Pages:

Design and Simulation of Simplified Five-Level and Seven-Level Inverters Using Modified PWM For PV Applications

Modified Transistor Clamped H-bridge-based Cascaded Multilevel inverter with high reliability.

Transcription:

A Five-Level Single-Phase Grid-Connected Converter for Renewable Distributed Systems V. Balakrishna Reddy Professor, Department of EEE, Vijay Rural Engg College, Nizamabad, Telangana State, India Abstract In low-power renewable systems, a single-phase grid-connected converter is usually adopted. This paper deals with a novel five-level converter topology that follows this trend. A review of the state of the art of the five-level topologies and a theoretical power loss comparison with the proposed solution is realized. The proposed converter architecture is based on a full-bridge topology with two additional power switches and two diodes connected to the midpoint of the dc link. Since the two added levels are obtained by the discharge of the two capacitors of the dc link, the balancing of the midpoint voltage is obtained with a specific pulse width modulation (PWM) strategy. This solution is designed for renewable energy systems, where unity power factor operations are generally required. Nevertheless, a variation of the proposed topology which allows four-quadrant operations. Keywords: Half-Bridge NPC, Cascaded Full-Bridge, Hybrid Five-Level Topologies, SPWM, THD, DC to AC Conversion Introduction With regard to harmonic distortion content, power factors, and dc components, the output current of grid connected power converters must comply with the requirements of electricity supply companies. Recently, converter topologies employing a high-frequency transformer instead of a line frequency one have been investigated in order to reduce size and weight. The tradeoff between high efficiency and low cost is a hard task for these architectures because they require several power stages. On the other hand, in low-power applications, international standards allow the use of grid-connected power converters without any galvanic isolation, thus allowing the so called transformerless architectures. This paper concerns the use of multilevel topologies for single-phase converters, but in order to remain linked to a practical implementation, the unipolar PWM applied to a full bridge topology is taken as reference. It is important to note that, in this paper, the term unipolar PWM refers to a three-level output E-mail id: - editorindus@gmail.com Page 19

voltage, whose first switching harmonic resides at twice the switching frequency. The unipolar PWM is always applied to a full-bridge structure. Scope of the Project This paper proposes a novel five-level converter based on a full-bridge topology with two added power switches and two diodes connected to the midpoint of the dc link. In order to balance the midpoint voltage, a specific PWM strategy was developed. This solution is designed for renewable energy systems, where unity power factor operations are generally required. Nevertheless, a variation of the proposed topology, which allows four-quadrant operations, is also described. Existing System To harmonic distortion content, power factors, and dc components, the output current of grid connected power converters must comply with the requirements of electricity supply companies. Recently, converters employing a high-frequency transformer instead of a line frequency one have been investigated in order to reduce size and weight. The tradeoff between high efficiency and low cost is a hard task because, they require several power stages. On the other hand, in low-power applications, international standards allow the use of grid-connected power converters without any galvanic isolation, thus allowing the so called transformer less converters. Existing System Technique Resonant inverters produce sine waves with LC circuits to remove the harmonics from a simple square wave. Typically there are several series- and parallel-resonant LC circuits, each tuned to a different harmonic of the power line frequency. Proposed System This project present a five-level converter based on a full-bridge converter with two added power switches and two diodes connected to the midpoint of the dc link. In order to E-mail id: - editorindus@gmail.com Page 20

balance the midpoint voltage, a specific PWM strategy was developed. This solution is designed for renewable energy systems, where unity power factor operations are generally required. Proposed System Technique Multilevel converter allow to reduces the harmonic content of the converter output voltage, allowing the use of smaller and cheaper output filters. Moreover, these converters are usually characterized by a strong reduction of the switching voltages across the power switches, allowing the reduction of switching power losses and electromagnetic interference. The cascaded full-bridge allows multiple PWM strategies, i.e., carrier-based modulations or space-vector approaches. In the field of carrier-based PWM, unipolar and hybrid modulations can be applied. Advantages of Proposed Technique Reduced harmonic. Less EMI. Smaller & Cheaper filter. Reduced switching power losses. Power factor improvement. Given I/P & Expected O/P Vin=400V dc Vac= five level 400Vac THD< 4% Hardware Vdc=12V RPS Vac=24Vac pk to pk Simulation Results Techniques Used: Multi level inverter Techniques Description E-mail id: - editorindus@gmail.com Page 21

Grid Tie Inverter International Journal of Research in Engineering & Social Sciences Inverters take DC power and invert it to AC power so it can be fed into the electric utility company grid. The grid tie inverter must synchronize its frequency with that of the grid (e.g. 50 or 60 Hz) using a local oscillator and limit the voltage to no higher than the grid voltage. A highquality modern GTI has a fixed unity power factor, which means its output voltage and current are perfectly lined up, and its phase angle is within 1 degree of the AC power grid. The inverter has an on-board computer which will sense the current AC grid waveform, and output a voltage to correspond with the grid. However, supplying reactive power to the grid might be necessary to keep the voltage in the local grid inside allowed limitations. Otherwise, in a grid segment with considerable power from renewable sources voltage levels might rise too much at times of high production, i.e. around noon. Grid-tie inverters are also designed to quickly disconnect from the grid if the utility grid goes down. This is an NEC requirement that ensures that in the event of a blackout, the grid tie inverter will shut down to prevent the energy it transfers from harming any line workers who are sent to fix the power grid. Properly configured, a grid tie inverter enables a home owner to use an alternative power generation system like solar or wind power without extensive rewiring and without batteries. If the alternative power being produced is insufficient, the deficit will be sourced from the electricity grid. Modulation Strategies: Double Frequency SPWM Technique The proposed topology can also work with double-frequency SPWM to achieve a higher equivalent switching frequency. In the double-frequency SPWM, the five power switches are separated into two parts, and are modulated with two inverse sinusoidal waves respectively. S 1, S 2, and S 3 are modulated with u g1, while S 4 and S 5 are modulated with u g2. During the positive half grid cycle, the circuit rotates in the sequence of state 4 state 1 state 2 state 1, and the output voltage v AN varies between +Vdc and the zero with twice of the carrier frequency. During the negative half grid cycle, the circuit rotates in the sequence of state 4 state 3 state 2 state 3, and the output voltage v AN varies between V dc and zero. E-mail id: - editorindus@gmail.com Page 22

The aforementioned two modulation strategies both have their own advantages. The double-frequency SPWM can provide a higher equivalent switching frequency so that the size and weight of the filter inductor can be reduced. On the other hand, the unipolar SPWM can guarantee that the virtual dc bus C 2 is charged by the real bus every switching cycle, so that the current stress on S 1 and S 3 caused by the operation of the switched capacitor can be reduced. In this paper, the unipolar SPWM is chosen as an example for the performance evaluation and experimental verification. For all of the four operation states, there is no limitation on the direction of the output current i grid, since the power switches with antiparallel diodes can achieve bidirectional current flow. Therefore, the proposed topology has the capability of feeding reactive power into the grid to help support the stability of the power system. The proposed topology is also immune against transient overvoltage of the grid. During the mains positive voltage spikes, the voltage at point A is clamped at V dc by C 1 and the antiparallel diodes of S 1 and S 4. Similarly, during the negative voltage spikes, the voltage at point A is clamped at V dc by C 2 and the antiparallel diodes of S 2 and S 5. Therefore, the mains transient over voltage does not pose a safety threat for the inverter. Simulation Design without Modulation A simulation design modulation technique as shown in Fig.1 & Fig.4 is implemented in MATLAB SIMULINK with the help of pulse generators where the Open & Closed loop is varied. The THD analysis is also compared for the two simulations which is shown below in Fig.3, 6. Voltage waveform of open & closed loop system is shown in fig 2 & 5 Fig.1. Proposed Open loop Five level Inverter E-mail id: - editorindus@gmail.com Page 23

Fig.2. Output Voltage Waveform Fig.3. O/P Current Distortion E-mail id: - editorindus@gmail.com Page 24

Fig.4. Proposed Closed loop Five level inverter Fig.5.O/P Voltage Waveform E-mail id: - editorindus@gmail.com Page 25

Fig.6. O/P Current Distortion Modulation Technique Derived Topology and Modulation Strategy Hybrid Five-Level Topologies A variation on the NPC full-bridge was recently presented: it consists of an NPC threelevel leg (four devices), whereas the other leg consists only of two devices, which switch at low frequency. A flying capacitor is employed to provide the additional voltage levels. An advantage of this architecture compared with the NPC full-bridge is that only three devices are conducting; however, these devices must have a breakdown voltage equal to the dc-link voltage. The voltage control of the flying capacitor was also realized. E-mail id: - editorindus@gmail.com Page 26

A similar approach was presented, where four low frequency devices (instead of the two employed) were employed in a full-bridge configuration. An alternative way to provide five voltage levels with a full-bridge topology was presented and employed in a photovoltaic application. In this latter proposal, the converter is constituted by a full bridge with an additional bidirectional switch (realized with an IGBT and four diodes), employed to connect the midpoint of the dc link to the converter output. The energy efficiency of this solution is potentially very high; however, the capacitor s voltage balancing is not taken into account. A different solution was proposed, where the positive rail of a full-bridge can be connected either to the dc link or to the midpoint of the dc-link capacitors. Only six devices are needed, and the maximum number of conducting devices is three. However, the balancing of the dc-link capacitors is a serious issue and limits the field of application to a reactive compensator. E-mail id: - editorindus@gmail.com Page 27

Proposed Five-Level Single-Phase Solution This converter architecture, known as the H6 bridge, was originally developed, in combination with a suitable PWM strategy, in order to keep constant the output common-mode voltage in case of a transformerless inverter for photovoltaic applications. With the same purpose, another PWM strategy for the H6 bridge was developed. In this paper, this converter structure is used to obtain a five-level grid-connected converter for singlephase applications. In steady-state conditions, due to the low voltage drop across the inductance Lf of the output filter, the output voltage of the converter has a fundamental component very close to the grid voltage. The frequencies of these two voltages are identical, whereas the amplitude and their phase displacement are only slightly different. As a consequence, the shape of the modulation index m of the power converter is very similar to the grid voltage waveform. The output voltage of the converter can be written as Vout = mvdc. Depending on the modulation index value, the power converter will be driven by different PWM strategies. As a matter of fact, it is possible to identify four operating zones, and for each zone, the output voltage levels of the power converter will be different, as shown in Table I. With reference to the schematic, the behavior of the proposed solution is shown for a whole period of the grid voltage, i.e., of the modulation index. During the positive semi period the transistors T1 and T4 are ON and T2 and T3 are OFF. In Zone 1, T5 is OFF and T6 commutates at the switching frequency, whereas in Zone 2 T5 commutates at the switching frequency and T6 is ON. During the negative semi period the full-bridge changes configuration, with T1 and T4 OFF and T2 and T3 ON. With similarity to Zone 1 and 2, in Zone 3 T5 E-mail id: - editorindus@gmail.com Page 28

Modulation Strategies International Journal of Research in Engineering & Social Sciences In Zone 1 the switching of the transistor T6 changes the output value between +VMP [that is provided by the low-side capacitor] and 0 V. During the freewheeling phase both diodes D1 and D2 are ON, imposing an almost null voltage at the full-bridge output. In Zone 2 T6 is ON and the switching of T5 changes the output voltage from +Vdc to +VMP. A similar analysis can be repeated for the negative semi period, Zones 3 and 4. It must be noted that only a transistor is switching for every zone. Furthermore, the antiparallel diode of every power switch is not used allowing the use of MOSFETs for all the transistors. The gate signals for the proposed five level modulation strategies. In the above described operations, the output voltage level +VMP is provided by the discharging of CLS, whereas the output voltage level VMP is provided by the discharging of CHS. In fully symmetric conditions, the midpoint voltage will be equal to VMP = Vdc/2, however, an asymmetry could unbalance the system. E-mail id: - editorindus@gmail.com Page 29

This choice allows to obtain the minimum number of commutations but causes a voltage ripple in VMP at the same frequency of the grid voltage. In fact, it would be possible to reduce the ripple of the midpoint voltage VMP, but it would imply a greater number of commutations of T5 and T6. This choice is avoided in order to pursue the maximum efficiency. Expected Input and Expected Output Given I/P & Expected O/P Simulation Vin=400V dc Vac= five level 400Vac THD< 4% Hardware Vdc=12V RPS Vac=24Vac pk to pk E-mail id: - editorindus@gmail.com Page 30

References International Journal of Research in Engineering & Social Sciences D. Infield, P. Onions, A. Simmons, and G. Smith, Power quality from multiple grid-connected single-phase inverters, IEEE Trans. Power Del., vol. 19, no. 4, pp. 1983 1989, Oct. 2004. R. Gonzalez, E. Gubia, J. Lopez, and L. Marroyo, Transformerless single-phase multilevelbased photovoltaic inverter, IEEE Trans. Ind.Electron., vol. 55, no. 7, pp. 2694 2702, Jul. 2008. S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. Franquelo, B. Wu, J. Rodriguez, M. Pandrez, and J. Leon, Recent advances and industrial applications of multilevel converters, IEEE Trans. Ind. Electron., vol. 57,no. 8, pp. 2553 2580, Aug. 2010. J.-S. Lai and F. Z. Peng, Multilevel converters A new breed of power converters, IEEE Trans. Ind. Appl., vol. 32, no. 3, pp. 509 517, May 1996. A. Shukla, A. Ghosh, and A. Joshi, Control schemes for dc capacitor voltages equalization in diode-clamped multilevel inverter-based dstatcom, IEEE Trans. Power Del., vol. 23, no. 2, pp. 1139 1149, Apr. 2008. A. Bendre, G. Venkataramanan, D. Rosene, and V. Srinivasan, Modeling and design of a neutral-point voltage regulator for a three-level diode clamped inverter using multiple-carrier modulation, IEEE Trans. Ind.Electron., vol. 53, no. 3, pp. 718 726, Jun. 2006. L. Zhang and S. Watkins, Capacitor voltage balancing in multilevel flying capacitor inverters by rule-based switching pattern selection, Elect. Power Appl., vol. 1, no. 3, pp. 339 347, May 2007. E-mail id: - editorindus@gmail.com Page 31

E. Villanueva, P. Correa, J. Rodriguez, and M. Pacas, Control of a single-phase cascaded h- bridge multilevel inverter for grid-connected photovoltaic systems, IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4399 4406, Nov. 2009. C. Cecati, F. Ciancetta, and P. Siano, A multilevel inverter for photovoltaic systems with fuzzy logic control, IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4115 4125, Dec. 2010. M. Malinowski, K. Gopakumar, J. Rodriguez, and M. Pandrez, A survey on cascaded multilevel inverters, IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2197 2206, Jul. 2010. E-mail id: - editorindus@gmail.com Page 32