R. J. Jones Optical Sciences OPTI 511L Fall 2017

Similar documents
R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

OPTI 511L Fall (Part 1 of 2)

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc.

A novel tunable diode laser using volume holographic gratings

A Narrow-Band Tunable Diode Laser System with Grating Feedback

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Chapter 1 Introduction

Doppler-Free Spetroscopy of Rubidium

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W

White Paper Laser Sources For Optical Transceivers. Giacomo Losio ProLabs Head of Technology

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

DIODE LASER SPECTROSCOPY (160309)

Construction and Characterization of a Prototype External Cavity Diode Laser

Luminous Equivalent of Radiation

Suppression of Stimulated Brillouin Scattering

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and

UNMATCHED OUTPUT POWER AND TUNING RANGE

SECOND HARMONIC GENERATION AND Q-SWITCHING

A continuous-wave Raman silicon laser

Wavelength Control and Locking with Sub-MHz Precision

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Spectrometer using a tunable diode laser

Application Instruction 002. Superluminescent Light Emitting Diodes: Device Fundamentals and Reliability

Highly Reliable 40-mW 25-GHz 20-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor

TLK-L1050M 1050 nm 60 nm 8 mw Fiber Coupled c. TLK-L1220R 1220 nm 90 nm 40 mw Fiber Coupled c. TLK-L1300M 1310 nm 100 nm 45 mw Fiber Coupled c

RECENTLY, studies have begun that are designed to meet

3 General Principles of Operation of the S7500 Laser

IST IP NOBEL "Next generation Optical network for Broadband European Leadership"

High-power semiconductor lasers for applications requiring GHz linewidth source

Figure 1. Schematic diagram of a Fabry-Perot laser.

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza

Laser Diode. Photonic Network By Dr. M H Zaidi

Swept Wavelength Testing:

Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 18.

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser

Fast Widely-Tunable CW Single Frequency 2-micron Laser

Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser

Semiconductor Optical Communication Components and Devices Lecture 18: Introduction to Diode Lasers - I

Diode Lasers. 12 Orders of Coherence Control. Tailoring the coherence length of diode lasers

External-Cavity Tapered Semiconductor Ring Lasers

Installation and Characterization of the Advanced LIGO 200 Watt PSL

taccor Optional features Overview Turn-key GHz femtosecond laser

Pound-Drever-Hall Locking of a Chip External Cavity Laser to a High-Finesse Cavity Using Vescent Photonics Lasers & Locking Electronics

Compact tunable diode laser with diffraction limited 1 Watt for atom cooling and trapping

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

University of Washington INT REU Final Report. Construction of a Lithium Photoassociation Laser

Concepts for High Power Laser Diode Systems

Polarization Experiments Using Jones Calculus

Fabry Perot Resonator (CA-1140)

High-Coherence Wavelength Swept Light Source

Diode Laser Control Electronics. Diode Laser Locking and Linewidth Narrowing. Rudolf Neuhaus, Ph.D. TOPTICA Photonics AG

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Photoassociative Spectroscopy of Strontium Along the 1 S 0-3 P 1. Transition using a Littman/Metcalf Laser. Andrew Traverso. T.C.

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Characterization and Development of an Extended Cavity Tunable Laser Diode

Spectroscopy of Ruby Fluorescence Physics Advanced Physics Lab - Summer 2018 Don Heiman, Northeastern University, 1/12/2018

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

B. Cavity-Enhanced Absorption Spectroscopy (CEAS)

Longitudinal Multimode Dynamics in Monolithically Integrated Master Oscillator Power Amplifiers

Introduction to the operating principles of the HyperFine spectrometer

DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE

Tapered Amplifiers. For Amplification of Seed Sources or for External Cavity Laser Setups. 750 nm to 1070 nm COHERENT.COM DILAS.

BN 1000 May Profile Optische Systeme GmbH Gauss Str. 11 D Karlsfeld / Germany. Tel Fax

Midterm #1 Prep. Revision: 2018/01/20. Professor M. Csele, Niagara College

FFP-TF2 Fiber Fabry-Perot Tunable Filter Technical Reference

DIAMOND-SHAPED SEMICONDUCTOR RING LASERS FOR ANALOG TO DIGITAL PHOTONIC CONVERTERS

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Stabilizing injection-locked lasers through active feedback. Ethan Welch

Evaluation of Scientific Solutions Liquid Crystal Fabry-Perot Etalon

Continuous Wave (CW) Single-Frequency IR Laser NPRO 125/126 Series

Keysight Technologies Using a Wide-band Tunable Laser for Optical Filter Measurements

Instructions for the Experiment

VCSELs With Enhanced Single-Mode Power and Stabilized Polarization for Oxygen Sensing

LASER Transmitters 1 OBJECTIVE 2 PRE-LAB

Optical Gain Experiment Manual

Solid-State Laser Engineering

Tunable Laser Kits. Features

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG

Self-organizing laser diode cavities with photorefractive nonlinear crystals

RECENTLY, using near-field scanning optical

DEVELOPING A NARROW LINEWIDTH 657 NM DIODE LASER FOR USE IN A CALCIUM ATOM INTERFEROMETER. Brian Neyenhuis

FI..,. HEWLETT. High-Frequency Photodiode Characterization using a Filtered Intensity Noise Technique

High-Frequency Electro-Optic Phase Modulators

Wavelength Meter Sensitive and compact wavemeter with a large spectral range for high speed measurements of pulsed and continuous lasers.

Simultaneous Measurements for Tunable Laser Source Linewidth with Homodyne Detection

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm

Temporal coherence characteristics of a superluminescent diode system with an optical feedback mechanism

Isolator-Free 840-nm Broadband SLEDs for High-Resolution OCT

To generate a broadband light source by using mutually injection-locked Fabry-Perot laser diodes

Vertical External Cavity Surface Emitting Laser

Transcription:

R. J. Jones Optical Sciences OPTI 511L Fall 2017 Semiconductor Lasers (2 weeks) Semiconductor (diode) lasers are by far the most widely used lasers today. Their small size and properties of the light output take some getting used to. Also these devices are extremely power and static sensitive. The most basic elements of a theory of laser diode operation can be found in Yariv; for a more extensive and modern treatment see e.g. "Fundamentals of Photonics" by Saleh & Teich. Detailed characteristics of a particular laser diode can be obtained from the manufacturers User's Manual. The popularity of laser diodes is largely due to a host of desirable characteristics, such as wavelength availability, ruggedness, reliability, compactness, lightweight, high efficiency, low cost etc. From a laser physics standpoint diode lasers are also of interest because they make it relatively easy to observe two basic aspects of laser operation: 1. Exploration of laser characteristics near threshold, including buildup of laser oscillation from noise as excitation increases through the threshold value. 2. Measurement of the fundamental laser linewidth. One of the challenges in using diode lasers for spectroscopic applications is controlling the laser frequency. We will explore the basic properties of the diode lasers in this lab, how to control them for tunable single-frequency operation, and return to use them for saturated absorption experiments in the near future. We will investigate the following properties of the diode laser: I. Becoming familiar with device properties. a. Threshold current, output power, temperature dependence. II. Controlling and tuning for single frequency operation. a. Wavelength dependence on current, temperature. b. Mode-hopping. c. External feedback for precision control. III. Measurement of a laser s linewidth. a. Fabry-Perot cavity measurement. b. Heterodyne beatnote detection. Semiconductor Lasers, F2017 1

Part I. Laser Characteristics 1. Beam shape. A. Use a diode without a collimating lens (ask your TA). Make a rough estimate of the diode laser beam divergence for two orthogonal directions. For this part, you may simply estimate the beam diameter by eye. Q: Why is the laser beam elliptical? How is the beam elongation oriented with respect to the p-n junction? Please sketch the measured beam profile and its orientation with respect to the end facet of the diode laser in you lab book. B: Assuming the beam is diffraction limited, what is the effective size of the radiating region (at the exit facet of the semiconductor) based on your measurements? 2. Polarization. A. Measure the state of polarization of the laser output beam. B. What is the relationship between polarization and laser resonator orientation? - Does this make sense to you? Can you explain this? Try! 3. Threshold behavior and output power A. Use the laser diode that has temperature and current control. Use the spherical collimating lens to couple light out of the diode. Stabilize the laser temperature at ~25 C. Plot the laser output power versus injection current. Determine the value of the threshold current (compare with specifications if available). B. Repeat at 32 C. Does the threshold change? 4. Aspect Ratio One way to adjust the aspect ratio of the elliptical beam is to use a pair of matched prisms that, when set up properly, widens (or shrinks) one of the beam's transverse dimensions without focusing. (A pair of cylindrical lenses might also be used for this purpose.) Semiconductor Lasers, F2017 2

A. We have available a pair of such prisms. These are called an anamorphic prism pair. Can you achieve an approximately 1-to-1 aspect ratio? Insert the prism pair on the supplied optical mount and adjust them to try and obtain a round beam. You should not need to adjust the orientation and spacing of the prisms. More information on anamorphic prisms can be found here: http://www.thorlabs.us/newgrouppage9.cfm?objectgroup_id=149 5. Laser modes. Using an Optical Spectrum Analyzer Commercial diffraction grating spectrometers are often used in spectrum analysis of diode lasers. We have a commercial optical spectrum analyzer (OSA) available. The device takes input from an optical fiber, and the light propagating through the fiber is sent through the spectrometer. The device displays an automatically calibrated trace of the spectrum of the light, with a resolution bandwidth down to <0.1 nm. Using the spectrum analyzer, look at the characteristics of the laser as you increase the current from below to through and beyond threshold. It may be useful to use a log scale to display the spectrum so you can more easily see the ASE and the laser cavity Fabry-Perot modes when you are below and at lasing threshold. Keep the laser at a fixed temperature for this measurement. This is an expensive instrument, so please handle appropriately! Also, be careful handling the optical fiber, especially near the input to the OSA. Try to observe the following features using the OSA, and make sketches in your notebook as appropriate: A. Significant amplified spontaneous emission (ASE) can be seen below and even above the lasing threshold. At what current does a single longitudinal mode have nearly all of the laser power? This is the threshold current. By operating the laser well above threshold, you may also observe the Fabry-Perot modes from residual ASE power. How many of the diode laser Fabry-Perot cavity longitudinal modes can you resolve in the entire spectrum when the current is just below threshold? (This requires good coupling of light into the OSA) Make sure you have decent coupling of light into the OSA for this so you have good signal-to-noise. B. What is the FSR of the laser (in frequency units)? Be sure you record this number. Determine this by looking at the resonances seen in the ASE due to the diode chip Fabry-Perot cavity. If the index of refraction of the gain medium is 3.6, what is the laser diode chip cavity length in microns? C. Would this OSA be useful for analyzing the frequency spectrum of a gas laser such as the HeNe? Remember, the resolution bandwidth of this OSA is ~0.1nm. To answer this question, calculate the resolution of the OSA in the frequency domain, and consider the cavity length of typical gas lasers you have used so far. Semiconductor Lasers, F2017 3

6. Laser wavelength (frequency shifts) A. Operating now above threshold, use the OSA to measure the central optical wavelength of the diode laser as a function of injection current. (Zoom in to the lasing wavelength and set the OSA resolution to a high setting.) Quantify the frequency shift vs. injection current you observe for changes of the current (say over 30 ma range). Does this mode shift up or down in wavelength as current is increased? Is the wavelength a simple function of injection current, or does it exhibit sudden jumps when large changes to the current are made? C. For fixed injection current, measure the laser output wavelength as a function of laser temperature (try a few points between 20 C and 30 C). Record the observed changes to the spectrum and central lasing wavelength. Q: For large changes of the current and temperature, you will not see a smoothly changing wavelength. Suggest/discuss physical reasons why such discontinuous frequency jumps might occur (these are known as mode-hops ). 7. Fabry-Perot measurement of single frequency performance and laser linewidth. A. Use the 1.5 GHz FSR Thorlabs FPI to confirm single frequency operation of the diode laser. Are you able to measure the Schalow-Townes limited linewidth? Note: During this measurement it is important to minimize optical feedback into the laser. Do this by locating the FPI as far away as you can while still obtaining a visible signal. If you need to use a focusing lens, misalign it so that the lens is tilted very slightly with respect to the beam path(use the lens only to make the beam converge, but not focus, at the entrance hole). B. Measure the shift of the laser frequency versus current. You tried this previously with the OSA, but you should now be able to make a more precise measurement of small laser frequency shifts with only a few ma variation of injection current. Current control is a common way to quickly adjust the frequency of a diode laser, over a range where the laser does not mode-hop. Give the value for the measured actuator coefficient in units of [MHz/mA]. 8. External cavity diode laser (ECDL) This part of the lab explores the use of an external cavity consisting of a diffraction grating to force single-frequency laser operation and control the lasing wavelength. The principles are similar to those found in an upcoming lab, and we begin to explore the techniques here. You are to follow the TA's instructions for setting up this part of the lab. In class we will discuss two common external cavity configurations, the Littrow configuration in which the first order beam from the external diffraction grating is retro-reflected back into the diode laser, and the Littman-Metcalf configuration in which the first-order beam is sent to a mirror, and then reflected back into the diode laser. In both cases the 0 th Semiconductor Lasers, F2017 4

order beam is used as the output. Here, we will use the latter configuration (Littman) such that the output (0 th order beam from the external grating) does not move when the cavity is adjusted. First, align an external grating such that the 1 st order beam is sent back near the laser diode, but with sufficient room to place an end mirror to form the external cavity. (The grating should be placed about 10-20 cm from the diode laser so the cavity is not too long.) Then align the 0 th order beam into the OSA (and also simultaneously to the FPI if available). Now, adding a mirror to reflect the light from the 1 st order beam should enable you to control the laser operating frequency. With proper alignment, the beam that returns to the laser diode will cause additional light build-up for one particular Fabry- Perot cavity mode, whichever one is properly retro-reflected back to the laser. (1) Look at the OSA and compare the laser operation with versus without optical feedback from the external cavity by blocking and unblocking the external cavity end mirror. Align the retro-reflecting mirror such that one mode near the peak of the laser spectrum grows in strength. Then, scan the horizontal tilt of the mirror. Try to observe the effects of feedback as you successively inject one Fabry-Perot mode after another. (2) You may find that the laser may operate in primarily two axial modes simultaneously when you inject the retro-reflected beam. One of these modes will be due to the injected optical feedback, the other will be the primary natural lasing mode for the particular current and temperature with which you are working. Estimate the fraction of the total light power that can be put into the injected mode. Can you force the laser to operate almost entirely in a mode other than its natural lasing mode? Determine the wavelength range (ie tuning range) over which you can now force the laser to operate single frequency. What is the side-mode suppression ratio at the extremes of this tuning range? Note: the side-mode suppression ratio is the amplitude difference between the primary lasing frequency, and the next highest peak of light you see on the OSA. When you are lasing near the center of the spectrum, this second peak (from the feedback-free lasing mode ) will be almost entirely suppressed. (3) See if you can force the laser to operate at 780.1 nm using a combination of grating feedback and control of the laser current. This will be needed when looking for transitions in the Rb atom. Semiconductor Lasers, F2017 5

9. Heterodyne beatnote detection for measurement of the laser linewidth. In his part of the lab you will use optical heterodyne detection between 2 lasers to study the linewidth and noise present in a laser. Discuss with your TA which specific laser systems you will be using to observe beatnotes. To detect a beatnote between two lasers, both beams must be carefully spatially overlapped and detected with a fast photodiode. The photocurrent will yield a DC component as well as the difference frequency between the two lasers. The frequency of this beatnote must fall within the bandwidth of the detection electronics (~1 GHz in our lab). The noise present on both lasers will be observable in the heterodyne beatnote (ie the observed beatnote linewidth will be the convolution of the linewidth of the individual lasers). Noise processes occur on different timescales, so what you observe will depend on the observation time of the detection system. For example, adjust the resolution bandwidth (RBW) and video bandwidth (VBW) on the RF spectrum analyzer to see how that affects the beatnote. Slow noise processes such as drift of the laser cavity length will be seen as a drift of the beatnote, while fast noise processes (including the quantum limited noise) will contribute to the linewidth of the observed beatnote. By measuring the beatnote between two nearly identical lasers, one can attribute the observed noise as coming equally from both. If using two different lasers and one laser is known to be very stable (e.g. a delta function in frequency), then the observed noise can be assumed to all come from the second laser. You may choose to start with 2 HeNe lasers and observe the beatnote between them. Be sure to have good spatial overlap of the two beams incident on the photodiode. Observe the beatnote between 2 semiconductor diode lasers. For the semiconductor lasers, you will need to carefully control the current and temperature in order to get the frequency of each laser close together. The maximum RF detection bandwidth (determined by the bandwidth of the detection photodiode system) will be < 1 GHz, and therefore the difference frequency between the lasers will need to be within this range in order to see the beatnote. Semiconductor Lasers, F2017 6

Background: Laser linewidth The linewidth of an ideal gas laser can be understood in terms of phase noise from spontaneous emission into the lasing mode. Shawlow and Townes derived the following expression Δν = N 2 ( ) 2 π hν Δν cavity N 2 N 1 P, where Δν cavity = c 1 R 2π L R is the laser cavity linewidth, P the laser power output and N 1, N 2 the populations of the lower and upper lasing level. For many solid-state lasers such as the HeNe where the cavity losses are small (and the resulting cold cavity linewidth Δν cavity is narrow), the Schalow-Townes linewidth is at the ~1 Hz level! This is physically difficult to actually measure due to the technical noise that fluctuates the cavity optical path length (eg pressure fluctuations or vibrating mirror mounts), resulting in an effective broadening of the measure laser linewidth. For semiconductor lasers there is an additional broadening that occurs due to the high density of charge carriers, Δ ν = Δν ( 1 + α 2 ), where the term ( 1 + α 2 ) typically has a value of 20 or more. This is sometimes referred to as the "modified Shawlow-Townes limit". A rule of thumb to estimate linewidth of GaAs diode lasers is ( output power) ( linewidth ) = 100 mw MHz. For typical laser diode output powers this is in a measurable range. In addition, due to the monolithic structure of diode lasers, they often do not suffer from the same technical noise (cavity length fluctuations) as many solid-state lasers. References: "Fundamentals of Photonics, Saleh and Teich, Wiley (1991) Semiconductor Lasers, F2017 7