RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

Similar documents
RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifiers

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifier

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power GaN Transistor

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

RF Power GaN Transistor

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifier

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifier

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power GaN Transistor

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs

RF Power GaN Transistor

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

Test Methodology. Characteristic Symbol Min Typ Max Unit. V GS(th) Vdc. V GS(Q) Vdc. V DS(on)

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF LDMOS Wideband Integrated Power Amplifiers

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifiers

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS (1) Drain Source Breakdown V

Characteristic Symbol Value (1,2) Unit. Test Methodology. Human Body Model (per JESD22--A114) Machine Model (per EIA/JESD22--A115)

RF LDMOS Wideband Integrated Power Amplifiers

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

Watts W/ C Storage Temperature Range T stg 65 to +200 C Operating Junction Temperature T J 200 C. Test Conditions

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

Using a Linear Transistor Model for RF Amplifier Design

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions MRF9085SR3/MRF9085LSR3

RF Power LDMOS Transistor N Channel Enhancement Mode Lateral MOSFET

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N Channel Enhancement Mode Lateral MOSFET

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N Channel Enhancement Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

V GS(th) Vdc. V GS(Q) 2.6 Vdc. V GG(Q) Vdc. V DS(on) Vdc

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

Driver or Pre -driver Amplifier for Doherty Power Amplifiers

Table 5. Electrical Characteristics (T A = 25 C unless otherwise noted)

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifiers

Transcription:

Technical Data RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET RF power transistor designed for both narrowband and broadband ISM, broadcast and aerospace applications operating at frequencies from 1.8 to MHz. This device is fabricated using NXP s enhanced ruggedness platform and is suitable for use in applications where high VSWRs are encountered. Typical Performance: V DD =5Vdc Frequency (MHz) Signal Type P out (W) G ps (db) η D (%) IMD (dbc) 1.8-- (1,3) Two--Tone 25 PEP 25. 5. -- 28 ( khz spacing) --512 (2,3) Two--Tone 25 PEP 17.3 32. -- 32 ( khz spacing) 512 (4) Pulse 25 Peak 25.9 74. ( μsec, % Duty Cycle) 512 (4) CW 25 26. 75. Load Mismatch/Ruggedness Frequency (MHz) Signal Type VSWR (1) CW >65:1 at all Phase Angles P in (W).11 (3 db Overdrive) 512 (2) CW.95 (3 db Overdrive) 512 (4) Pulse ( μsec, % Duty Cycle).14 Peak (3 db Overdrive) Test Voltage Result 5 No Device Degradation 512 (4) CW.14 (3 db Overdrive) 1. Measured in 1.8-- MHz broadband reference circuit. 2. Measured in --512 MHz broadband reference circuit. 3. The values shown are the minimum measured performance numbers across the indicated frequency range. 4. Measured in 512 MHz narrowband test circuit. Features Wide operating frequency range Extreme ruggedness Unmatched, capable of very broadband operation Integrated stability enhancements Low thermal resistance Extended ESD protection circuit Document Number: Rev. 1, 3/17 1.8 - MHz, 25 W, 5 V WIDEBAND RF POWER LDMOS TRANSISTOR Gate NI -36H -2L 2 1 (Top View) Drain Note: The backside of the package is the source terminal for the transistor. Figure 1. Pin Connections 12, 17 NXP B.V. 1

Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage V DSS --.5, +133 Vdc Gate--Source Voltage V GS --6., + Vdc Storage Temperature Range T stg --65 to +15 C Case Operating Temperature Range T C -- to +15 C Operating Junction Temperature Range (1,2) T J -- to +225 C Table 2. Thermal Characteristics Characteristic Symbol Value (2,3) Unit Thermal Resistance, Junction to Case CW: Case Temperature 81 C, 25 W CW, 5 Vdc, I DQ = ma, 512 MHz Thermal Impedance, Junction to Case Pulse: Case Temperature 77 C, 25 W Peak, μsec Pulse Width, % Duty Cycle, 5 Vdc, I DQ = ma, 512 MHz Table 3. ESD Protection Characteristics Human Body Model (per JESD22--A114) Machine Model (per EIA/JESD22--A115) Test Methodology Charge Device Model (per JESD22--C1) R θjc 1.4 C/W Z θjc.32 C/W Class 2, passes V B, passes V IV, passes 1 V Table 4. Electrical Characteristics (T A =25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Off Characteristics Gate--Source Leakage Current (V GS =5Vdc,V DS =Vdc) Drain--Source Breakdown Voltage (V GS =Vdc,I D =5mA) Zero Gate Voltage Drain Leakage Current (V DS =5Vdc,V GS =Vdc) Zero Gate Voltage Drain Leakage Current (V DS = Vdc, V GS =Vdc) On Characteristics Gate Threshold Voltage (V DS =Vdc,I D =85μAdc) Gate Quiescent Voltage (V DD =5Vdc,I D = madc, Measured in Functional Test) Drain--Source On--Voltage (V GS =Vdc,I D = 2 madc) Dynamic Characteristics Reverse Transfer Capacitance (V DS =5Vdc± mv(rms)ac @ 1 MHz, V GS =Vdc) Output Capacitance (V DS =5Vdc± mv(rms)ac @ 1 MHz, V GS =Vdc) Input Capacitance (V DS =5Vdc,V GS =Vdc± mv(rms)ac @ 1 MHz) I GSS nadc V (BR)DSS 133 1 Vdc I DSS 2 μadc I DSS 7 μadc V GS(th) 1.5 2. 2.5 Vdc V GS(Q) 2. 2.4 3. Vdc V DS(on).23 Vdc C rss.17 pf C oss 14.7 pf C iss 39. pf 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.nxp.com/rf/calculators. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/rf and search for AN1955. (continued) 2

Table 4. Electrical Characteristics (T A =25 C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Functional Tests (In NXP Test Fixture, 5 ohm system) V DD =5Vdc,I DQ =ma,p out = 25 W Peak (5 W Avg.), f = 512 MHz, Pulse, μsec Pulse Width, % Duty Cycle Power Gain G ps 24.5 25.9 27.5 db Drain Efficiency η D 7. 74. % Input Return Loss IRL -- 16 -- db Load Mismatch/Ruggedness (In NXP Test Fixture, 5 ohm system) I DQ = 15 ma Frequency (MHz) Signal Type VSWR P in (W) Test Voltage, V DD Result 512 Pulse ( μsec, % Duty Cycle) >65:1 at all Phase Angles.14 Peak (3 db Overdrive) 5 No Device Degradation Table 5. Ordering Information CW.14 (3 db Overdrive) Device Tape and Reel Information Package R5 R5 Suffix = 5 Units, 32 mm Tape Width, 13--inch Reel NI--36H--2L 3

TYPICAL CHARACTERISTICS C, CAPACITANCE (pf) 1 Measured with ± mv(rms)ac @ 1 MHz, V GS =Vdc.1 5 V DS, DRAIN--SOURCE VOLTAGE (VOLTS) Figure 2. Capacitance versus Drain -Source Voltage C iss C oss C rss NORMALIZED V GS(Q) 1.7 1.6 I DQ =ma V DD =5Vdc 1.5 1.4 5 ma 1.3 1.2 ma 1.1 1 15 ma.99.98.97.96.95.94.93 --5 --25 25 5 75 T C, CASE TEMPERATURE ( C) I DQ (ma) 5 15 Slope (mv/ C) --2.16 --1.79 --1.76 --1.68 Figure 3. Normalized V GS versus Quiescent Current and Case Temperature 8 7 I D =.55Amps V DD =5Vdc MTTF (HOURS) 6.69 Amps.83 Amps 5 4 9 1 1 15 17 19 2 2 T J, JUNCTION TEMPERATURE ( C) 25 Note: MTTF value represents the total cumulative operating time under indicated test conditions. MTTF calculator available at http://www.nxp.com/rf/calculators. NOTE: For pulse applications or CW conditions, use the MTTF calculator referenced above. Figure 4. MTTF versus Junction Temperature - CW 4

512 MHz NARROWBAND PRODUCTION TEST FIXTURE C1 C9 C B2 C3 B1 C5 C2 C4 L1 L3 C12 C14 C6 C7 C8 CUT OUT AREA L2 C11 C13 C15 Rev. 3 Figure 5. Narrowband Test Circuit Component Layout 512 MHz Table 6. Narrowband Test Circuit Component Designations and Values 512 MHz Part Description Part Number Manufacturer B1, B2 Long Ferrite Beads 27421447 Fair-Rite C1 22 μf, 35 V Tantalum Capacitor T491X226K35AT Kemet C2, C9.1 μf Chip Capacitors CDR33BX4AKWS AVX C3, C.1 μf Chip Capacitors C85C3K5RAC Kemet C4, C12, C15 18 pf Chip Capacitors ATCB181JT5XT ATC C5 18 pf Chip Capacitor ATCB18JT5XT ATC C6 2.7 pf Chip Capacitor ATCB2R7BT5XT ATC C7 15 pf Chip Capacitor ATCB15JT5XT ATC C8 36 pf Chip Capacitor ATCB36JT5XT ATC C11 4.3 pf Chip Capacitor ATCB4R3CT5XT ATC C13 13 pf Chip Capacitor ATCB1JT5XT ATC C14 47 μf, 63 V Electrolytic Capacitor MCGPR63V477M13X26-RH Multicomp L1 33 nh Inductor 1812SMS-33NJLC Coilcraft L2 12.5 nh Inductor A4TJLC Coilcraft L3 82 nh Inductor 1812SMS-82NJLC Coilcraft PCB., ε r =2.55 AD255A Arlon 5

L3 B2 V BIAS + B1 C12 + C9 C C14 V SUPPLY C1 C2 C3 C4 L2 RF INPUT Z1 C5 Z2 Z3 Z4 Z5 Z6 Z7 Z8 C6 C7 C8 L1 Z9 Z DUT Z11 Z12 Z13 C11 Z14 Z15 Z16 Z17 C13 Z18 C15 Z19 RF OUTPUT Figure 6. Narrowband Test Circuit Schematic 512 MHz Table 7. Narrowband Test Circuit Microstrips 512 MHz Microstrip Description Microstrip Description Z1.235.82 Microstrip Z11.475.27 Microstrip Z2.42.82 Microstrip Z12.91.82 Microstrip Z3.682.82 Microstrip Z13.17.82 Microstrip Z4*..6 Microstrip Z14*.67.82 Microstrip Z5.324.6 Microstrip Z15.28.82 Microstrip Z6*..6 Microstrip Z16*.413.82 Microstrip Z7.89.82 Microstrip Z17*.259.82 Microstrip Z8.1.82 Microstrip Z18.761.82 Microstrip Z9.411.82 Microstrip Z19.341.82 Microstrip Z.26.27 Microstrip * Line length includes microstrip bends 6

TYPICAL CHARACTERISTICS 512 MHz P out, OUTPUT POWER (WATTS) 32 28 24 16 12 8 4 V DD = 5 Vdc, f = 512 MHz P in =.7W P in =.35 W.5 1 1.5 2 2.5 3 3.5 V GS, GATE--SOURCE VOLTAGE (VOLTS) Figure 7. CW Output Power versus Gate -Source Voltage at a Constant Input Power P out, OUTPUT POWER (dbm) 46 44 42 38 36 34 V DD =5Vdc I DQ =ma f = 512 MHz G ps, POWER GAIN (db) 29 28 27 26 25 24 V DD = 5 Vdc, f = 512 MHz I DQ = 15 ma ma 5 ma G ps ma ma 5 ma η D ma 15 ma 9 8 7 6 5 η D, DRAIN EFFICIENCY (%) 32 12 14 16 18 P in, INPUT POWER (dbm) 22 23 2 5 P out, OUTPUT POWER (WATTS) f (MHz) P1dB (W) P3dB (W) Figure 9. Power Gain and Drain Efficiency versus CW Output Power and Quiescent Current 512 28.7 31.6 Figure 8. CW Output Power versus Input Power G ps, POWER GAIN (db) 29 28 27 26 25 24 23 22 21 1 V DD =5Vdc I DQ =ma f = 512 MHz T C =--_C 25_C 85_C G ps P out, OUTPUT POWER (WATTS) η D --_C 25_C 85_C 9 8 7 6 5 5 η D, DRAIN EFFICIENCY (%) G ps, POWER GAIN (db) 28 27 26 25 24 23 22 21 19 18 17 16 V 35 V V 45 V 25 V I DQ =ma,f=512mhz Pulse Width = μsec V DD =V % Duty Cycle 5 V 5 15 25 35 P out, OUTPUT POWER (WATTS) PEAK Figure. Power Gain and Drain Efficiency versus CW Output Power Figure 11. Power Gain versus Output Power and Drain -Source Voltage 7

512 MHz NARROWBAND PRODUCTION TEST FIXTURE f MHz V DD =5Vdc,I DQ =ma,p out = 25 W Peak Z source Ω Z load Ω 512.72 + j.8 8.8 + j17.5 Z source = Test circuit impedance as measured from gate to ground. Z load = Test circuit impedance as measured from drain to ground. 5 Ω Input Matching Network Device Under Test Output Matching Network 5 Ω Z source Z load Figure 12. Narrowband Series Equivalent Source and Load Impedance 512 MHz 8

1.8 - MHz HF BROADBAND REFERENCE CIRCUIT Table 8. 1.8 - MHz HF Broadband Performance (In NXP Reference Circuit, 5 ohm system) V DD =5Vdc,I DQ = ma Signal Type P out (W) f (MHz) G ps (db) η D (%) IMD (dbc) Two-Tone ( khz spacing) 25 PEP 1.8 25.8 51.5 --28.7 25.9 5.4 --33.9 25. 5.7 --31.1 Table 9. Load Mismatch/Ruggedness (InNXPReferenceCircuit) Frequency (MHz) Signal Type VSWR CW >65:1 at all Phase Angles P in (W) Test Voltage, V DD Result.11 (3 db Overdrive) 5 No Device Degradation 9

1.8 - MHz HF BROADBAND REFERENCE CIRCUIT C2 C3 C4 C5 C6 C7 C8 R1 + L1, E1 C9 C C1* Q1 L2, E2 C11* /N Rev. CUT OUT AREA *C1 and C11 are mounted vertically. Figure 13. HF Broadband Reference Circuit Component Layout 1.8 - MHz Table. HF Broadband Reference Circuit Component Designations and Values 1.8 - MHz Part Description Part Number Manufacturer C1, C5, C6, C9, C11 K pf Chip Capacitors ATCB3KT5XT ATC C2 μf, 35 V Tantalum Capacitor T491D6K35AT Kemet C3.1 μf Chip Capacitor CDR33BX4AKWY AVX C4 2.2 μf Chip Capacitor C3225X7R1H225KT TDK C7.1 μf Chip Capacitor GRM319R72A4KA1D Murata C8 2.2 μf Chip Capacitor G2225X7R225KT3AB ATC C 2 μf, V Electrolytic Capacitor MCGPRV227M16X26-RH Multicomp E1 #43 Ferrite Toroid 5911 Fair--Rite E2 #61 Ferrite Toroid 59611 Fair--Rite L1 4 Turns, 22 AWG, Toroid Transformer with Ferrite E1 877 Copper Magnetic Wire Belden L2 26 Turns, 22 AWG, Toroid Transformer with Ferrite E2 877 Copper Magnetic Wire Belden Q1 RF Power LDMOS Transistor NXP R1 1kΩ, 3 W Chip Resistor CPF31KFKE14 Vishay PCB., ε r =4.8 S Shenzhen Multilayer PCB Technology

V BIAS + L1, E1 Z4 R1 C2 C3 C4 C5 Z3 Z8 C6 C7 C8 + C V SUPPLY RF INPUT Z1 Z2 Z5 C9 Z7 Z6 L2, E2 Z9 C11 Z RF OUTPUT C1 DUT Figure 14. HF Broadband Reference Circuit Schematic 1.8 - MHz Table 11. HF Broadband Reference Circuit Microstrips 1.8 - MHz Microstrip Description Microstrip Description Z1.141.47 Microstrip Z6.469.263 Microstrip Z2.625.47 Microstrip Z7.119.63 Microstrip Z3.119.219 Microstrip Z8.422.241 Microstrip Z4.422.241 Microstrip Z9.625.47 Microstrip Z5.469.263 Microstrip Z.141.47 Microstrip 11

TYPICAL CHARACTERISTICS 1.8 - MHz HF BROADBAND REFERENCE CIRCUIT G ps, POWER GAIN (db) 1 28 V DD =5Vdc,P in =.15W 1 I DQ =25mA 26 1 24 G ps 22 9 8 18 η D 7 16 6 14 12 P out 8 6 5 15 25 35 f, FREQUENCY (MHz) Figure 15. Power Gain, CW Output Power and Drain Efficiency versus Frequency at a Constant Input Power η D, DRAIN EFFICIENCY (%) P out,output POWER (WATTS) P out, OUTPUT POWER (WATTS) V DD =5Vdc P in =.1W MHz f=mhz 1.8 MHz P out, OUTPUT POWER (dbm) 35 25 15 5 V DD =5Vdc P in =.5W f=mhz MHz 1.8 MHz 1 2 3 4 V GS, GATE--SOURCE VOLTAGE (VOLTS) Figure 16. CW Output Power versus Gate -Source Voltage at a Constant Input Power 1 2 3 4 V GS, GATE--SOURCE VOLTAGE (VOLTS) Figure 17. CW Output Power versus Gate -Source Voltage at a Constant Input Power 12

TYPICAL CHARACTERISTICS 1.8 - MHz HF BROADBAND REFERENCE CIRCUIT 48 P out, OUTPUT POWER (dbm) 44 36 V DD =5Vdc I DQ =25mA MHz f=mhz 1.8 MHz 32 8 12 16 24 P in, INPUT POWER (dbm) f (MHz) 1.8 P1dB (W) 21.9 24. 23.9 P3dB (W) 26.4 28.4 29.1 Figure 18. CW Output Power versus Input Power G ps, POWER GAIN (db) 28 26 24 22 V DD =5Vdc I DQ =25mA 1.8 MHz MHz MHz f=1.8mhz MHz G ps MHz 75 65 55 45 35 25 η D, DRAIN EFFICIENCY (%) η D 18 1 15 P out, OUTPUT POWER (WATTS) Figure 19. Power Gain and Drain Efficiency versus CW Output Power 13

TYPICAL CHARACTERISTICS 1.8 - MHz HF BROADBAND REFERENCE CIRCUIT TWO -TONE (1) -- -- IMD, INTERMODULATION DISTORTION (dbc) --25 -- --35 -- --45 --5 --55 --6 --65 --7 2 V DD =5Vdc,I DQ = ma f1 = 1.795 MHz, f2 = 1.85 MHz Two--Tone Measurements 3rd Order 5th Order 7th Order IMD, INTERMODULATION DISTORTION (dbc) --25 -- --35 -- --45 --5 --55 --6 --65 --7 2 V DD =5Vdc,I DQ = ma f1 = 9.995 MHz, f2 =.5 MHz Two--Tone Measurements 3rd Order 5th Order 7th Order P out, OUTPUT POWER (WATTS) PEP P out, OUTPUT POWER (WATTS) PEP Figure. Intermodulation Distortion Products versus Output Power 1.8 MHz Figure 21. Intermodulation Distortion Products versus Output Power MHz IMD, INTERMODULATION DISTORTION (dbc) -- --25 -- --35 -- --45 --5 --55 --6 --65 --7 2 V DD =5Vdc,I DQ = ma f1 = 29.995 MHz, f2 =.5 MHz Two--Tone Measurements 3rd Order 5th Order 7th Order Figure 22. Intermodulation Distortion Products versus Output Power MHz P out, OUTPUT POWER (WATTS) PEP 1. The distortion products are referenced to one of the two tones and the peak envelope power (PEP) is 6 db above the power in a single tone. 14

1.8 - MHz HF BROADBAND REFERENCE CIRCUIT Z o =5Ω f=1.8mhz Z source f=mhz f=1.8mhz Z load f=mhz f MHz V DD =5Vdc,I DQ =25mA,P out =25WCW Z source Ω Z load Ω 1.8 42.4 + j9.5 47.1 - j1.6 5 44.3 + j3. 46.8 - j1.2 44.2 + j.4 47.2 - j2.1 15 44.4 - j.5 47.5 - j3.2 44.6 - j1.3 47.7 - j4.3 25 44.8 - j2. 47.8 - j5.2 44.9 - j2.5 47.7 - j6.1 Z source = Test circuit impedance as measured from gate to ground. Z load = Test circuit impedance as measured from drain to ground. 5 Ω Input Matching Network Device Under Test Output Matching Network 5 Ω Z source Z load Figure 23. HF Broadband Series Equivalent Source and Load Impedance 1.8 - MHz 15

-512 MHz BROADBAND REFERENCE CIRCUIT Table 12. -512 MHz Broadband Performance (In NXP Reference Circuit, 5 ohm system) V DD =5Vdc,I DQ = ma Signal Type P out (W) f (MHz) G ps (db) η D (%) IMD (dbc) Two-Tone ( khz spacing) 25 PEP.9 34.2 --32.3 19. 38.2 --31.5 512 17.3 32. --36.1 Table 13. Load Mismatch/Ruggedness (InNXPReferenceCircuit) Frequency (MHz) Signal Type VSWR 512 CW >65:1 at all Phase Angles P in (W) Test Voltage, V DD Result.95 (3 db Overdrive) 5 No Device Degradation 16

-512 MHz BROADBAND REFERENCE TEST FIXTURE D1 C R1 C5 C6 R3 C7 E2, L2 C9 C8 T2 C11 L1 E3 C2 R2 C1 C3 Q1 C4 E1 E4 T1 /N Rev. T3 Note: See Figure 24a for a more detailed view of the semi--flex cables with shields and #61 multi--aperture cores. Figure 24. Broadband Reference Circuit Component Layout -512 MHz Table 14. Broadband Reference Circuit Component Designations and Values -512 MHz Part Description Part Number Manufacturer C1, C3, C6, C7, C8 1, pf Chip Capacitors ATCB2JT5XT ATC C2 2.7 pf Chip Capacitor ATCB2R7BT5XT ATC C4 15 nf Chip Capacitor C3225CH2A153JT TDK C5, C9 nf Chip Capacitors GRM3195C1E3JA1 Murata C 1 μf Chip Capacitor C3225JB2A5KT TDK C11 2 μf, V Electrolytic Capacitor MCGPRV227M16X26-RH Multicomp D1 8.2 V, 1 W Zener Diode 1N4738A Fairchild Semiconductor E1, E3, E4 #61 Multi-aperture Cores 286152 Fair-Rite E2 Ferrite Core Bead 21-1-J Ferronics L1 47 nh Inductor 1812SMS-47NJLC Coilcraft L2 4 Turns, AWG, Toroid Transformer with 876 Copper Magnetic Wire Belden Ferrite E2 Q1 RF Power LDMOS Transistor NXP R1 5.6 KΩ, 1/4 W Chip Resistor CRCW165K6FKEA Vishay R2 15 Ω, 1/4 W Chip Resistor CRCW1615RFKEA Vishay R3 5 kω Potentiometer CMS Cermet Multi--turn 3224W-1-52E Bourns T1 25 Ω Semi-flex Cable,.945 Shield Length D26-4118- Microdot T2, T3 25 Ω Semi-flex Cables, 1.3 Shield Length D26-4118- Microdot PCB., ε r =3.5 TC35 Arlon 17

Center conductor connection to PCB T2 E3 C2 C3 Shield connection to PCB C4 E1 T1 S T2 Z12 E3 S E4 NOT TO SCALE T1 S E1 S S T3 T3 E4 S T3 S = Shield Figure 24a. Detailed View of Semi -flex Cables with Shields and #61 Multi -aperture Cores R1 + V SUPPLY RF INPUT Z1 Z2 D1 Z3 C5 Z4 R3 C6 T1 C7 L1 Z6 Z8 R2 Z7 L2, E2 Z9 Z C4 C8 Z11 C9 C C11 T2 E3 Z12 Z14 T3 E4 Z15 Z16 RF OUTPUT C1 C2 Z5 E1 C3 DUT Z13 Figure 25. Broadband Reference Circuit Schematic -512 MHz Table 15. Broadband Reference Circuit Microstrips -512 MHz Microstrip Description Microstrip Description Z1.18.8 Microstrip Z9.8.3 Microstrip Z2.8.19 Microstrip Z.26.26 Microstrip Z3.2.19 Microstrip Z11.1.19 Microstrip Z4.15.19 Microstrip Z12.17.8 Microstrip Z5.18.19 Microstrip Z13.2.6 Microstrip Z6.2.19 Microstrip Z14.4.19 Microstrip Z7.2.26 Microstrip Z15.7.1 Microstrip Z8.1.15 Microstrip Z16.19.8 Microstrip 18

TYPICAL CHARACTERISTICS -512 MHz BROADBAND REFERENCE CIRCUIT G ps, POWER GAIN (db) 24 1 V 22 DD =5Vdc,P in =.8W 1 I DQ =25mA 18 9 16 G ps 8 14 7 12 6 η D 5 8 6 4 P out 2 5 15 25 35 45 5 55 f, FREQUENCY (MHz) Figure 26. Power Gain, CW Output Power and Drain Efficiency versus Frequency at a Constant Input Power P out, OUTPUT POWER (WATTS) η D, DRAIN EFFICIENCY (%) P out, OUTPUT POWER (WATTS) 5 V DD =5Vdc P in =.65W MHz 512 MHz f=mhz P out, OUTPUT POWER (WATTS) V DD =5Vdc P in =.325 W f=mhz MHz 512 MHz 1 2 3 4 V GS, GATE--SOURCE VOLTAGE (VOLTS) Figure 27. CW Output Power versus Gate -Source Voltage at a Constant Input Power 1 2 3 4 V GS, GATE--SOURCE VOLTAGE (VOLTS) Figure 28. CW Output Power versus Gate -Source Voltage at a Constant Input Power 19

TYPICAL CHARACTERISTICS -512 MHz BROADBAND REFERENCE CIRCUIT P out, OUTPUT POWER (dbm) 48 44 36 32 f = MHz 512 MHz MHz V DD =5Vdc I DQ =25mA 28 16 24 28 32 36 P in, INPUT POWER (dbm) f (MHz) 512 P1dB (W) 33.4 35.6 32.7 P3dB (W).2 44.6 37.7 Figure 29. CW Output Power versus Input Power G ps, POWER GAIN (db) 24 22 18 MHz 16 512 MHz 14 12 1 V DD =5Vdc I DQ =25mA η D MHz P out, OUTPUT POWER (WATTS) f = 512 MHz MHz MHz G ps Figure. Power Gain and Drain Efficiency versus CW Output Power 7 6 5 η D, DRAIN EFFICIENCY (%)

TYPICAL CHARACTERISTICS -512 MHz BROADBAND REFERENCE CIRCUIT TWO -TONE (1) -- -- IMD, INTERMODULATION DISTORTION (dbc) -- -- --5 --6 --7 --8 1 3rd Order 5th Order 7th Order V DD =5Vdc,I DQ = ma f1 = 29.9 MHz, f2 =.1 MHz Two--Tone Measurements IMD, INTERMODULATION DISTORTION (dbc) -- -- --5 --6 --7 --8 1 3rd Order 5th Order 7th Order V DD =5Vdc,I DQ = ma f1 = 99.9 MHz, f2 =.1 MHz Two--Tone Measurements P out, OUTPUT POWER (WATTS) PEP P out, OUTPUT POWER (WATTS) PEP Figure 31. Intermodulation Distortion Products versus Output Power MHz Figure 32. Intermodulation Distortion Products versus Output Power MHz IMD, INTERMODULATION DISTORTION (dbc) -- --26 --32 --38 --44 --5 --56 --62 --68 --74 --8 1 3rd Order 5th Order 7th Order V DD =5Vdc,I DQ = ma f1 = 511.9 MHz, f2 = 512.1 MHz Two--Tone Measurements P out, OUTPUT POWER (WATTS) PEP Figure 33. Intermodulation Distortion Products versus Output Power 512 MHz 1. The distortion products are referenced to one of the two tones and the peak envelope power (PEP) is 6 db above the power in a single tone. 21

-512 MHz BROADBAND REFERENCE CIRCUIT Z o =25Ω f = 512 MHz f=mhz Z source Z load f = 512 MHz f=mhz f MHz V DD =5Vdc,I DQ =25mA,P out =25WCW Z source Ω Z load Ω 7.2 - j.6 15.4 + j8.1 64 8.2 - j1.7 18.1 + j5.4 88 8.9 + j1.9 19. + j3.9 98 9.2 + j2.2 19.3 + j3.9 9.2 + j2.2 19.4 + j4. 8 9.4 + j2.4 19.8 + j4.1 144 9.3 + j1.9 19.1 + j2.8 17 9.8 + j2.2. + j2.6 2 8.9 + j2.1 18.6 + j2. 352 7.8 + j3.5 19.2 + j2.6 45 7. + j3.1 19.2 + j3.5 512 6.7 + j5..5 + j5.3 Z source = Test circuit impedance as measured from gate to ground. Z load = Test circuit impedance as measured from drain to ground. 5 Ω Input Matching Network Device Under Test Output Matching Network 5 Ω Z source Z load Figure 34. Broadband Series Equivalent Source and Load Impedance -512 MHz 22

PACKAGE DIMENSIONS 23

24

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes AN198: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins EB212: Using Data Sheet Impedances for RF LDMOS Devices Software Electromigration MTTF Calculator RF High Power Model.s2p File Development Tools Printed Circuit Boards For Software and Tools, do a Part Number search at http://www.nxp.com, and select the Part Number link. Go to the Software & Tools tab on the part s Product Summary page to download the respective tool. The following table summarizes revisions to this document. REVISION HISTORY Revision Date Description Oct. 12 Initial Release of Data Sheet 1 Mar. 17 Figure 1 Pin Connections: corrected Drain (Pin 1) and Gate (Pin 2) to reflect correct pin numbers, p. 1 Table 14, --512 MHz Broadband Reference Circuit Component Designations and Values: added Q1 to parts list, p. 17 25

How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including typicals, must be validated for each customer application by customer s technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/salestermsandconditions. NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. E 12, 17 NXP B.V. Document Number: 26 Rev. 1, 3/17