Joint Milli-Arcsecond Pathfinder Survey (JMAPS): Overview and Application to NWO Mission

Similar documents
Achieving milli-arcsecond residual astrometric error for the JMAPS mission

A RENEWED SPIRIT OF DISCOVERY

COM DEV AIS Initiative. TEXAS II Meeting September 03, 2008 Ian D Souza

SA Joint USN/USMC Spectrum Conference. Gerry Fitzgerald. Organization: G036 Project: 0710V250-A1

Robotics and Artificial Intelligence. Rodney Brooks Director, MIT Computer Science and Artificial Intelligence Laboratory CTO, irobot Corp

Strategic Technical Baselines for UK Nuclear Clean-up Programmes. Presented by Brian Ensor Strategy and Engineering Manager NDA

Durable Aircraft. February 7, 2011

Improving the Detection of Near Earth Objects for Ground Based Telescopes

Signal Processing Architectures for Ultra-Wideband Wide-Angle Synthetic Aperture Radar Applications

Investigation of a Forward Looking Conformal Broadband Antenna for Airborne Wide Area Surveillance

INTEGRATIVE MIGRATORY BIRD MANAGEMENT ON MILITARY BASES: THE ROLE OF RADAR ORNITHOLOGY

0.18 μm CMOS Fully Differential CTIA for a 32x16 ROIC for 3D Ladar Imaging Systems

Technology Maturation Planning for the Autonomous Approach and Landing Capability (AALC) Program

REPORT DOCUMENTATION PAGE

SILICON CARBIDE FOR NEXT GENERATION VEHICULAR POWER CONVERTERS. John Kajs SAIC August UNCLASSIFIED: Dist A. Approved for public release

Drexel Object Occlusion Repository (DOOR) Trip Denton, John Novatnack and Ali Shokoufandeh

Rump Session: Advanced Silicon Technology Foundry Access Options for DoD Research. Prof. Ken Shepard. Columbia University

Innovative 3D Visualization of Electro-optic Data for MCM

Underwater Intelligent Sensor Protection System

REPORT DOCUMENTATION PAGE

Department of Defense Partners in Flight

14. Model Based Systems Engineering: Issues of application to Soft Systems

Report Documentation Page

Frequency Stabilization Using Matched Fabry-Perots as References

GLOBAL POSITIONING SYSTEM SHIPBORNE REFERENCE SYSTEM

August 9, Attached please find the progress report for ONR Contract N C-0230 for the period of January 20, 2015 to April 19, 2015.

PULSED POWER SWITCHING OF 4H-SIC VERTICAL D-MOSFET AND DEVICE CHARACTERIZATION

Coherent distributed radar for highresolution

U.S. Army Training and Doctrine Command (TRADOC) Virtual World Project

VHF/UHF Imagery of Targets, Decoys, and Trees

Presentation to TEXAS II

David Siegel Masters Student University of Cincinnati. IAB 17, May 5 7, 2009 Ford & UM

SYSTEMATIC EFFECTS IN GPS AND WAAS TIME TRANSFERS

N C-0002 P13003-BBN. $475,359 (Base) $440,469 $277,858

Department of Energy Technology Readiness Assessments Process Guide and Training Plan

Fall 2014 SEI Research Review Aligning Acquisition Strategy and Software Architecture

MONITORING RUBBLE-MOUND COASTAL STRUCTURES WITH PHOTOGRAMMETRY

Solar Radar Experiments

Active Denial Array. Directed Energy. Technology, Modeling, and Assessment

ULTRASTABLE OSCILLATORS FOR SPACE APPLICATIONS

Mathematics, Information, and Life Sciences

HIGH TEMPERATURE (250 C) SIC POWER MODULE FOR MILITARY HYBRID ELECTRICAL VEHICLE APPLICATIONS

UNCLASSIFIED UNCLASSIFIED 1

3. Faster, Better, Cheaper The Fallacy of MBSE?

Wavelength Division Multiplexing (WDM) Technology for Naval Air Applications

Best Practices for Technology Transition. Technology Maturity Conference September 12, 2007

Effects of Radar Absorbing Material (RAM) on the Radiated Power of Monopoles with Finite Ground Plane

SPOT 5 / HRS: a key source for navigation database

Hybrid QR Factorization Algorithm for High Performance Computing Architectures. Peter Vouras Naval Research Laboratory Radar Division

Two-Way Time Transfer Modem

Electromagnetic Railgun

Radar Detection of Marine Mammals

RECENT TIMING ACTIVITIES AT THE U.S. NAVAL RESEARCH LABORATORY

Development of a charged-particle accumulator using an RF confinement method FA

Target Behavioral Response Laboratory

IREAP. MURI 2001 Review. John Rodgers, T. M. Firestone,V. L. Granatstein, M. Walter

Key Issues in Modulating Retroreflector Technology

Digital Radiography and X-ray Computed Tomography Slice Inspection of an Aluminum Truss Section

Thermal Simulation of a Silicon Carbide (SiC) Insulated-Gate Bipolar Transistor (IGBT) in Continuous Switching Mode

Remote Sediment Property From Chirp Data Collected During ASIAEX

Bistatic Underwater Optical Imaging Using AUVs

Student Independent Research Project : Evaluation of Thermal Voltage Converters Low-Frequency Errors

Fuzzy Logic Approach for Impact Source Identification in Ceramic Plates

A Comparison of Two Computational Technologies for Digital Pulse Compression

EFFECTS OF ELECTROMAGNETIC PULSES ON A MULTILAYERED SYSTEM

FY07 New Start Program Execution Strategy

PSEUDO-RANDOM CODE CORRELATOR TIMING ERRORS DUE TO MULTIPLE REFLECTIONS IN TRANSMISSION LINES

Defense Environmental Management Program

Cross-layer Approach to Low Energy Wireless Ad Hoc Networks

Diver-Operated Instruments for In-Situ Measurement of Optical Properties

Challenges in Imaging, Sensors, and Signal Processing

FAA Research and Development Efforts in SHM

Measurement of Ocean Spatial Coherence by Spaceborne Synthetic Aperture Radar

Report Documentation Page

Marine Mammal Acoustic Tracking from Adapting HARP Technologies

Airborne Hyperspectral Remote Sensing

Loop-Dipole Antenna Modeling using the FEKO code

Automatic Payload Deployment System (APDS)

LONG TERM GOALS OBJECTIVES

Effects of Fiberglass Poles on Radiation Patterns of Log-Periodic Antennas

Investigation of Modulated Laser Techniques for Improved Underwater Imaging

Modeling of Ionospheric Refraction of UHF Radar Signals at High Latitudes

Synthetic Behavior for Small Unit Infantry: Basic Situational Awareness Infrastructure

ONE OF TIlE MORE RAPIDLY GROWING AREAS OF ECONOMIC RESEARCH

Management of Toxic Materials in DoD: The Emerging Contaminants Program

MERQ EVALUATION SYSTEM

BIOGRAPHY ABSTRACT. This paper will present the design of the dual-frequency L1/L2 S-CRPA and the measurement results of the antenna elements.

NPAL Acoustic Noise Field Coherence and Broadband Full Field Processing

Non-Data Aided Doppler Shift Estimation for Underwater Acoustic Communication

NEURAL NETWORKS IN ANTENNA ENGINEERING BEYOND BLACK-BOX MODELING

REPORT DOCUMENTATION PAGE

ANTENNA DEVELOPMENT FOR MULTIFUNCTIONAL ARMOR APPLICATIONS USING EMBEDDED SPIN-TORQUE NANO-OSCILLATOR (STNO) AS A MICROWAVE DETECTOR

THE CREATION OF DIFFERENTIAL CORRECTION SYSTEMS AND THE SYSTEMS OF GLOBAL NAVIGATION SATELLITE SYSTEM MONITORING

Wavelet Shrinkage and Denoising. Brian Dadson & Lynette Obiero Summer 2009 Undergraduate Research Supported by NSF through MAA

THE NATIONAL SHIPBUILDING RESEARCH PROGRAM

Buttress Thread Machining Technical Report Summary Final Report Raytheon Missile Systems Company NCDMM Project # NP MAY 12, 2006

DARPA TRUST in IC s Effort. Dr. Dean Collins Deputy Director, MTO 7 March 2007

INFRARED REFLECTANCE INSPECTION

DIELECTRIC ROTMAN LENS ALTERNATIVES FOR BROADBAND MULTIPLE BEAM ANTENNAS IN MULTI-FUNCTION RF APPLICATIONS. O. Kilic U.S. Army Research Laboratory

ARL-TN-0743 MAR US Army Research Laboratory

Transcription:

Joint Milli-Arcsecond Pathfinder Survey (JMAPS): Overview and Application to NWO Mission B.DorlandandR.Dudik USNavalObservatory 11March2009 1 MissionOverview TheJointMilli ArcsecondPathfinderSurvey(JMAPS)missionisaDepartmentof Navy(DoN)space based,all skyastrometricbrightstarsurvey.jmapsiscurrently fundedforflight,withat2012launchdate.jmapswillproduceanall sky astrometric,photometricandspectroscopiccatalogcoveringthemagnituderangeof 1 12,withextendedresultsthrough15 th magnitudeatanaccuracyof1 milliarcsecond(mas)positionalaccuracyatameanobservingepochof approximately2013.usinghipparcosandtychopositionaldatafrom1991,proper motionswithaccuraciesof100microarcseconds(umas)peryearshouldbe achievableforallofthebrighteststars,withtheresultthatthecatalogwilldegrade atamuchreducedrateovertimewhencomparedwiththehipparcoscatalog. JMAPSwillaccomplishthiswitharelativelymodestaperture,veryhighaccuracy astrometrictelescopeflowninlowearthorbit(leo)aboardamicrosat.mission baselineisforathree yearmissionlife(2012 2015)ina900kmsunsynchronous terminatororbit. 1

Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 11 MAR 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Joint Milli-Arcsecond Pathfinder Survey (JMAPS): Overview and Apllication to NWO Mission 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Naval Observatory,,,, 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR S ACRONYM(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 11. SPONSOR/MONITOR S REPORT NUMBER(S) 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified ABSTRACT Public Release 18. NUMBER OF PAGES 14 19a. NAME OF RESPONSIBLE PERSON Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

2 MissionStatus 2.1 ProgrammaticOverview WiththereleaseofProgramDecisionMemorandum III(PDM III)inNovember 2008,JMAPSisfullyfundedforflightthrough2015.Theresourcesponsoristhe OceanographeroftheNavy,withprimaryexecutionresponsibilitiesassignedtothe OfficeofNavalResearch(ONR).TheUSNavalObservatory(USNO)hasPrinciple Investigator(PI)anddataprocessingresponsibilities.TheNavalResearch Laboratory(NRL)hasresponsibilityforthespace,launch,groundstationand missionoperationscentersegments. 2.2 Schedule Basedonthecurrentfundingprofile,JMAPSisscheduledforSystem Requirements/SystemDesignreviewincalendaryear2009,PreliminaryDesign Reviewin2010,CriticalDesignandTechnologyReadinessReviewin2011,and launchin2012.alltechnologieswillbeattrl6bytheendofcalendaryear2009. Themissionwilloperatefrom2012 2015,withafinalastrometricand photometriccatalogreleasein2016. 3 Outputproducts Therearetworelevantoutputproducts,ordeliverables,fromJMAPS:first,JMAPS willgenerateanastrometricandphotometricstarcatalog,accurateto1masor betterthrough12 th magnitude.second,jmapswillmature,demonstrateandfly attitudesensinginstrumentationthatisaccurateto5mas.inadditiontomaturing largeformatcmos HybridFPA,high stabilitysicoptics,andadvancedelectronics technology,jmapswilldemonstratetheabilitytobuildandoperate10 masclass attitudesensors,allby2012.thecatalog,technologyandinstrumentation demonstrationareallhighlyrelevanttofuturenasamissionssuchasnwo.inthe followingsections,wedescribeinstrumentdesigninmoredetail,anddiscusshow JMAPSmighthavedirectapplicationtoNWO. 4 Spacecraftoverview Asshowinfig.1,JMAPSisasingle instrumentspacecraftconsistingofthe instrumentdeployedonapayloaddeckthatisaffixedtothetopofthebus.the instrument/payloaddeckconsistsoftheopticaltelescopeassembly(ota),thefocal planeassembly(fpa),theinstrumentelectronics(i.e.,processorandmemory), thermalcontrolforthefpa,asunshield,andthecoarsestartracker.the instrumentcomponentoccupiesavolume16.2 (41.1cm)(h)x25.8 (65.5cm)x 24 (61.0cm)withamassof48kg,including25%margin. 2

+),-#$ #./0102/3$!"#$ %&#'(")*&'$ Figure1.JMAPSSpacecraft Thelowerportionofthespacecraftconsistsofthebus,whichsupportsthesolar panelsandhousesthepower,avionics,communications,primarythermalcontrol, reactionwheels,andinertialmeasurementunits(imus).thetotalmassofthe spacecraft,includingcontingency,isapproximately180kg.thespacecraftoccupies avolumeapproximately38 (96.5cm)(h)x28 (71cm)x24 (61cm). IntheJMAPSmissiondesign,theAttitudeDeterminationandControlSystem(ADCS) isintegratedbetweentheinstrumentandthebus.whileslewingorinacquisition mode,coarseattitudeinformationatthe1arcsecondlevelisgeneratedbythestar tracker.thisinformationiscombinedwithdatafromtheinertialreferenceunit (IRU)inthebusandprocessedwithtogeneratepointingknowledgeatorbelowthe 1masaccuracylevel.Duringstandardobservations,theprimaryinstrumentisused toobservereferencestarsandgenerateboresightpointingquaternionsatorbelow 10masinaccuracyat5Hz.The10masattitudesignalisusedbytheADCSsystem todrivethespacecraftpointing.usingasystemofreactionwheelsthespacecraft achievespointingcontrolandstabilityof50mas. TheprimaryrelevanceofthistotheNWOprogramisthattheJMAPSattitude determinationsubsystem thatis,thecomponentsofjmapsthatgenerate 3

quaternions arecontainedintheinstrument.thejmapsinstrumentcanbe separatedfromthebusand,inprinciple,usedonotherplatformsforveryhigh accuracyattitudedetermination.thisassumesthattherequisitethermaland powerconnectionsareavailable.theaccuracyofresultantattitudedetermination willbeafunctionofplatformconsiderationssuchasorbit,thermalstability, vibrationalstability,etc. 5 InstrumentDescription Figure2showsthelayoutoftheinstrumentonthepayload.Themajorcomponents areallshown,i.e.:theota,theieb,thestartrackerandthefparadiators.not shownarethesunshield(deployedontherearofthepayloaddecktoprotectthe OTAfromdirectexposuretothesun),thermalinsulationaroundtheOTA,theloop heatpipestructuretocarryheattotheradiators,orthestructureassociatedwith supportingtheradiators.alsonotvisibleisthefpa.thefpaiscontainedinside theota,locatedonthepayloaddeckinrelativelycloseproximitytotheieb.inthe followsubsections,additionaldetailsareprovidedaboutthemajorinstrument subsections.!"#$%&'()*+,&-.,./*0(.&#//.12,3&4'-#5&6789&:$#&;& #%<=&(+*>+?.@&AB@.CB.+89& -D=&C+@7+80C/& <B/8CA1.B8&D,.*8C0B7*/&E0F&4<DE5& -0(& -DG"#&%8+C&-C+*>.C&H&D,.*8C0B7*/& %7@.& :C0B8& Figure2JMAPSInstrument conceptualdesignofpayloaddeck. 4

The JMAPS instrument has been designed to meet a 5 mas single measurement systematic error floor, including both local (i.e., centroiding), differential (e.g., residual distortion), and detector error sources. The design and system engineering processes required to meet this specification are currently underway and include high fidelity thermal, vibrational, optical and focal plane modeling. Results of these design and analyses activities will be reported out at appropriate venues and publications. 5.1 Optical Telescope Assembly The high precision and repeatability of the required measurements necessitates an optical system with very low aberrations and very high stability. The JMAPS optical telescope is a 19 cm, f/20, on axis space astrograph designed for a residual aberration and distortion floor of below 5 mas. This is achieved through the use of Silicon Carbide (SiC) optics and metering structure for the powered optics, and through a thermal design that maximizes the thermal stability of the optical elements and structure. 5

TheOTAconsistsofaplane parallelentranceaperturewindow,madeoffusedsilica. Thiswindowprovidesbotharedbandcutoffatabout920nmaswellasmechanical supportform2,withminimalstraylighteffects.therearethreepoweredelements andsixfoldflatsthatareusedtocontainthe3.8meffectivefocallengthinavolume thatisapproximately25 alongthelongaxis.thesystemincludesarotatingfilter wheelwithfourpositions.thefirstpositionisawide openvisibleband(~400 900 nm),thesecondpositionistheprimaryastrometricbandpassbluecutoff(itpasses light>700nm),thethirdisalowresolutionspectralgrating(r~15)usedforbasic colorsensing,andthefourthistbd. Thedesignresidualwavefronterror(WFE)iswellbelow0.05wavesat633nm, whiletheas builtwfeisbetween0.05and0.067wavesat633nm.residual centroidingerrorduetostatic(e.g.,psfundersampling)andvarying(e.g., thermally induceddefocus)sourcesoferrorwillnotexceed3masrms.residual distortionandothersourcesofdifferentialastrometryerrorduetobothstaticand varyingeffectswilllikewisebekeptbelow3mas.thesesourcesoferrorrollupto4 masfortheoptics inducedsingle measurementjmapssystematicfloor contribution. Figure4:(left)JMAPSInternalOpticalTelescopeAssembly(OTA)and(right)opticalraytrace 5.2 FocalPlaneAssembly ThebaselineJMAPSfocalplaneassembly(FPA)consistsofa2x2mosaicof TeledyneImagingSensor(TIS)H4RG 10sensorchipassemblies(SCAs),asshownin Figure5.TheH4RG 10isa4192x4192,10micronpixelCMOS HybridSCA.JMAPS willusetheb0,or3 rd generationdesignofthesca.thefirstgenerationsca(a1) hasbeenfabricatedandtestedatbothgoddardspaceflightcenter(gsfc)and USNOandreportedonintheliterature.USNOwilltakedeliveryofthesecond generationsca(a2)in2009andimmediatelybeginlaboratory,skyandradiation testingworkingwithbothgsfcandtheairforceresearchlaboratory(afrl).by 6

earlysummer,initialresultswillbeavailableforthea2design.atthispoint,thea2 designwillhaveachievedatrlof6. TheflightSCAswillbemountedonanintegratedFPAthatwillprovideelectric, thermalandmechanicalinterfacestothepackagedscas.thefpawillbecooledto atemperatureofapproximately193k,withastabilityspecificationof10mk.the FPAheatwillbedumpedtospaceusingdedicatedFPAradiatorsonthefront apertureandabovetheota(seefigure2). TheFPAisallocated3masofsystematicerrorforcentroidingmeasurements.This includestheeffectsofchargediffusion,intra andinter pixelquantumefficiency variations,hotpixels,inter pixelelectroniccross talk,andscamotion.these requirementsdrivetheperformancespecificationsfortheflightunitsaswellasthe thermalandmechanicalstabilityrequirementsonthefpa.fparequirementsand performancearecurrentlybeingvalidatedusinganumberoftools,includingahighfidelityfocalplanesimulator. Figure5:JMAPSFPA4K2X2MosaicConcept 5.3 ReadoutASICS ThebaselineJMAPSreadoutandFPAcontrolelectronicsaretheTISSIDECARASICS (seefigure6).jmapswillutilizeatotaloffourtooperatethefpa.thesidecars digitizethedatacomingoffthefpa,witha16 bitdepth.multipleoutput connectionswillbeusedtoreadoutthefpainapproximately1second.inaddition, forbothguidestarandbrightstarapplications,thesidecarswillreadoutsmaller windowsonthefpaathigherframerates.guidestar(approximately10starsper 7

fieldofview)windowswillbereadoutat5framespersecond(fps),whilebright star(<5 th magnitude)windowswillbereadoutatframeratesofupto200fps. Figure6:SidecarASIC 5.4 InstrumentElectronicsBox TheInstrumentElectronicsBox(IEB)housestheprimaryon boardprocessing systemfortheinstrumentandspacecraft.theiebcombinesthepowerconversion, mechanismandthermalcontrol,dataprocessinganddatastoragefunctions.the IEBreceivesfull framedatafromtheasics.cdsprocessingisperformedby differencingscienceobservationsfromtheresetreadoutframe.theprocessorthen stepsthroughtheimageanddetectsstars.foreachdetectedstar,a10x10pixel windowsisretainedandstoredinthesolidstatedatarecorder(ssdr)forlater downlinktotheground.attitudedeterminationcalculationsareperformedinthe IEB,andquaternionsaregeneratedtodrivetheADCS.Dataratesforthewindows aretypicallyabout5.6mbitsperminute.dataaredownlinkedtothegroundstation viatheon baordtransmitterduringregularpasses.onepassperdayoverthe groundstationissufficienttodownloadoneday sworthofastrometricdata. 5.5 IntegratedInstrumentConceptofOperationsandPredictedPerformance TheJMAPSinstrumentisoperatedinafashionsimilartostandardstartrackers.A starfieldisimaged inthecaseofjmaps,integrationtimesof1,4.5and20seconds areused individualstarpositionsarecalculated,andtheboresightpointing calculatedevery200msec.asdescribedintable1,theintegratedinstrumenthasa fieldofviewof1.24 x1.24.eachpixelsubtendsapproximately0.5secondsofarc. Theprimaryastrometricbandpassis700 900nm,approximatelyequivalentto astrometriciband.thetypicalpointspreadfunction(psf)fullwidthathalf maximum(fwhm)is0.87arcseconds,forasamplingof1.6pixelsperfwhm. 8

Usingacombinationoffocalplaneandcentroidingmodelscombinedwithanalyses ofthepsfs,instrumentthroughput,etc.,wecanpredictcentroidingaccuracyfor singlemeasurementsasafunctionofibandmagnitude.theseresultsareshownin Figure7.Theresultsconsideronlythe bestcase foradiscreterangeofexposure times(0.01,0.2,1.0,4.5and20seconds).here,bestcaseisdefinedasthelongest, non saturatedexposuretime. TheADCSsystemusesthetenbrighteststarsonthefocalplanetocalculatea boresightattitudeata5hzrate.usingtypicalnumbersandi bandbrightnesses, boresightaccuraciesofbetterthan10masata5hzratecanbeachievedaccording tojmapsattitudedeterminationsimulationresults. Theinstrumentperformanceestimatesarebasedondetailedsimulationsofthe focalplane,optics,centroidingprocessandarealisticattitudedeterminationsystem simulator.theresultsincludeboththermalandvibrationseffects. Parameter Spec Units Optics Optical Aperture 19 cm Collecting Area 223.00 cm^2 central obscuration 9 cm Focal length. 3.8 m Focal Ratio 19.900 Optical Field of View (FOV) 1.24 square degrees Survival Temperature 180-320 K Operating Temperature 200-240 K Single Measure Instrument Error Floor 5 mas Mission Systematic Error Floor 0.5 mas Focal Plane Size of FPA (pixels) 8192 square pixels Size of FPA (mm) 81.92 square mm Pixel size 10 um Pixel subtense 0.545 arcseconds FPA Read noise 10 e- Mode of dark current distribution <1 e/s/pix Operating Temperature. 193 K Survival Temperature 180 K Temperature stability < 0.01 K Spectral Range 450-900 nm Full Well 100000 e- Residual uncorrected detector effects < 3.5 mas Instrument Data Rate Per Day 93 kbits/sec Per Minute 5.6 Mbits/min Per Day 7.5 Gbits/day FPA Readout time! 1 seconds Digitization noise!10 e- Overall instrument read noise!14 e- Table1.Instrumentperformanceparameters(notional). 9

Figure7.SinglemeasurementprecisionpredictionsforJMAPSasafunctionofsouceI bandmagnitude. 6 NWO SpecificApplications 6.1 SimilaritiesandDifferencesbetweenbaselineJMAPSandNWO implementation Thedescriptionprovidedin 4and5refertothebaselineJMAPSmission.This missionwillflyinthe2012 2015timeframe.By2013alltechnologyandconcepts willbedemonstratedattrl9andby2016afinalcatalogwillbereleasedwith stellarpositionsaccurateatthe1maslevel. Asnotedin 5,theinstrumentisessentiallyadiscretecomponentandcanbe thoughtofasanextremelyaccurateattitudesensor/startracker.asecondinstance oftheinstrumentcanbebuiltanddeployed,inprinciple,onotherplatforms. Assumingthepropermechanical,thermalandelectronicinterface,itcanthenserve asanextremelyaccuratestarsensor.ifflownafter2016,itwillalsobeabletotake advantageofthejmapsstarcatalog.basedonextensivecostmodelingusingboth thenasainstrumentmodel(developedbyjpl)andaerospacecorporation s ConceptDesignCenter,theinstrumentdevelopmentcostisestimatedatunder $40M($FY08).Asignificantportionofthisisnon recurringexpenses,soasecond unitwouldlikelycost$30morless.adoptinga$40mnot to exceedlimitwouldbea veryconservativeestimate,andwouldallowforsomemodificationstobemade basedonlessonslearnedwiththefirstunit. 10

ForpurposesoftheNWOanalysis,weassumethatasecondinstrumentisbuiltand deployedasstarsensoronboardthenwostarshade.theinstrumentwouldbe usedtonavigatethestarshadeduringthealignmentphaseoftheoccultation.the originalinstrumentisdesignedtosupport5massinglemeasurementaccuracyfora LEO classmission.mostofthesourcesofsystematicerrorarerelatedtovarying thermalconditionsovertheorbit.asimilarunitdeployedatl2wouldbeina significantlymorebenignthermalenvironment.assuch,wewouldexpectthe systematicerrorfloortobewellbelow5mas.forpurposesofthisanalysis, however,wewillcontinuetousethe5masvaluefromthebaselinemission.wewill continuetheanalysisforthel2caseandwillpublishtheseresultsinthe appropriateforumoncetheanalysisiscompleted. 6.2 Starshadealignment TheprimaryapplicationoftheJMAPSinstrumenttoNWOistosupportthe alignmentofthestarshade(seefigure8).theoverallprocessisdiscussedindetail elsewhereinthemainbodyofthenworeport;werestrictourdescriptionhereto thejmapscomponent.inthecaseofdisagreementbetweenthedescription presentedhereandthatpresentedelsewhereinthenworeport,thelattertakes precedenceoverthisone. Inordertosuppressthestarlightandrevealthereflectedlightfromtheexoplanets, thenwostarshadehastobeaccuratelymaneuveredinfrontofthetelescopeat distancesof50 100Megameters(50,000 100,000km).TheJMAPSinstrument willbedeployedonthestarshadeandorientedtowardsthetelescope.inorderto ensuretherequiredsignal,ani bandbeaconwithamaximumapparentmagnitude of12atthemaximumalignmentdistancewillbeaffixedtothetelescopeand directedatthestarshade. Figure8:IllustrationofNWOalignmentproblem 11

TheJMAPSinstrumentwillobservethetelescopebeaconagainstthebackground fieldofreferencestars.assumingatypicalbackgroundguidingsignalupdaterateof 0.1Hz,theJMAPSinstrumentwillaveragetheboresightpointingresultsover50 observations,andgenerateameanboresightmeasurementofaccuracy1mas. Ifweadopta10secondintegrationtime,wecancalculatethesinglemeasurement accuracyforindividual,stellar likesources.resultsarepresentedforthreetypical NWOrangesinTable2.ThenominalNWO12 th magnitudebeaconishighlightedin thetable.theconclusionisthattheinstrumentiscapableof8masposition determinationgivenatensecondexposure.whencombinedwiththeboresight accuracyof1masoverthesameperiod,alignmentaccuracies(1 σ)ofbetween2 and4metersareexpected(seethetable).theinstrumentwillperformboththe positionandboresightcalculationsinternallyandgenerateboresightandtelescope positionsforthestarshadespacecraftonceeverytenseconds. Increasedexposuretime,abrighterbeaconandareducedsystematicerrorfloor duetothemorebenignthermalenvironmentatl2woulddrivedowntheerror.in principle,alignmenterrorsof1metermaybepossible,butadditionalanalysis includingdetailedthermalsimulation arerequiredtosupportthisresult. Magnitude SMP Range (megameters) (I band) (mas) 50 80 100 0 tint = 10.0 5.00007 1.21 1.94 2.42 0.5 5.00010 1.21 1.94 2.42 1 5.00016 1.21 1.94 2.42 1.5 5.00026 1.21 1.94 2.42 2 5.00041 1.21 1.94 2.42 2.5 5.00065 1.21 1.94 2.42 3 5.00104 1.21 1.94 2.42 3.5 5.00164 1.21 1.94 2.42 4 5.00260 1.21 1.94 2.42 4.5 5.00412 1.21 1.94 2.42 5 5.00653 1.21 1.94 2.42 5.5 5.01035 1.21 1.94 2.43 6 5.01639 1.21 1.94 2.43 6.5 5.02595 1.22 1.95 2.43 7 5.04106 1.22 1.95 2.44 7.5 5.06492 1.23 1.96 2.45 8 5.10252 1.23 1.98 2.47 8.5 5.16154 1.25 2.00 2.50 9 5.25372 1.27 2.03 2.54 9.5 5.39662 1.31 2.09 2.61 10 5.61568 1.36 2.17 2.72 10.5 5.94641 1.44 2.30 2.88 11 6.43603 1.56 2.49 3.12 11.5 7.14394 1.73 2.77 3.46 12 8.14151 1.97 3.15 3.94 12.5 9.51219 2.30 3.68 4.60 13 11.35382 2.75 4.40 5.50 13.5 13.78423 3.34 5.34 6.67 14 16.95051 4.10 6.56 8.20 14.5 21.04207 5.09 8.15 10.18 15 26.30956 6.37 10.19 12.73 15.5 33.09343 8.01 12.81 16.02 16 41.87038 10.13 16.21 20.27 Table2.PredictedsinglemeasurementaccuraciesforstellarsourcesovertypicalNWO ranges.resultsarepresentedinunitsofmeters. 12

6.3 Navigation AsecondaryapplicationofJMAPStoNWOisspacecraftnavigation.Asshownin Figure9,theJMAPSinstrumentcanbeusedtoobserveSolarsystemobjects.By combiningobservationsofmultipleobjects,thepositionoftheinstrumentwithin thesolarsystemcanbedetermined.thisisanalogoustoworkcurrentlybedonein thedepartmentofdefensewhichusesobjectsinorbitaroundtheearthto determinepositionsofsensorsinearth svicinity.inthiscase,weareusingmuch moredistantsolarsystemobjectstodeterminepositionwithinthesolarsystem. Aninitialfeasibilityanalysishasbeenperformed.Possibletargetsincludetheouter planets,theirsatellitesandminorplanets.keysourcesoferrorinclude:howto determine position forresolvedtargetssuchasthegasgiants,theerrors associatedwiththeephemeridesofoutersolarsystemobjects,thesignalsfor variouscandidatetargets,andtheeffectsofphotocentermotiononsub pixel centroiding.initialanalysisindicatesthatwithsufficientsignal,1/100 th pixel centroidingonquasi pointsourcessuchasasteroids,andfewaubaselines, positionswitherrorellipseaxesoforder50kmorlessarefeasible.moredetailed analysisisunderwaytorefineatargetlist,developanapproachforout of plane positionandassessaccuracieswithmorefidelity.wewilllikelyperformnavigation experimentswiththebaselinejmapsmissionwhileonorbitinordertodefinitively determinethefeasibilityofthisapproachforsolarsystemnavigation. 2018-06-05 18:28:33! Figure9:Simulationofsolarsystemorbits.JMAPScanbeusedtodeterminethepositionoftheoccultor toaccuraciesof50kmorless. 13

7 Summary TheJMAPSmissionisafunded,DepartmentofNavyall skyastrometricand photometricsurveymissionscheduledforlaunchinthe2012timeframe.the missionwilldeliveranupdatedbrightstarcatalogby2016.themissionwill developandflyanewclassofastrometricinstrumentationthatwillsupport measurementofindividualstarpositionsatthe5maslevelandattitude determinationatthe10maslevelata5hzrate.theinstrument,describedindetail inthispaper,canbedeployedonotherplatformsandusedforbothboresight attitudedetermination(i.e.,attitudesensing)andindividualstarposition measurement(i.e.,startracking).initialanalysisindicatesthatthecatalogand technologycanbeappliedtothenwomissiontosupportbothalignmentofthe Starshadespacecraftatthe2 4maccuracylevelatdistancesofupto100Mm,and forsolarsystemnavigation,witherrorellipsesof50kmorless. 14