Self-phase-modulation induced spectral broadening in silicon waveguides

Similar documents
Demonstration of directly modulated silicon Raman laser

Ultra-fast all-optical wavelength conversion in silicon waveguides using femtosecond pulses

Optical solitons in a silicon waveguide

Ultrafast pulse characterization using XPM in silicon

Inverse Raman Scattering in Silicon

Four wave mixing and parametric amplification in Si-nano waveguides using reverse biased pnjunctions

InP-based Waveguide Photodetector with Integrated Photon Multiplication

Optical systems have carrier frequencies of ~100 THz. This corresponds to wavelengths from µm.

SILICON has many desirable physical and economical properties

10 Gb/s Multiple Wavelength, Coherent Short Pulse Source Based on Spectral Carving of Supercontinuum Generated in Fibers

Observation of Raman emission in silicon waveguides at 1.54 µm

WDM Transmitter Based on Spectral Slicing of Similariton Spectrum

Tailored anomalous group-velocity dispersion in silicon channel waveguides

All-Optical Signal Processing and Optical Regeneration

A continuous-wave Raman silicon laser

Chad A. Husko 1,, Sylvain Combrié 2, Pierre Colman 2, Jiangjun Zheng 1, Alfredo De Rossi 2, Chee Wei Wong 1,

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression

Photonics and Optical Communication Spring 2005

Impact of Fiber Non-Linearities in Performance of Optical Communication

40-Gb/s Optical Buffer Design and Simulation

Silicon Photonic Device Based on Bragg Grating Waveguide

Elements of Optical Networking

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Photonic time-stretching of 102 GHz millimeter waves using 1.55 µm nonlinear optic polymer EO modulators

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier

Design and Simulation of Optical Power Splitter By using SOI Material

InP-based Waveguide Photodetector with Integrated Photon Multiplication

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Slow-light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Semiconductor Optical Amplifiers with Low Noise Figure

Power adjustable visible supercontinuum generation using amplified nanosecond gainswitched

Soliton Resonances in Dispersion Oscillating Optical Fibers

Asymmetric gain-saturated spectrum in fiber optical parametric amplifiers

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion

CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM

Spatial distribution clamping of discrete spatial solitons due to three photon absorption in AlGaAs waveguide arrays

Suppression of Four Wave Mixing Based on the Pairing Combinations of Differently Linear-Polarized Optical Signals in WDM System

Two bit optical analog-to-digital converter based on photonic crystals

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37

Role of distributed amplification in designing high-capacity soliton systems

All-optical logic based on silicon micro-ring resonators

ANALYSIS OF DISPERSION COMPENSATION IN A SINGLE MODE OPTICAL FIBER COMMUNICATION SYSTEM

STUDY OF CHIRPED PULSE COMPRESSION IN OPTICAL FIBER FOR ALL FIBER CPA SYSTEM

Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier

Phase Sensitive Amplifier Based on Ultrashort Pump Pulses

Flat Frequency Comb Generation Based on Efficiently Multiple Four-Wave Mixing Without Polarization Control

UC Santa Barbara UC Santa Barbara Previously Published Works

Power penalty caused by Stimulated Raman Scattering in WDM Systems

Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser

Low threshold continuous wave Raman silicon laser

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

C. J. S. de Matos and J. R. Taylor. Femtosecond Optics Group, Imperial College, Prince Consort Road, London SW7 2BW, UK

All Optical Broad-Band Multi-Raman Amplifier for Long-Haul UW-WDM Optical Communication Systems

Fiber-Optic Communication Systems

Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span

Microphotonics Readiness for Commercial CMOS Manufacturing. Marco Romagnoli

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

WDM-PON Delivering 5-Gbps Downstream/2.5-Gbps Upstream Data

Title. Author(s)Fujisawa, Takeshi; Koshiba, Masanori. CitationOptics Letters, 31(1): Issue Date Doc URL. Rights. Type.

Waveguide-based single-pixel up-conversion infrared spectrometer

Fiber Amplifiers. Fiber Lasers. 1*5 World Scientific. Niloy K nulla. University ofconnecticut, USA HONG KONG NEW JERSEY LONDON

SUPPLEMENTARY INFORMATION

Optical Amplifiers (Chapter 6)

Variable splitting ratio 2 2 MMI couplers using multimode waveguide holograms

EE 233. LIGHTWAVE. Chapter 2. Optical Fibers. Instructor: Ivan P. Kaminow

Photonics and Optical Communication

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

Bragg and fiber gratings. Mikko Saarinen

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M.

Energy harvesting in silicon optical modulators

DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

Optical Communications and Networking 朱祖勍. Sept. 25, 2017

A PIECE WISE LINEAR SOLUTION FOR NONLINEAR SRS EFFECT IN DWDM FIBER OPTIC COMMUNICATION SYSTEMS

The absorption of the light may be intrinsic or extrinsic

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices

Guided Propagation Along the Optical Fiber

On-chip Si-based Bragg cladding waveguide with high index contrast bilayers

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

High Performance Dispersion and Dispersion Slope Compensating Fiber Modules for Non-zero Dispersion Shifted Fibers

DESIGN TEMPLATE ISSUES ANALYSIS FOR ROBUST DESIGN OUTPUT. performance, yield, reliability

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1

Polarization Mode Dispersion compensation in WDM system using dispersion compensating fibre

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

A new picosecond Laser pulse generation method.

SILICON MICRORING WITHIN A FIBER LASER CAVITY FOR HIGH-REPETITION-RATE PULSE TRAIN GENERATION

Guided Propagation Along the Optical Fiber. Xavier Fernando Ryerson University

Single Mode Optical Fiber - Dispersion

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Widely Wavelength-tunable Soliton Generation and Few-cycle Pulse Compression with the Use of Dispersion-decreasing Fiber

An integrated recirculating optical buffer

Ultra-Broadband Fiber-Based Optical Supercontinuum Source

Transcription:

Self-phase-modulation induced spectral broadening in silicon waveguides Ozdal Boyraz, Tejaswi Indukuri, and Bahram Jalali University of California, Los Angeles Department of Electrical Engineering, Los Angeles, CA 90095-1594 jalali@ucla.edu http://www.ee.ucla.edu/~oecs/ Abstract: The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with.gw/cm peak power, a fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated. 004 Optical Society of America OCIS codes: (190.4390) Nonlinear optics, integrated optics, (30.430) Nonlinear optical devices, (30.7370) Waveguides, (50.5300) Photonic integrated circuits. References and Links 1. B.Jalali, S.Yegnanarayanan, T.Yoon, T.Yoshimoto, I.Rendina and F.Coppinger, Advances in silicon-oninsulator optoelectronics, IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998). T.K. Liang, H.K. Tsang, I.E. Day, J. Drake, A.P. Knights, and M. Asghari, Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements, Appl. Phys. Lett. 81, 133-135 (00). 3. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, Observation of stimulated Raman amplification in silicon waveguides, Opt. Express, 11, 1731-1739 (003), http://www.opticsexpress.org/abstract.cfm?uri=opex-11-15-1731 4. R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, Anti-Stokes Raman conversion in Silicon waveguides, Opt. Express 11, 86-87 (003), http://www.opticsexpress.org/abstract.cfm?uri=opex-11--86 5. D. Dimitropoulos, V. Raghunathan, R. Claps, B. Jalali, Phase-matching and nonlinear optical process in silicon waveguides, Opt. Express 1, 149-160 (004), http://www.opticsexpress.org/abstract.cfm?uri=opex-1-1-149 6. J.J. Wayne, Optical third-order mixing in GaAs, Ge, Si, and InAs, Phys. Rev. 178, 195-1303 (1969). 7. M. Dinu, F. Quochi, and H. Garcia, Third-order nonlinearities in silicon at telecom waveguides, Appl. Phys. Lett. 8, 954-956 (003) 8. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength, Appl. Phys. Lett. 80, 416-418 (00) 9. O. Boyraz, J. Kim, M. N. Islam, F. Coppinger, and B. Jalali, 10 Gb/s multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in fibers, J. Lightwave Technol. 18, 167-175 (000) 10. US Patent No. 6108478, Harpin et al., Aug, 00 11. G. P. Agrawal, Nonlinear fiber optics, (Academic Press, 1995). 1. Introduction Silicon on Insulator (SOI) has emerged as an attractive platform for passive planar lightwave circuits [1]. These devices make use of the excellent transmission properties of silicon in the (C) 004 OSA 8 March 004 / Vol. 1, No. 5 / OPTICS EXPRESS 89

near infrared, in particular, in the technologically important wavelength bands centered at 130nm and 1550nm. At the same time, the large refractive index contrast between the Si waveguide core and SiO cladding affects ultra tight confinement of light and localizes the optical power in the silicon core. The resulting high optical intensity combined with extended interaction along the waveguide length creates a situation that is conducive for nonlinear optical interactions. Because of crystal symmetry, nd order nonlinear phenomenon in bulk silicon is too low to be of practical value. Auspiciously, the conclusion is different for 3 rd order interactions, described by the 3 rd (3) order nonlinear susceptibility, χ. For instance, Two Photon Absorption (TPA) is well documented and has been investigated as a means to create a Si autocorrelator device []. Optical amplification using Stimulated Raman Scattering (SRS), another 3 rd order phenomenon, has recently been demonstrated in silicon waveguides [3]. Exploiting the Raman-induced four-wave mixing in silicon waveguides, wavelength conversion has also been reported [4-5]. With respect to the electronic non-resonant phenomenon in silicon, measurements of (3) χ have been reported for bulk samples [6,7] and waveguides [8] with results suggesting a value that is two orders of magnitude higher than that in silica glass. The electronic 3 rd order nonlinearity is an important phenomenon that gives rise to valuable capabilities such as extreme spectrum broadening, otherwise known as supercontinuum generation, in optical fibers. Supercontinuum generation followed by spectrum carving has been investigated for more than a decade and considered as a low cost source for Dense Wavelength Division Multiplexed (DWDM) optical networks [9]. In this paper, we report the observation of spectrum broadening in silicon waveguides. Experimentally we obtain -fold spectrum broadening in the 1550nm band with. GW/cm of peak pulse power. To the best of our knowledge this is the first direct and explicit demonstration of spectrum broadening in silicon. Experimental results are in good agreement with a model based on Self Phase Modulation (SPM) and TPA. The model shows that more than 5 fold spectral broadening is possible with 0GW/cm of peak power in the waveguide. These results can be considered as a first step towards chip-scale Supercontinuum (SC) generation, wherein multiple wavelengths are generated on the silicon chip from a singlewavelength external source. Waveguide Modelocked Laser BPF OSA Fig. 1. Experimental setup used for measuring SPM in cm long silicon waveguides. 4ps short pulses with.gw/cm peak power level propagated through silicon waveguides and spectral broadening is measured at the output.. Experimental setup and results Figure 1 illustrates the experimental setup used for SPM generation in silicon waveguides. A passively modelocked fiber laser generating 1ps short pulses at 0MHz is used as an external pulse generator for SPM generation in the silicon waveguide. Before amplifying the pulses to high peak power levels, an optical bandpass filter with around 1.nm 3dB bandwidth is used to limit and shape the spectrum. After amplifying the pulses in an Erbium Doped Fiber Amplifier (EDFA) the output pulses are measured to be around 4ps by autocorrelation scan. The spectral shape of the output pulses indicates that some chirping and SPM effects occur within the EDFA. Later, this broadening is subtracted from the final output to obtain the broadening due to waveguide propagation. After amplification, pulses enter the silicon waveguide (described below). The peak power of the optical pulses in the waveguide is estimated to be ~110W corresponding to a power density of. GW/cm. Total loss, from (C) 004 OSA 8 March 004 / Vol. 1, No. 5 / OPTICS EXPRESS 830

EDFA to waveguide output, is measured to be 8 db, which is attributed to Fresnel losses from the non-ar coated facets (~ 3dB), propagation loss of the waveguide, and TPA. After the waveguide, the pulses are coupled to a fiber patchcord and sent to an optical spectrum analyzer (OSA) to measure the spectrum broadening. Output coupling efficiency is intentionally kept low to eliminate further accumulation of SPM-induced nonlinear phase shift in the output patchcord. Input/Output Taper Active Waveguide 5 mm Fig.. SEM picture and schematic drawing of the tapered silicon waveguide. The silicon rib waveguide was fabricated on a Silicon-On-Insulator (SOI) and had lateral tapers for maximizing input and output coupling [10]. The waveguides were made in 100 oriented silicon wafers. The width of the waveguide changes linearly from 9µm at the chip facet to 1µm over a distance of 5mm, as shown in Fig.. The taper width changes linearly from 8.5µm to 0.5µm to squeeze all optical power into the waveguide. The output rib waveguide has a width of 1µm, slab height of.88µm, total height of 4µm, and length of cm. The structure was designed and optimized using Beam Propagation Method (BPM) simulations. The calculated coupling efficiency from the taper into the active waveguide was ~6%. The waveguide modal area is calculated to be A eff ~ 5µm using BPM. To maximize the spectral broadening, the pump polarization relative to waveguide direction must be chosen to correspond to the maximum value of χ (3). In the present experiment, the pump-waveguide orientation corresponds to χ11 in TE polarization and χ1331 in TM. Since χ11 = χ1331 this orientation results in minimum polarization sensitivity. (C) 004 OSA 8 March 004 / Vol. 1, No. 5 / OPTICS EXPRESS 831

However, the nonlinearity in χ1331 is half of the nonlinearity in χ1111 orientation. Therefore a x higher nonlinearity can be achieved, albeit at the expense of polarization sensitivity. Spectral broadening in silicon waveguides is clearly visible in the measured spectrum, shown in Fig. 3. The spectrum at the filter output and the waveguide input is also shown for comparison. It is well known that SPM results in the generation of new spectral components with oscillatory power spectral density across the spectrum [11]. This is clearly evident in the measured output spectrum. As mentioned above, a modest amount of broadening occurs in the EDFA that precedes the waveguide (Fig. 1). The so produced weak oscillatory behavior can be observed in the input spectrum. As shown in Fig. 3, the spectral width of pulses entering the waveguide is measured to be approximately 1.5nm at the -5dB level. At the waveguide output, the spectral width is increased to ~3nm at the same level, yielding a fold increase. The knee on the long wavelength side of the input spectrum is due to the soliton sideband effect, which is a typical characteristic of passively modelocked fiber laser such as the one used in the experiment. Spectral Density (db) 0-3 -6-9 -1-15 Output Input Filter Output 1557 1558 1559 1560 1561 156 Wavelength (nm) Fig. 3. Measured spectrum at the filter output, at the waveguide input and broadened spectrum at the waveguide output. SPM results in a phase shift of the pulse carrier, the magnitude of which depends on the nonlinear refractive index, peak power, and propagation length. The amount of nonlinear phase shift can be estimated by the number of spectral oscillations [11]. By doing so, we can deduce a total nonlinear phase shift of approximately.5π radians. The phase shift is given by φnl = γpl where P is the peak power and L is the length. The nonlinear constant γ depends on the third order nonlinearity, χ (3) (3), through the relation, γ = χ ω / c n ε 0 Aeff (1/ W. km). Here, ω is the angular frequency of the optical carrier and c is the speed of light. Using the known modal area (5 µm ) and the measured nonlinear phase shift, the nonlinear constant is calculated to be γ ~3 W -1.m -1. This is ~1000 times higher than that in the standard optical fibers. Based on this and the peak power value of 110W (. GW/cm ) at the waveguide, we can estimate that more than π radians phase shift occurs in the silicon waveguide. The remaining π/ phase shift occurs in the EDFA before the waveguide. Next, theoretical calculations are carried out to study the spectrum broadening effect in the waveguide. We invoke the well known approach of solving the Non-Linear Schrödinger Equation (NLSE). The NLSE governing the pulse propagation is given by, A i A α + β + A = iγ A A z t where A is the complex amplitude of the electric field, β (ps /m) is the second order dispersion, α (1/m) is the loss coefficient, [11]. The Raman term in the NLSE is ignored since the input pulses (~4 ps) are shorter than the Raman response time in silicon (~10 ps [3]). In (C) 004 OSA 8 March 004 / Vol. 1, No. 5 / OPTICS EXPRESS 83

addition, the walk-off between the pulse and its Stokes component (~3 ps) will further reduce the Raman efficiency. 5 Effective Loss Profile (db/cm) 0 15 10 5 0 0 0.4 0.8 1. 1.6 Length (cm) Fig. 4. Effective loss profile inside the waveguide. Due to two photon absorption light is attenuated rapidly in the front end of the waveguide. Gaussain pulses are assumed and the peak power in the simulations is varied from 0W to 1kW (corresponding 0.4GW/cm -0GW/cm in the waveguide). The model presented is here tries to match roughly the pulse width and the bandwidth at the amplifier output to estimate the approximate spectral broadening in the waveguide. For a better accuracy, a model considering the pulse shape at the laser output and nonlinearity in the EDFA should be developed. The extracted γ value of 3 W -1.m -1 was used in the simulations. Dispersion in the waveguide was measured by interferometric chromatic dispersion measurement technique [8] and the measured value of β = 1118x10-7 s /m was used in the simulations. This value is excellent agreement with those reported in Reference [8]. This agreement is expected because the dispersion in silicon rib waveguides is dominated by the material dispersion of silicon. The loss profile in the waveguide is more complicated than a linear propagation loss because of the TPA. The linear propagation loss was measured to be 1 db/cm. Being an intensity dependent loss, TPA is modeled as a z-dependent loss in addition to the linear loss. The total αl loss due to TPA and linear loss is given by e ( 1+ BLeff / Aeff Pin ), where parameter B is the TPA constant with measured value of B = 4.4x10-10 cm/w is the [3]. Shown in Figure 4 is the total loss in the waveguide for different power levels. At high power levels, TPA results in a nonlinear loss behavior in the front section of the waveguide. The NLSE is solved by using the split step Fourier method [11]. A chirped Gaussian pulse is used at the input to the waveguide to account for propagation in fiber patch cord and the EDFA. The chirp parameter was chosen to match the input spectrum approximately shown in Fig. 3. After solving the NSLE the amount of spectral broadening for various power levels is obtained and summarized in Fig. 5. The spectral broadening factor is obtained by measuring the spectral width at -5dB level to be consistent with experimental results. The results suggest a x spectral broadening for input peak power levels of ~GW/ cm, in good agreement with experimental results. As the peak power reaches 0GW/cm, a factor of 5 spectral broadening is expected. Since the simulations take the loss due to TPA into account, such amount of broadening should be experimentally realizable, as long as the required high peak intensity can be achieved. Nonetheless, TPA does limit the maximum broadening and is responsible for the saturation behavior observed in Fig. 5. (C) 004 OSA 8 March 004 / Vol. 1, No. 5 / OPTICS EXPRESS 833

Simulations also reveal that an order of magnitude broadening can be achieved by using transform-limited pulses with peak intensities of 0 GW/cm. However, generating transform limited pulses with very high peak power levels can be subject to pulse breakup in dispersive elements before the waveguide, including the EDFA or fiber patch cords. 1 Spectral Broadening Factor 10 8 6 4 0 Transform-limited input pulse Chirped input pulse 0 5 10 15 0 Peak Power Density (GW/cm ) Fig. 5. Simulated spectrum broadening versus power density, for a chirped Gaussian input pulse. Results show a 5 times broadening for 0 GW/cm peak intensity values. A 10x broadening can be achieved with a transform-limited input pulse. The maximum spectrum broadening is limited by two photon absorption. 3. Summary In summary, we have demonstrated spectral broadening due to the SPM affect in silicon waveguides. By using ~4ps optical pulses with.gw/ cm peak power, a fold spectral broadening is obtained. Theoretical calculations, that include the effect of TPA, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA establishes a limit on the maximum spectral broadening that can be achieved. Acknowledgments This work was supported by DARPA. The authors thank Dr. Jag Shah of DARPA/MTO for his support. The authors thank Dr. Prakash Koonath for his assistance in device fabrication. (C) 004 OSA 8 March 004 / Vol. 1, No. 5 / OPTICS EXPRESS 834