ACOUSTICS. Sounds are vibrations in the air, extremely small and fast fluctuations of airpressure.

Similar documents
2. When is an overtone harmonic? a. never c. when it is an integer multiple of the fundamental frequency b. always d.

LCC for Guitar - Introduction

Musical Acoustics Lecture 17 Interval, Scales, Tuning and Temperament - II

Math, Music and Memory Fall 2014 The Monochord Lab: Length Versus Pitch

Lab 10 The Harmonic Series, Scales, Tuning, and Cents

Tuning and Temperament

Music and Engineering: Just and Equal Temperament

Seeing Music, Hearing Waves

Math in the Real World: Music (9+)

THE PHENOMENON OF BEATS AND THEIR CAUSES

THE ILL-TEMPERED MATHEMATICIAN. John R. Silvester Department of Mathematics King s College London

Definition of Basic Terms:

A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium.

Acoustics and Fourier Transform Physics Advanced Physics Lab - Summer 2018 Don Heiman, Northeastern University, 1/12/2018

Hohner Harmonica Tuner V5.0 Copyright Dirk's Projects, User Manual. Page 1

Sound is the human ear s perceived effect of pressure changes in the ambient air. Sound can be modeled as a function of time.

Date Period Name. Write the term that corresponds to the description. Use each term once. beat

OpenStax-CNX module: m Interval * Catherine Schmidt-Jones

1. Don t you hear the lambs a crying?

A. Pythagorean Tuning. Index. b). Cycle of 5ths hits all notes. 1. Cycle of 5ths. Physics 1200 Topic VII Tuning Theory.

INTONATION: WHAT YOUR TEACHER(S) NEVER TOLD YOU. Michael Kimber

Barbershop Tuning By Ted Chamberlain for HCNW

Intervals, Tuning, and Temperament I

Copyright 2009 Pearson Education, Inc.

Musical Acoustics, C. Bertulani. Musical Acoustics. Lecture 14 Timbre / Tone quality II

Equal Beating Victorian Temperament (EBVT)

Musical Acoustics, C. Bertulani. Musical Acoustics. Lecture 13 Timbre / Tone quality I

Math in the Real World: Music (7/8)

BASIC PIANO TUNING by Mark Cerisano, RPT

Math and Music: Understanding Pitch

Tuning Ancient Keyboard Instruments - A Rough Guide for Amateur Owners.

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves

RAM Analytical Skills Introductory Theory Primer Part 1: Intervals Part 2: Scales and Keys Part 3: Forming Chords Within Keys Part 4: Voice-leading

Music. Sound Part II

Contents. Part 2: Technique 111. Part 1: Intonation 1

Physical Consonance Law of Sound Waves

Vibrations and Waves. Properties of Vibrations

INDIANA UNIVERSITY, DEPT. OF PHYSICS P105, Basic Physics of Sound, Spring 2010

Main Types of Intervals

An introduction to physics of Sound

UNIVERSITY OF TORONTO Faculty of Arts and Science MOCK EXAMINATION PHY207H1S. Duration 3 hours NO AIDS ALLOWED

INTERNATIONAL BACCALAUREATE PHYSICS EXTENDED ESSAY

THE DIATONIC CHORDS I11

This excerpt from. Music, Cognition, and Computerized Sound. Perry R. Cook, editor The MIT Press.

Lab 8. ANALYSIS OF COMPLEX SOUNDS AND SPEECH ANALYSIS Amplitude, loudness, and decibels

MAT 117 Fall /27/10 or 10/28/10 Worksheet 16 Section 8.1 & 8.2 Setting the Tone

The difference between melodic & harmonic scales

Beginner Guitar Theory: The Essentials

II. Tuning & Setup. Figure 1: This is where the guitar s open string s pitches really SOUND. Open 3rd String

Chapter 2. Meeting 2, Measures and Visualizations of Sounds and Signals

Understanding Temperaments

Waves & Interference

PHYSICS. Sound & Music

3B SCIENTIFIC PHYSICS

MUSIC THEORY GLOSSARY

From Ladefoged EAP, p. 11

Warm-Up. Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another?

Waves and Sound Practice Test 43 points total Free- response part: [27 points]

Consonance & Dissonance:

Section 1 Sound Waves. Chapter 12. Sound Waves. Copyright by Holt, Rinehart and Winston. All rights reserved.

Lecture 7: Superposition and Fourier Theorem

Spectral analysis of different harmonies Implemented by Equal temperament, Just, and Overtone ratio based tuning system

Honors Physics-121B Sound and Musical Acoustics Introduction: Production of Sounds by Various Sources: Media That Transmit Sound:

SECTION A Waves and Sound

AUDITORY ILLUSIONS & LAB REPORT FORM

Chapter 15 Supplement HPS. Harmonic Motion

Color Score Melody Harmonization System & User Guide

Automatic Piano Tuning

A practical approach to learning essential scales using the Blues scale.

Sound. DEF: A pressure variation that is transmitted through matter. Collisions are high pressure / compressions.

Vertical Harmony Concepts

YAMAHA. Exploring the Preset Microtunings SUPPLEMENTAL BOOKLET. Uil FC>/C> DIGITAL PROGRAMMABLE ALGORITHM SYNTHESIZER

COMP 546, Winter 2017 lecture 20 - sound 2

ENGINEERing challenge workshop for science museums in the field of sound & acoustics

Intervals For The Guitar

Contents. 1. Introduction Bank M Program Structure Parameters

SUMMARY. ) f s Shock wave Sonic boom UNIT. Waves transmit energy. Sound is a longitudinal mechanical wave. KEY CONCEPTS CHAPTER SUMMARY

Finding Alternative Musical Scales

A Look at Un-Electronic Musical Instruments

Music: Sound that follows a regular pattern; a mixture of frequencies which have a clear mathematical relationship between them.

8A. ANALYSIS OF COMPLEX SOUNDS. Amplitude, loudness, and decibels

Helm Manual. v Developed by: Matt Tytel

Music Theory I (MUT 1111) Prof. Nancy Rogers

Chapter 14, Sound. 1. When a sine wave is used to represent a sound wave, the crest corresponds to:

Consonance vs. Dissonance - A Physical Description. BENJAMIN D. SUMMERS. (Louisiana State University, Baton Rouge, LA, 70803)

Waves & Sound. In this chapter you will be working with waves that are periodic or that repeat in a regular pattern.

EXERCISE 1 THE MONOCHORD: PYTHAGORAS, HARMONIA AND COSMOS

constructive interference results when destructive interference results when two special interference patterns are the and the

SECTION A Waves and Sound

ABC Math Student Copy

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence

A Complete Guide to Piano Chords

The Magical Mathematics of Music

Test Review # 7. Physics R: Form TR7.17A. v C M = mach number M = C v = speed relative to the medium v sound C v sound = speed of sound in the medium

describe sound as the transmission of energy via longitudinal pressure waves;

Operating and Service Manual Part No. MAN-Vio-Lab_ Page 1 of 28

The Basics of Jazz Piano Missouri Music Educators Association Conference January,

The Shearer Method: Guitar Harmony. by Alan Hirsh

Chord Tones: Targeting Blues Guitar. Chord Tones: Targeting Blues Guitar

MUS 302 ENGINEERING SECTION

Transcription:

ACOUSTICS 1. VIBRATIONS Sounds are vibrations in the air, extremely small and fast fluctuations of airpressure. These vibrations are generated from sounds sources and travel like waves in the water; sound waves however spread themselves in all directions like a steadily growing ball. The speed of these sound waves is c.340 meters per second. Regular vibrations are experienced as tones, irregular ones as noise (percussion instruments in music, consonants in language); sounds that are so short that it is impossible to hear a pitch, we call pulses. Vibrationtime is the time it takes for one complete wave. The vibrating object moves first in one direction until a certain extreme, changes direction, passes the starting position until the opposite extreme point is reached, then returns again to the starting point. Drawn on a horizontal axis: The distance between the starting point and the extreme point, the "width" of the wave is called the amplitude. This determines the strength of the sound: the wider the amplitude, the louder the sound. Volume is measured in decibels (db): a scientific measurement where the amplitude itself is not measured, but the energy associated with a particular amplitude. The pitch of a tone is determined by the total amount of complete vibrations per second (so actually by the vibrationtime). The total amount of vibrations per second is the frequency and is measured in Hertz (Hz). Naturally, in connection with large sound sources (long strings or streams of air) the vibrationtimeis longer and the frequency therefore lower in pitch than small sound sources (small strings or streams of air).

A_ (the a from a tuning fork) has according to international standards a frequency of 440Hz; 1000Hz is then named a Kilohertz (khz). Young, healthy people hear sounds between 16 Hz and 20 khz. Sounds below 16 Hz are experienced as rattling, whilst sounds above 20 khz are inaudible. (As one gets older, a decrease to c.9khz is normal.) 2. INTERVALS The pure interval between two tones is determined by the ratio of their frequencies: irrespective of the range in which a particular interval sounds, the frequencies of two tones should always have the same ratio. The more simple the ratio, the more consonant the interval will sound. The most basic interval known - the fundamental - has a frequency ratio 1:1; both tones sound at the same pitch. The octave has a frequency ratio of 1:2. So the octave above a tone of 200Hz will have a frequency of 400 Hz; the a from a tuning fork (=a_) as already mentioned, is 440Hz hence a" will have a frequency of 880Hz, and the a an octave lower will have a frequency of 220Hz. Two tones forming a pure fifth have a frequency ratio of 2:3. The fifth above a tone with 200Hz therefore has 300Hz (2/3 x 600 = 400). So, the fifth below a tone with 600 Hz has 400 Hz (2/3 x 600 = 400) The fifth above a_ (440Hz), e" is therefore 660Hz. Other intervals in their purest forms have the following ratios: pure fourth 3 : 4 e.g. 30 and 400 Hz major third 4 : 5 e.g. 300 and 375 Hz minor third 5 : 6 e.g. 300 and 360 Hz minor sixth 5 : 8 e.g. 300 and 480 Hz major sixth 3 : 5 e.g. 300 and 500 Hz major second 8 : 9 e.g. 300 and 337.5 Hz minor second 15 : 16 e.g. 300 and 320 Hz These ratios can also be seen in the playing of a stringed instrument. When you press exactly on the middle point of a string, an octave is produced. By removing a third of the string, therefore only using two thirds of the original length, a fifth will be produced. In order to make the tone a major second higher the string has to be shortened by 8/9 etc.

3. OVERTONES The timbre or tone colour of a tone is determined by the way the vibration takes place. The following graphics represent tones that are high and loud (having the same frequency and amplitude), but with clear differences in timbre: A perfectly regular and uniform oscillating vibration is never found in nature and can only be generated electronically. A similar tone is called a sine and is perfectly _colourless_. (A tuning fork still gives the best approximation). Graphically: Now it is clearly proven that all regular vibrations can be analysed as a collection of or _additon_ of sine waves. A hypothetical wave could look like this for example: analysed as a combination of 2 sine tones.

In our hearing system, every vibration is analysed in this way. The lowest tone from the whole (= the vibration with the largest wave) we recognise as the pitch of the tone, the other components of the sound we call the overtones. The ratio of frequency and strength between the _fundamental tone_ and the overtone determines the way in which the wave travels, and consequently the timbre or tone colour of a tone. The frequencies of the overtones are multipels of the frequencies of their fundamental tone, and are always the same 1:2:3:4:5: etc.; in other words fundamental and overtones combined, always form the same intervals. Fundamental tones and overtones are called natural tones. Here are the first 16 overtones from the fundamental tone C: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 The series of overtones is in principal unlimited. The overtones that have an influence on the tone colour can have much higher numbers, until the limits of hearing. Some tones do not fit into our tonal system i.e. the numbers 7, 11, 13 and 14 (the octave for No. 7). The minus sign above the note indicates that the natural tone is somewhat lower than the corresponding tone in our tonal system. The structure of the harmonic series is perhaps easier to remember or reconstruct if one thinks: the octave from every natural tone is produced when the number is multiplied by 2. The second natural tone (= the first overtone) is an octave from the 1st, the 4th from the 2nd, the 8 th from the 4 th, the 16 th from the 8 th etc. The 3 rd, 6 th, and 12 th also make octaves etc. the first 6 natural tones are made up of tones from a major triad, afterwards one can _count through_ 7, 9 11, 13, chords the numbers from two tones give the ratio of the interval that make:

numbers 1 and 2 form an octave octave ratio = 1:2 numbers 2 and 3 form a fifth fifth ratio = 2:3 numbers 3 and 4 form a fourth fourth ratio = 3:4 etc. but also: numbers 3 and 5 form a major sixth major sixth ratio = 3:5 etc. a 3-fold forms a fifth with a 2-fold: number 9 (3x3) creates a fifth with number 6(2x3), number15 (3x5) creates a fifth with number 10 (2x5), etc. the intervals become smaller as they ascend. This can not be accurately notated because intervals, which are not customary, are produced. Numbers 4 and 5 form a normal major third, 5 and 6 create a normal minor third but because 7 is lower in our tonal system, 6 and 7 form a third which is smaller than the standard minor third, and 7 and 8 from a major second which is slightly wider than the usual major second. This only occurred between 8 and 9. Between 10 and 11 we find a major second that is _too small_, between 11 and 12 minor second that is _too small_. Between 12 and 14 we have to notate one of the intervals as a major second although it is smaller than the _too large_ minor second between 11 and 12. When sound vibrations reach an object that is sensitive to their frequency, that object vibrates with it. This phenomenon is called resonance. Resonance is of great importance for nearly all musical instruments. They consist of one or more sound sources (e.g. strings), a resonator (e.g. the resonance box on a violin, the sound board of a piano). Since every resonator prefers a specific frequency range, particular frequencies will resonate much more than others. This also determines which overtones will sound strong(er) and the overtones that will sound weak(er). In other words: the resonator determines, for the most part, the tone colour of an instrument (and the volume). Therefore, everything is important: the type of wood, the thickness of the material, total layers of varnish, and the type of varnish. These resonance-area's are also called formants, often compared with vowels in speech. When the mouth takes in a certain position )a soundbody) a vowelsound can be produced: ii, ee, aa, oh, oo, oe, uu. Instruments also have a certain vowelsound: e.g. a violin 'ii' and a cello more of an 'oh' sound.

4. KEYS and TUNING Based on the harmonic series let us clarify the measurement of consonance and dissonance in intervals: intervals sound more consonant if they have more common overtones and the unrelated tones have a _higher_ position. They sound more dissonant if they have fewer common overtones and the unrelated ones are in a _lower_ position. At the same time, to explain the phenomenon of the harmonic series, low consonant intervals still do not sound more consonant and high dissonant intervals actually no more dissonant: the high, unrelated overtones from a consonant interval occur with a low position still within our hearing, and from a high positioned dissonant interval, most of the overtones are outside of our hearing range. In the tuning of instruments _ usually done in fifths or fourths _ overtones also play a role: the beats that you hear is the difference between the first common overtone from both tones. The interval is only pure when these common tones are exactly the same pitch and the beats disappear. With tuning there is more taking place than expected. There are two important problems: Problem No. 1 Firstly, for example, to tune an ascending fifth from c_ (ratio 2:3) and then again a descending fourth (ratio 4:3) one creates a major second c_- d_. The frequency of d_ is then 3/4 x 3/2 = 9/8, which of course is the same ratio that we see with

the major second in the harmonic series. (Although: naturally?). If you stack major seconds on top of each other, the frequency of each new second is 9/8 of the previous one. By staking 6 major seconds on top of each other - or alternating 6 x a fifth higher and a fourth lower - one makes an octave: c_- d - e_ - f sharp_- g sharp, a sharp_- b sharp_, b sharp_ being the enharmonic of c". Actually: if you calculate the frequency of the octave by the six-fold multiplying method, then you do not end up with a pure octave ration of 1:2. Namely: 9/8 x 9/8 x 9/8 x 9/8 x 9/8 x 9/8 = 531441/262144;or in other words: b sharp_ has a ratio to c_ of 531441/262144. In making an octave from c_- c you get the ratio b sharp - c":531441/524288, or in other words: b sharp is higher than c. This difference is known as the Pythagorean comma. So: if one tunes pure fourths and fifths uniformly you end up _too high_. Since c.1800 people have tried to solve this problem by making each fifth a little smaller and each fourth a little larger so that the Pythagorean comma is divided equally between every fifth. This became known as _equal_ or _even temperament_. In this tuning system the impurities are so insignificant that one is not disturbed. Noticeably, the enharmonic tones are alike (b sharp = c) and all keys are playable and sound equal. Between c.1700 and c.1800 people tried to tackle this problem in a different way: they did not divide the Pythagorean comma over all 12 (=proportional), but usually over 4, or sometimes 6, of the fifths. Tuning of this kind was called Well Tempered, named and often attributed to the one who wrote them.

Some examples: The fact that not all the fifths/fourths, and therefore other intervals as well, are not _just as large_, each key sounds different. In the time that this _Well Tempered_ tuning was used, the principle of 'proportional' or 'even tuning' was well known and written about (among others Werkmeister). The reason for it not being so widely used is due to the second large problem with tuning. Problem No. 2 By tuning 2 pure descending fifths and pure ascending fourths, one creates a major third. The ratio of this major third can be calculated as follows with the help of the 2:3 ratio and the 4:3 ratio of the pure fifth and pure fourth respectively: the frequency of d _ is 2/3 of a_ the frequency of g _ is 4/3 of d_, therefore 4/3 x 2/3 = 8/9 of a_ the frequency of c _ is 2/3 of g_, therefore 2/3 x 8/9 = 16/27of a_ the frequency of f _ is 4/3 of c_, therefore 4/3 x 16/27 = 64/81 of a_

Therefore the major third is subsequently a little larger than the pure major third with the ratio of 4:5, or converted 64:80. This difference is largely known as the Syntonic comma, and is approximately 1/5 of a semitone. Since a major and minor third form a pure fifth, minor thirds are a comma too small. All in all, a simple chord like a major triad in this tuning system was quite unpleasant, certainly when compared to the perfectly pure triad from the harmonic series. Once more a short historical interval: tuning in pure fifths and fourths is the oldest tuning method in Western music history. This simple system is known as Pythagorean Tuning_ named after the Greek philosopher and mathematician Pythagoras (6BC). The polyphonic music of the Middle Ages (until c.1500), that is to say the first polyphonic music, was based on this system. The most practical manner in this method of tuning is for the cycle of fifths to continue in a flat direction (therefore left) until E flat and in a sharp direction (right) until g sharp: Once arriving at this point one realises that you do not end up in the same place. The interval g sharp - e flat is not a pure fifth or inverted, a pure fourth. (we always work from the purity of an octave). The resulting interval g sharp - e flat is a fifth which is too small and a fourth which is too large: the previously mentioned Pythagorean comma compensates for this. Good attempt, but in practice this tuning system has quite limited use: the thirds and therefore the sixths, are very dissonant, and because of the remaining fifth/fourth g sharp - e flat it is not possible to play in all keys. In other words: pure fifths and fourths can not be combined with pure thirds. Back to the 'Well Tempered' system: the 'too small' fifths were therefore positioned so that the thirds in all keys with fewer accidentals were impure ( more harmonious) than those keys with many accidentals. Every key therefore has its own character. The thirds in the Equal temperament system are in general purer that those from Even Temperament: that is why people from the period between c.1700 and c.1800 gave preference to this. Before, (from c.1500 - c.1700) the term 'Mean Tone' tuning was used: they strove for as many pure thirds as possible, by making most of the fifths a little smaller.

This is at the expense of a fifth which is far too large, whereby in this tuning only the use of a limited number of keys was possible. ( the name 'Mean Tone Tuning' indicates the d _ which in this tuning is the pure major third c - e divided exactly into two., so not into two uneven major seconds as in the harmonic series with the ratio 8:9 and 9:10) 5. TUNINGS Starting point - All fifths are pure except one, here the Pythagorean comma is too small Advantage - Pure fourths and fifths Disadvantage - Major thirds and sixths are too large (Syntonic Comma) Consequences - Diatonic leading notes are tuned too high (small) - Because of the bad fifth it is not possible to play in all keys Starting point - All fifth are 1/4 too small except one, the 'wolvesfifth', which is far too large Advantage - More pure major thirds and sixths Disadvantage - Fifths are too small (fourths therefore too large) - Because of the poor fifths it is not possible to play in all keys Consequences - Diatonic leading tones are tuned lower (large)

Starting point - Four fifths are made 1/4 too small Advantage - No bad fifths, so it is possible to play in all keys - where the fifths are too small the major thirds and sixths are purer - the difference in purity gives every key its own character Disadvantage - All enharmonic tones are (on the keyboard in any case) alike (e.g. g sharp - a flat) Starting point - All fifths are 1/12 of a comma too small Disadvantage -nothings is more pure, everything is impure All keys sound alike Advantage - Impurities are so slight that one is not really disturbed - All keys are playable - All enharmonic tones are alike (g sharp = a flat)