SYLLABUS. osmania university UNIT - I UNIT - II UNIT - III CHAPTER - 4 : OPERATIONAL AMPLIFIER

Similar documents
SYLLABUS. osmania university CHAPTER - 1 : OPERATIONAL AMPLIFIER CHAPTER - 2 : OP-AMP APPLICATIONS ARATORS AND CONVERTERS

LINEAR IC APPLICATIONS


Question Paper Code: 21398

EC0206 LINEAR INTEGRATED CIRCUITS

DMI COLLEGE OF ENGINEERING

GUJARAT TECHNOLOGICAL UNIVERSITY. INSTRUMENTATION & CONTROL ENGINEERING (17) ANALOG SIGNAL PROCESSING SUBJECT CODE: B.E.


Scheme I Sample Question Paper

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK IV SEMESTER

KINGS COLLEGE OF ENGINEERING* DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

Hours / 100 Marks Seat No.

explain its operation with clearly indicating the protection mechanisms indicated. [Marks 16] (Nov/dec 2010) Ic 741 Op Amp Of Output Stage Protection

LESSON PLAN. SUBJECT: LINEAR IC S AND APPLICATION NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE. Portions to be covered

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Linear Integrated Circuit Subject Code:

Preface... iii. Chapter 1: Diodes and Circuits... 1

St.MARTIN S ENGINEERING COLLEGE

EC0206 Linear Integrated Circuits Fourth Semester, (even semester)

Summer 2015 Examination

EC6404-LINEAR INTEGRATED CIRCUITS Question bank UNIT-I PART-A 1. What are the advantages of an IC over discrete components?

EE2254 LINEAR INTEGRATED CIRCUITS UNIT-I IC FABRICATION

R (a) Explain characteristics and limitations of op-amp comparators. (b) Explain operation of free running Multivibrator using op-amp.

Linear Integrated Circuits and Applications

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications

Function Generator Using Op Amp Ic 741 Theory

VALLIAMMAI ENGINEERING COLLEGE

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

UNIT- IV ELECTRONICS

SYLLABUS OSMANIA UNIVERSITY (HYDERABAD)

EE : ELECTRICAL ENGINEERING Module 8 : Analog and Digital Electronics INDEX

SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRONICS AND ELECTRICAL ENGINEERING DEPARTMENT OF EEE. Section

Devices and Op-Amps p. 1 Introduction to Diodes p. 3 Introduction to Diodes p. 4 Inside the Diode p. 6 Three Diode Models p. 10 Computer Circuit

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK


Introduction to Simulation using EDWinXP

UNIT-I CIRCUIT CONFIGURATION FOR LINEAR

Analog Filter and. Circuit Design Handbook. Arthur B. Williams. Singapore Sydney Toronto. Mc Graw Hill Education

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

Academic Course Description. EC1013 Linear Integrated Circuits Fourth Semester, (Even Semester)

Solapur University, Solapur Syllabus for B.Sc. II Electronics Semester System To be implemented from Academic Year ) Course Structure: -

Operational Amplifiers

UNIT I. Operational Amplifiers

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS

B.Sc. ELECTRONICS (OPTIONAL) Second Year DR. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY, AURANGABAD

METHODOLOGY FOR THE DIGITAL CALIBRATION OF ANALOG CIRCUITS AND SYSTEMS

DEPARTMENT OF ELECTRONICS

multivibrator; Introduction to silicon-controlled rectifiers (SCRs).

DIGITAL ELECTRONICS ANALOG ELECTRONICS

EE LINEAR INTEGRATED CIRCUITS AND APPLICATIONS TWO MARK QUESTIONS WITH ANSWERS UNIT-I CIRCUIT CONFIGURATION FOR LINEAR ICs

UNIT I Circuit Configuration for Linear ICs

GATE SOLVED PAPER - IN

tyuiopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

Gechstudentszone.wordpress.com

Acknowledgments Introduction

ELECTRONICS WITH DISCRETE COMPONENTS

ELT 215 Operational Amplifiers (LECTURE) Chapter 5

SKP Engineering College

Integrated Circuit: Classification:

IFB270 Advanced Electronic Circuits

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

PROPOSED SCHEME OF COURSE WORK

Minnesota State College Southeast ELEC 2260: Linear Integrated Circuits

Microelectronic Circuits

U. Tietze Ch. Schenk E. Gamet. Electronic Circuits. Handbook for Design and Application. 2nd edition. with 1771 Figures and CD-ROM.

Basic Operational Amplifier Circuits

AURORA S ENGINEERING COLLEGE BHONGIR, NALGONDA DIST

GATE: Electronics MCQs (Practice Test 1 of 13)

Analog Circuits. Operational Amplifiers (Opamps) DC Power Supplies Oscillators

Fig 1: The symbol for a comparator

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. ELECTRONIC PRINCIPLES AND APPLICATIONS

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016

A-D and D-A Converters

ANALOG ELECTRONICS VIVA & INTERVIEW QUESTIONS

LM13700 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

Operational Amplifiers

Lecture #3 Basic Op-Amp Circuits

7.S-[F] SU-02 June All Syllabus Science Faculty B. Sc. II Yr. Eelectronics [Sem.III & I - 1 -

Electronic PRINCIPLES

Let us consider the following block diagram of a feedback amplifier with input voltage feedback fraction,, be positive i.e. in phase.

ELC224 Final Review (12/10/2009) Name:

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

Introductory Electronics for Scientists and Engineers

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS

ENE/EIE 211 : Electronic Devices and Circuit Design II Lecture 1: Introduction

Objective: To study and verify the functionality of a) PN junction diode in forward bias. Sl.No. Name Quantity Name Quantity 1 Diode

15 DETAILED NOTES. 1.3 IC Package Types. 1.4 Metal Can package: Unit- I

III/IV B.Tech. DEGREE EXAMINATIONS, NOV/DEC-2017

INTEGRATED CIRCUITS. AN179 Circuit description of the NE Dec

LM13700 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

Chapter 2 Signal Conditioning, Propagation, and Conversion

ANALOG ELECTRONIC CIRCUITS (EE-325-F) LAB MANUAL

Special-Purpose Operational Amplifier Circuits

Operating Manual Ver.1.1

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (EIE)/SEM-6/EI-603/ ELECTRONIC INSTRUMENTATION & MEASUREMENT

Lesson Plan. Electronics 1-Total 51 Hours

Operational amplifiers

Operational Amplifier as A Black Box

Chapter 13 Oscillators and Data Converters

Transcription:

Contents i SYLLABUS osmania university UNIT - I CHAPTER - 1 : DIFFERENTIAL AMPLIFIERS Classification, DC and AC Analysis of Single/Dual Input Balanced and Unbalanced Output Configurations using BJTs. Level Translator. CHAPTER - 2 : OPERATIONAL AMPLIFIER Ideal, Practical, General (741) Bipolar Operational Amplifier, AC and DC Performance Characteristics, Frequency Compensation, Open-Loop and Closed-loop Configurations, 741 Manufacturers Data Sheet-description, Specifications and Package. UNIT - II CHAPTER - 3 : OPERATIONAL AMPLIFIER APPLICATIONS : LINEAR Linear-adder, Subtractor, Integrator, Differentiator, Voltage to Current Converter-Current to Voltage Converter, Differential Amplifiers, Instrumentation Amplifiers Based on Two and Three Opamps. Ideal and Practical Integrator, Differentiator, Log and Antilog Amplifier, Single Supply Operation Commercial Instrumentation Amplifier AD623, Programmable Gain Amplifiers (PGA) AD526. UNIT - III CHAPTER - 4 : OPERATIONAL AMPLIFIER APPLICATIONS NON-LINEAR Comparator, Schmitt Trigger, Precision Rectifier, Peak Detector, Clippers, Clampers, Sample and Hold Circuits. Active Filters Introduction - First Order, Second Order Active Filters - LP, HP, BP, BR and All Pass. V to I and I to V Converters.

ii Contents UNIT - IV CHAPTER - 5 : WAVEFORM GENERATORS Sine Wave, Saw Tooth, Triangular Wave, Voltage Controlled Oscillators, PLL; V to F and F to V Converters. Function Generator - XR2206. UNIT - V CHAPTER - 6 : VOL OLTAGE REGULATORS Linear Regulators using Opamp, IC Regulators 78xx and 723. CHAPTER - 7 : DATA A CONVERTERS Introduction, Basic Digital to Analog Converter Techniques, Weighted Resistor DAC, Inverted R-2R Ladder DAC. Analog to Digital Converter : Types, Parallel Comparator ADC, Successive Approximation ADC and Dual Slope ADC. DAC and ADC Specifications.

Contents iii linear integrated circuits and applications FOR b.e. (o.u) Iii year i semester (ELECTRONICS AND COMMUNICATION ENGINEERING) CONTENTS UNIT - I [CH. H. - 1] ] [DIFFERENTIAL AMPLIFIERS]... 1.1-1.62 1.1 INTRODUCTION... 1.2 1.1.1 Classification of ICs... 1.2 1.1.2 Fabrication Technologies of an IC... 1.2 1.1.3 Advantages of ICs... 1.3 1.1.4 Chip Size and Circuit Complexity... 1.4 1.1.5 Integrated Circuit Package Types... 1.4 1.1.6 Manufactures Designations for ICs... 1.5 1.2 DIFFERENTIAL AMPLIFIERS... 1.6 1.2.1 Differential Gain (A d )... 1.8 1.2.2 Common Mode Gain (A c )... 1.8 1.2.3 Common Mode Rejection Ratio (CMRR)... 1.9 1.2.4 Features of Differential Amplifier... 1.10 1.2.5 Solved Problems... 1.10 1.2.6 Operation of Differential Amplifier... 1.12 1.2.7 Transfer Characteristics of Differential Amplifier... 1.14

iv Contents 1.3 CLASSIFICATION OF DIFFERENTIAL AMPLIFIER... 1.18 1.4 DC ANALYSIS OF DIFFERENTIAL AMPLIFIER... 1.19 1.5 AC ANALYSIS OF DIFFERENTIAL AMPLIFIER... 1.21 1.5.1 Dual Input Balanced Output Differential Amplifier... 1.21 1.5.1.1 Differential Mode Analysis... 1.21 1.5.1.2 Differential Input Resistance (R id )... 1.24 1.5.1.3 Common Mode Analysis... 1.25 1.5.1.4 Common Mode Input Resistance (R ic )... 1.27 1.5.1.5 Small Signal CMRR... 1.28 1.5.2 Dual Input Unbalanced Output Differential Amplifier... 1.28 1.5.2.1 Differential Mode Analysis... 1.29 1.5.2.2 Differential Input Resistance (R id )... 1.31 1.5.2.3 Common Mode Analysis... 1.31 1.5.2.4 Small Signal CMRR... 1.31 1.5.2.5 Solved Problems... 1.32 1.5.3 Single Input Balanced / Unbalanced Output Differential Amplifier... 1.33 1.6 DIFFERENTIAL AMPLIFIER WITH CONSTANT CURRENT BIAS... 1.34 1.6.1 Temperature Compensation... 1.36 1.6.2 Constant-Current Source Using Zener Diode... 1.38 1.6.3 Solved Problems... 1.40 1.7 CURRENT MIRROR CIRCUIT... 1.45 1.7.1 Circuit Analysis... 1.45 1.7.1.1 Solved Problems... 1.48

Contents v 1.7.2 Modified Current Mirror... 1.51 1.7.2.1 Solved Problems... 1.52 1.8 DIFFERENTIAL AMPLIFIER USING FET... 1.54 1.9 LEVEL TRANSLATOR / LEVEL SHIFTER... 1.56 Short Questions and Answers... 1.57-1.60 Expected University Questions with Solutions... 1.61-1.62 UNIT - I [CH. H. - 2] ] [I]... 1.63-1.120 2.1 OPERATIONAL AMPLIFIER... 1.64 2.1.1 Op-Amp Basics... 1.64 2.1.1.1 Circuit Symbol... 1.64 2.1.1.2 Equivalent Circuit of a Practical Op-Amp... 1.65 2.1.1.3 Pin Configuration of an Op-Amp... 1.66 2.1.1.4 Op-Amp Configurations... 1.66 2.2 OP-AMP BLOCK DIAGRAM... 1.70 2.3 IDEAL OP-AMP... 1.71 2.3.1 Characteristics of an Ideal Op-Amp... 1.71 2.3.2 Ideal Voltage Transfer Curve... 1.72 2.3.3 Virtual Ground Concept... 1.73 2.3.4 Op-Amp Parameters arameters... 1.74 2.4 GENERAL (741) BIPOLAR OPERATIONAL AMPLIFIER... 1.78 2.4.1 Features... 1.78 2.4.2 Internal Shcematic... 1.78 2.4.3 Ideal Vs Practical Characteristics of IC 741 Op-Amp... 1.81 2.4.4 Classes of Op-Amp IC 741... 1.81 2.4.5 Effect of Time on Input Offset Voltage and Input Offset Current... 1.82

vi Contents 2.5 DC CHARACTERISTICS CTERISTICS OF AN OP-AMP... 1.84 2.5.1 Input Bias Current... 1.84 2.5.2 Input Offset Current... 1.86 2.5.3 Input Offset Voltage oltage... 1.87 2.5.4 Thermal Drift... 1.89 2.5.5 Solved Problems... 1.89 2.6 AC CHARACTERISTICS CTERISTICS OF AN OP-AMP... 1.92 2.6.1 Frequency Response... 1.92 2.6.2 Stability of an Op-Amp... 1.97 2.7 FREQUENCY COMPENSATION... 1.104 2.7.1 External Compensation... 1.104 2.7.1.1 Dominant Pole ole Compensation... 1.104 2.7.1.2 Pole ole Zero Compensation... 1.107 2.7.1.3 Feed Forward Compensation... 1.109 2.7.2 Internal Compensation... 1.112 2.7.2.1 Miller Effect Compensation... 1.112 2.8 OP-AMP IC741 AND ITS FEATURES... 1.113 2.8.1 741 Op-Amp... 1.113 2.8.2 Characteristics of LM741 and LM741C... 1.115 2.8.3 Features... 1.115 Short Questions and Answers... 1.117-1.119 Expected University Questions with Solutions... 1.20

Contents vii UNIT - II [CH. H. - 3] ] [OPERATIONAL AMPLIFIER APPLICATIONS : LINEAR]... 2.1-2.112 3.1 INTRODUCTION... 2.2 3.2 ADDER SUBTRACT CTOR... 2.2 3.2.1 Solved Problem... 2.4 3.3 DIFFERENTIATOR OR... 2.6 3.3.1 Ideal Op-Amp Differentiator... 2.6 3.3.1.1 Analysis of Ideal Op-Amp Differentiator... 2.6 3.3.1.2 Frequency Response of an Ideal Differentiator... 2.7 3.3.1.3 Input and Output Waveforms for Differentiator... 2.8 3.3.1.4 Limitations of an Ideal Differentiator... 2.11 3.3.2 Practical Differentiator... 2.11 3.3.2.1 Analysis of Practical Differentiator... 2.12 3.3.2.2 Frequency Response of a Practical Differentiator...... 2.13 3.3.2.3 Guidelines to Design Practical Differentiator... 2.15 3.3.2.4 Applications of Practical Differentiator... 2.15 3.3.2.5 Solved Problems... 2.16 3.4 INTEGRATOR OR... 2.20 3.4.1 Ideal Op-Amp Integrator... 2.20 3.4.1.1 Analysis of an Ideal Op-Amp Integrator... 2.20 3.4.1.2 Frequency Response of an Ideal Integrator... 2.21 3.4.1.3 Input and Output Waveforms for Integrator... 2.23 3.4.1.4 Limitations of an Ideal Integrator... 2.25

viii Contents 3.4.2 Practical Integrator... 2.26 3.4.2.1 Analysis of Practical Integrator... 2.26 3.4.2.2 Frequency Response of a Practical Integrator... 2.28 3.4.2.3 Applications of a Practical Integrator... 2.30 3.4.2.4 Solved Problems... 2.30 3.5 VOLTAGE TO CURRENT CONVERTERS (V - I)... 2.36 3.5.1 V to I Converter With Floating Load... 2.36 3.5.2 V to I Converter With Grounded Load... 2.37 3.5.3 Applications of V-I Converter... 2.38 3.5.3.1 Low Voltage DC Voltmeter... 2.38 3.5.3.2 Low ow Voltage AC C Voltmeter... 2.40 3.5.3.3 Diode Tester and Match Finder... 2.41 3.5.3.4 Zener Diode Tester... 2.41 3.6 CURRENT TO O VOL OLTAGE GE CONVERTERS (I - V)... 2.42 3.6.1 Applications of I-V V Converter... 2.43 3.6.1.1 Photodiode Detector... 2.43 3.6.1.2 Photo FET Detector... 2.44 3.7 DIFFERENCE AMPLIFIER... 2.44 3.8 INSTRUMENTATION TION AMPLIFIER... 2.48 3.8.1 Three Op-Amp Instrumentation Amplifier... 2.49 3.8.2 Instrumentation Amplifier Using a Transducer Bridge... 2.52 3.8.3 Monolithic Instrumentation Amplifier... 2.54 3.8.4 Applications of Instrumentation Amplifier... 2.55 3.8.4.1 Temperature Controller... 2.56 3.8.4.2 Temperature Indicator... 2.56 3.8.4.3 Light Intensity Meter... 2.56 3.8.4.4 Analog Weight Scale... 2.57 3.8.5 Solved Problems... 2.58

Contents ix 3.9 LOGARITHMIC AMPLIFIERS... 2.65 3.9.1 Realization of Logarithmic Amplifier Using Diode... 2.66 3.9.2 Realization of Logarithmic Amplifier Using Transistor (Transdiode Configuration)... 2.67 3.9.3 Drawbacks of Basic Logarithmic Amplifier... 2.69 3.9.4 Temperature Compensated Logarithmic Amplifier Using Diode... 2.69 3.9.5 Temperature Compensated Logarithmic Amplifier Using Transistor... 2.71 3.9.6 Disadvantages of Temperature Compensated Logarithmic Amplifier... 2.73 3.9.7 Modified Temperature Compensated Logarithmic Amplifier... 2.74 3.9.8 Stability Considerations... 2.76 3.9.9 Applications of Log Amplifier... 2.76 3.9.10 Solved Problems... 2.77 3.10 ANTILOGARITHMIC AMPLIFIER... 2.79 3.10.1 Realization of Antilogarithmic Amplifier Using Diode... 2.79 3.10.2 Realization of Antilogarithmic Amplifier Using Transistor... 2.80 3.10.3 Disadvantages of Basic Antilogarithmic Amplifier... 2.81 3.10.4 Temperature Compensated Antilog Amplifier Using Diode... 2.81 3.10.5 Temperature Compensated Antilog Amplifier Using Transistor... 2.83 3.10.6 Solved Problems... 2.85 3.11 SINGLE SUPPLY OPERATION COMMERCIAL INSTRUMENTATION TION AMPLIFIER AD623... 2.87 3.11.1 General Description... 2.87 3.11.2 Pin Configuration and Function Descriptions... 2.88 3.11.3 Theory of Operation... 2.89 3.11.4 Applications Information... 2.90

x Contents 3.11.4.1 Basic Connection... 2.90 3.11.4.2 Gain Selection... 2.91 3.11.4.3 Reference Terminal... 2.92 3.11.4.4 Input and Output Offset Voltage Error... 2.92 3.11.4.5 Input Protection... 2.93 3.11.4.6 RF Interference... 2.93 3.11.5 Grounding... 2.95 3.11.5.1 Ground Returns for Input Bias Currents... 2.96 3.11.5.2 Output Buffering... 2.98 3.11.5.3 Single-Supply Data Acquisition System... 2.98 3.11.5.4 Amplifying Signals with Low Common-Mode Voltage... 2.99 3.12 PROGRAMMABLE GAIN AMPLIFIERS (PG A)-AD526... 2.101 3.12.1 Programmable Gain Amplifiers (PGAs)... 2.102 3.12.2 PGA Applications... 2.102 3.12.3 Programmable Gain Amplifiers (PGAs)... 2.102 3.12.4 PGA Design Issues... 2.103 3.12.5 How Not to Build a PGA... 2.104 3.12.6 Alternate Configuration Makes R on Negligible... 2.104 3.12.7 AD526 Monolithic Software Programmable PGA... 2.105 3.12.8 AD526 PGA Key Features... 2.106 Short Questions and Answers... 2.107-2.110 Expected University Questions with Solutions... 2.111-2.112

Contents xi UNIT - III [CH. H. - 4] ] [OPERATIONAL AMPLIFIER APPLICATIONS NON-LINEAR]... 3.1-3.108 4.1 INTRODUCTION... 3.2 4.2 COMPARA ARATORS... 3.2 4.2.1 Non-Inverting Comparator... 3.2 4.2.2 Inverting Comparator... 3.4 4.2.3 Comparator Characteristics... 3.5 4.2.4 Applications of Comparator... 3.7 4.2.4.1 Schmitt Trigger Without Reference Voltage (Zero Crossing Detector)... 3.7 4.2.4.2 Window Detector... 3.8 4.2.4.3 Phase Detector... 3.9 4.3 SCHMITT TRIGGER WITH REFERENCE VOLTAGE GE (REGENERATIVE COMPARA ARATOR)... 3.11 4.3.1 Inverting Schmitt Trigger... 3.11 4.3.2 Non-Inverting Schmitt Trigger rigger... 3.13 4.3.3 Hysteresis... 3.14 4.3.4 Applications of Schmitt Trigger... 3.15 4.3.4.1 Schmitt Triggers for Eliminating Comparator Chatter... 3.15 4.3.4.2 Schmitt Triggers in ON / OFF Controllers... 3.16 4.3.5 Comparison of Comparator and Schmitt Trigger... 3.16 4.3.6 Solved Problems... 3.17 4.4 PRECISION RECTIFIER... 3.23 4.4.1 Halfwave Precision Rectifier... 3.24 4.4.2 Improved Halfwave Precision Rectifier... 3.26 4.4.3 Full Wave Precision Rectifier ectifier... 3.27 4.4.4 Alternative Fullwave precision Rectifier... 3.30

xii Contents 4.5 PEAK DETECTORS... 3.33 4.6 CLIPPER... 3.36 4.6.1 Positive Clippers... 3.36 4.6.2 Negative Clippers... 3.37 4.7 CLAMPER... 3.39 4.8 SAMPLE AND HOLD CIRCUIT... 3.40 4.8.1 Performance Characteristics... 3.42 4.8.2 Monolithic S/H Integrated Circuits... 3.43 4.8.3 Fast S/H ICs... 3.44 4.8.4 Advantages of Sample and Hold Circuit... 3.44 4.8.5 Applications of Sample and Hold Circuit... 3.45 4.9 ACTIVE FILTER TER... 3.46 4.9.1 Butterworth Filter... 3.48 4.9.2 Bessel Filter... 3.49 4.9.3 Chebyshev Filter... 3.49 4.10 FIRST ORDER LOW PASS BUTTERWORTH TH FILTER... 3.49 4.10.1 Analysis of the Filter Circuit... 3.50 4.10.2 Design Procedure (or) Design Steps... 3.53 4.10.3 Frequency Scaling... 3.53 4.11 FIRST ORDER HIGH PASS BUTTERWORTH TH FILTER... 3.57 4.11.1 Analysis of the Filter Circuit... 3.57 4.11.2 Design Procedure (or) Design Steps... 3.59 4.12 SECOND ORDER ACTIVE FILTER MODEL... 3.61 4.12.1 Second Order Low Pass Butterworth Filter ilter... 3.61 4.12.1.1 Analysis of the Filter Circuit... 3.62 4.12.1.2 Design Procedure... 3.65

Contents xiii 4.12.2 Second Order High Pass Butterworth Filter... 3.68 4.12.2.1 Analysis of the Filter Circuit... 3.68 4.12.2.2 Design Procedure (Design Steps)... 3.69 4.13 BAND PASS FILTERS TERS... 3.72 4.13.1 Wide Band-Pass ass Filter... 3.73 4.13.2 Narrow Band Pass Filter... 3.75 4.14 BAND REJECTION FILTERS... 3.88 4.14.1 Wide Band Reject Filter... 3.88 4.14.2 Narrow Band Reject Filter (Notch Filter)... 3.90 4.15 ALL PASS FILTER... 3.100 Short Questions and Answers... 3.103-3.105 Expected University Questions with Solutions... 3.106-3.108 UNIT - IV [CH. - 5] ] [WAVEFORM GENERATORS]... 5.1-5.82 5.1 INTRODUCTION... 4.2 5.2 SINE WAVE VE GENERATOR OR [OSCILLATORS] ORS]... 4.2 5.2.1 RC Phase Shift Oscillator... 4.3 5.2.2 Wien Bridge Oscillator... 4.8 5.2.2.1 Wien Bridge Oscillator using Op-Amp... 4.13 5.2.3 Quadrature Oscillator... 4.16 5.2.4 Function Generator... 4.17 5.3 TRIANGULAR WAVE VE GENERATOR OR... 4.21 5.3.1 Another Triangular Wave Generator... 4.23 5.4 SAW TOO OOTH WAVE GENERATOR... 4.28 5.5 VOL OLTAGE CONTROLLED OSCILLATOR OR [VCO]... 4.29 5.5.1 Voltage Controlled Oscillator IC 566... 4.29 5.5.1.1 Operation... 4.30 5.5.1.2 Voltage oltage-to -to-f -Frequency Conversion Factor actor... 4.33

xiv Contents 5.5.2 Features of 566 VCO... 4.34 5.5.3 Applications of 566 VCO... 4.34 5.5.4 Ramp Generator... 4.34 5.6 PHASE LOCKED LOOP (PLL)... 4.35 5.6.1 Basic Principles... 4.36 5.6.2 Definitions Related to PLL... 4.37 5.6.3 Monolithic Phase Locked Loop... 4.39 5.6.3.1 Derivation of Lock ock-in Range... 4.42 5.6.3.2 Derivation of Capture Range... 4.44 5.6.4 Phased Locked Loop Applications... 4.46 5.6.4.1 Frequency Multiplication/Division... 4.47 5.6.4.2 Frequency Translation... 4.48 5.6.4.3 AM Detection... 4.48 5.6.4.4 FM Demodulation... 4.49 5.6.4.5 Frequency Shift Keying (FSK) Demodulator... 4.50 5.6.4.6 FM Detector... 4.51 5.6.4.7 FM Synthesiser... 4.52 5.7 V/F AND F/V CONVERTER DEVICE TC 9400... 4.62 5.7.1 Features... 4.63 5.7.1.1 Voltage oltage-to -to-f -Frequency requency... 4.63 5.7.1.2 Frequency requency-to -to-voltage oltage... 4.63 5.7.2 Pin Diagram of TC 9400... 4.63 5.7.3 IC 9400 As V/F Converter... 4.65 5.7.4 TC 9400 As F/V Converter... 4.69 5.8 FUNCTION GENERATOR - XR2206... 4.72 Short Questions and Answers... 4.75-4.80 Expected University Questions with Solutions... 4.81-4.82

Contents xv UNIT - V [CH. H. - 6] ] [VOLTAGE REGULATORS]... 5.1-5.72 6.1 INTRODUCTION... 5.2 6.2 PERFORMANCE PARAMETERS FOR VOL OLTAGE REGULATORS ORS... 5.2 6.3 CLASSIFICATION OF VOL OLTAGE GE REGULATORS ORS... 5.8 6.3.1 Series Voltage Regulators... 5.8 6.3.1.1 Block Diagram of Series Voltage Regulators egulators... 5.8 6.3.1.2 Series Voltage Regulator using Op-Amp... 5.9 6.3.1.3 Advantages of Series Voltage Regulators egulators... 5.9 6.3.1.4 Disadvantages of Series Voltage Regulator... 5.10 6.3.2 Shunt Voltage Regulators... 5.10 6.3.2.1 Block Diagram of Shunt Voltage Regulator... 5.10 6.3.2.2 Shunt Voltage Regulator using Op-Amp Amp... 5.11 6.3.3 Comparison between Shunt and Series Voltage Regulators... 5.12 6.4 LINEAR VOL OLTAGE GE REGULATORS ORS... 5.13 6.4.1 Fixed Voltage Regulators... 5.15 6.4.1.1 Fixed Positive Voltage Regulators... 5.15 6.4.1.2 Fixed Negative Voltage Regulators... 5.16 6.4.1.3 Applications of IC 78 XX and 79 XX... 5.17 6.4.1.3.1 7805 as a 0.5 A Current Source... 5.17 6.4.1.3.2 Current Boosting... 5.18 6.4.1.4 Fixed Regulator used as Adjustable Voltage Regulators... 5.18 6.4.1.4.1 Adjustable Voltage Regulator using 78 xx... 5.18 6.4.1.4.2 Adjustable Positive Voltage Regulators egulators... 5.18 6.4.1.4.3 Adjustable Negative Voltage Regulators... 5.22 6.4.1.5 Dual Supply... 5.22

xvi Contents 6.4.1.5.1 Dual Voltage Regulator egulator... 5.23 6.4.1.5.2 Dual-tracking regulator... 5.24 6.4.2 723 General Purpose Regulator (Adjustable or Variable Voltage Regulator)... 5.33 6.4.2.1 Fundamental Block Diagram of IC 723... 5.34 6.4.2.2 Features of IC 723... 5.36 6.4.2.3 Specifications of IC 723... 5.37 6.4.2.4 Applications of IC 723... 5.38 6.4.2.4.1 Low ow-voltage oltage Regulator using 723... 5.38 6.4.2.4.2 High-Voltage Regulator using 723... 5.40 6.4.2.4.3 Current Limit Protection (or) Current Sensing Protection... 5.41 6.4.2.4.4 Current Foldback... 5.43 6.4.2.4.5 Current Boosting... 5.45 6.5 SWITCHING REGULATORS... 5.53 6.5.1 Basic Switching Regulator... 5.55 6.5.2 Fundamental Block Diagram of Switching Regulator... 5.55 6.5.3 Types of Switching Regulators... 5.57 6.5.3.1 Step-Down Switching Regulator (Buck Type Switching Regulator)... 5.57 6.5.3.2 Step-Up Switching Regulator (Boost Type Switching Regulator)... 5.58 6.5.3.3 Voltage Inverter Type Switching Regulator (Buck-Boost Type Switching Regulator)... 5.58 6.5.4 Advantages of Switching Regulators... 5.62 6.5.5 Disadvantages of Switching Regulators... 5.62

Contents xvii 6.5.6 Applications of Switching Regulators... 5.62 6.5.7 Monolithic Switching Regulators... 5.63 6.6 COMPARISON BETWEEN SWITCHING REGULATOR OR SMPS AND LINEAR REGULATOR... 5.65 6.7 HYBRID (COMBINATION) REGULATOR... 5.66 Short Questions and Answers... 5.67-5.71 Expected University Questions with Solutions... 5.72 UNIT - V [CH. H. - 7] ] [DATA CONVERTERS]... 5.73-5.120 7.1 INTRODUCTION... 5.74 7.2 D / A CONVERTERS... 5.74 7.2.1 DAC Specifications... 5.75 7.2.2 Basic DAC C Techniques echniques... 5.77 7.2.2.1 Binary Weighted Resistor DAC... 5.77 7.2.2.2 R-2R Ladder DAC... 5.80 7.2.2.3 Inverted R-2R Ladder DAC... 5.83 7.2.2.4 Multiplying DAC... 5.84 7.2.3 Sources of Errors in DAC... 5.85 7.2.4 Monolithic DAC... 5.86 7.3 A / D CONVERTERS... 5.92 7.3.1 ADC Specifications... 5.94 7.3.2 Different Types of ADCs... 5.95 7.3.2.1 Single Ramp (or) Single Slope ADC... 5.96 7.3.2.2 Dual Slope ADC... 5.97 7.3.2.3 Successive Approximation ADC... 5.100 7.3.2.4 Parallel Comparator (or) Flash ADC... 5.101

xviii Contents 7.3.2.5 Counter Type ADC... 5.103 7.3.2.6 Servo Tracking ADC... 5.105 7.3.3 Monolithic ADC... 5.105 7.3.3.1 ADC 0803 Family... 5.105 7.3.3.2 ADC 0808 / 0809 Family... 5.107 7.3.3.3 IC 7109... 5.108 7.3.4 Comparison of Flash, Successive Approximation Technique and Dual Slope... 5.110 Short Questions and Answers... 5.115-5.118 Expected University Questions with Solutions... 5.119-5.120