Mathematical models for radiodetermination radar systems antenna patterns for use in interference analyses

Similar documents
Alternative BSS earth station antenna radiation pattern for 12 GHz BSS bands with effective apertures in the range cm

Electronic data file format for earth station antenna patterns

Radio-frequency channel arrangements for fixed wireless systems operating in the band GHz

Systems characteristics of automotive radars operating in the frequency band GHz for intelligent transport systems applications

Antenna rotation variability and effects on antenna coupling for radar interference analysis

Radio-frequency channel arrangements for fixed wireless systems operating in the GHz band

The concept of transmission loss for radio links

Test procedure for measuring the scanning speed of radio monitoring receivers

Prediction of building entry loss

Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000

Recommendation ITU-R M (06/2005)

Characteristics of and protection criteria for systems operating in the mobile service in the frequency range GHz

Use of International Radio for Disaster Relief (IRDR) frequencies for emergency broadcasts in the High Frequency (HF) bands

Assessment of impairment caused to digital television reception by a wind turbine

Recommendation ITU-R SF.1843 (10/2007)

Technical characteristics and protection criteria for aeronautical mobile service systems in the frequency range GHz

Recommendation ITU-R F (05/2011)

Technical and operational characteristics of land mobile MF/HF systems

Use of the frequency bands between MHz by the aeronautical mobile (R) service for data transmission using class of emission J2D

Test procedure for measuring the sensitivity of radio monitoring receivers using analogue-modulated signals. Recommendation ITU-R SM.

Radio-frequency channel arrangements for fixed wireless systems operating in the 8 GHz (7 725 to MHz) band

Radio-frequency channel arrangements for fixed wireless systems operating in the band GHz

Radio-frequency arrangements for systems of the fixed service operating in sub-bands in the GHz band

Recommendation ITU-R M (12/2013)

Spectrum limit masks for digital terrestrial television broadcasting

Frequency ranges for operation of non-beam wireless power transmission systems

Radio-frequency channel arrangements based on a homogeneous pattern for fixed wireless systems operating in the 4 GHz band

Prediction of clutter loss

Frequency sharing between SRS and FSS (space-to-earth) systems in the GHz band

Method of measuring the maximum frequency deviation of FM broadcast emissions at monitoring stations. Recommendation ITU-R SM.

Radio-frequency arrangements for systems of the fixed service operating in the 25, 26 and 28 GHz bands. Recommendation ITU-R F.

SINPO and SINPFEMO codes

Recommendation ITU-R SA (07/2017)

Test procedure for measuring direction finder sensitivity in the VHF/UHF frequency range

Performance and interference criteria for satellite passive remote sensing

Common formats for the exchange of information between monitoring stations

Protection criteria for arrival time difference receivers operating in the meteorological aids service in the frequency band 9-11.

Recommendation ITU-R BT (03/2010)

Protection of fixed monitoring stations against interference from nearby or strong transmitters

Methods for measurements on digital broadcasting signals

Frequency bands and transmission directions for data relay satellite networks/systems

Protection criteria related to the operation of data relay satellite systems

Attenuation due to clouds and fog

Recommendation ITU-R M (09/2015)

Channel access requirements for HF adaptive systems in the fixed and land mobile services

Characteristics and protection criteria for non-geostationary mobile-satellite service systems operating in the band

Method of measuring the maximum frequency deviation of FM broadcast emissions at monitoring stations

Calculation of the maximum power density (averaged over 4 khz or 1 MHz) of angle-modulated and digital carriers

The prediction of the time and the spatial profile for broadband land mobile services using UHF and SHF bands

Characteristics of data relay satellite systems

Propagation curves for aeronautical mobile and radionavigation services using the VHF, UHF and SHF bands

Radio-frequency channel arrangements for medium- and high-capacity digital fixed wireless systems operating in the MHz band

Characteristics of precipitation for propagation modelling

Field-strength measurements along a route with geographical coordinate registrations

Availability objective for radio-relay systems over a hypothetical reference digital path

Recommendation ITU-R SA (07/2017)

Frequency block arrangements for fixed wireless access systems in the range MHz

Water vapour: surface density and total columnar content

Protection criteria for non-gso data collection platforms in the band MHz

, 16:9 progressively-captured image format for production and international programme exchange in the 50 Hz environment

Service requirements for digital sound broadcasting to vehicular, portable and fixed receivers using terrestrial transmitters in the VHF/UHF bands

Conversion of annual statistics to worst-month statistics

General requirements for broadcastoriented applications of integrated

Recommendation ITU-R F (03/2012)

The use of diversity for voice-frequency telegraphy on HF radio circuits

Characteristics and protection criteria for radars operating in the aeronautical radionavigation service in the frequency band

Error performance and availability objectives and requirements for real point-to-point packet-based radio links

Interference criteria for meteorological aids operated in the MHz and MHz bands

Protection criteria for Cospas-Sarsat local user terminals in the band MHz

Acquisition, presentation and analysis of data in studies of radiowave propagation

Serial digital interface for production and international exchange of HDTV 3DTV programmes

Telegraphic alphabet for data communication by phase shift keying at 31 Bd in the amateur and amateur-satellite services. Recommendation ITU-R M.

Interference mitigation techniques for use by high altitude platform stations in the GHz and GHz bands

The radio refractive index: its formula and refractivity data

Guide to the application of the propagation methods of Radiocommunication Study Group 3

Radio-frequency channel and block arrangements for fixed wireless systems operating in the 42 GHz (40.5 to 43.5 GHz) band. Recommendation ITU-R F.

Bandwidths, signal-to-noise ratios and fading allowances in complete systems

User requirements for codecs for transmission of television signals through contribution, primary distribution, and SNG networks

Broadcasting of multimedia and data applications for mobile reception by handheld receivers

Allowable short-term error performance for a satellite hypothetical reference digital path

International maritime VHF radiotelephone system with automatic facilities based on DSC signalling format

Recommendation ITU-R SF.1486 (05/2000)

Bandwidths, signal-to-noise ratios and fading allowances in HF fixed and land mobile radiocommunication systems

Essential requirements for a spectrum monitoring system for developing countries

Characteristics of systems operating in the amateur and amateur-satellite services for use in sharing studies

Parameters for international exchange of multi-channel sound recordings with or without accompanying picture

Colour conversion from Recommendation ITU-R BT.709 to Recommendation ITU-R BT.2020

Technical characteristics for search and rescue radar transponders

Radio interface standards of vehicle-tovehicle and vehicle-to-infrastructure communications for Intelligent Transport System applications

Recommendation ITU-R M (05/2011)

Guidelines for efficient use of the band GHz by the Earth explorationsatellite service (space-to-earth)

Morse telegraphy procedures in the maritime mobile service

Preferred frequency bands for radio astronomical measurements

Multi-dimensional signal mapping technique for satellite communications

Recommendation ITU-R F.1571 (05/2002)

Power flux-density and e.i.r.p. levels potentially damaging to radio astronomy receivers

Guidelines for narrow-band wireless home networking transceivers Specification of spectrum related components

Common application environment for interactive digital broadcasting services

Objectives, characteristics and functional requirements of wide-area sensor and/or actuator network (WASN) systems

Propagation prediction techniques and data required for the design of trans-horizon radio-relay systems

Transcription:

Recommendation ITU-R M.1851-1 (1/18) Mathematical models for radiodetermination radar systems antenna patterns for use in interference analyses M Series Mobile, radiodetermination, amateur and related satellite services

ii Rec. ITU-R M.1851-1 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radiofrequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/itu-r/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Recommendations (Also available online at http://www.itu.int/publ/r-rec/en) Series BO BR BS BT F M P RA RS S SA SF SM SNG TF V Title Satellite delivery Recording for production, archival and play-out; film for television Broadcasting service (sound) Broadcasting service (television) Fixed service Mobile, radiodetermination, amateur and related satellite services Radiowave propagation Radio astronomy Remote sensing systems Fixed-satellite service Space applications and meteorology Frequency sharing and coordination between fixed-satellite and fixed service systems Spectrum management Satellite news gathering Time signals and frequency standards emissions Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1. Electronic Publication Geneva, 18 ITU 18 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU.

Rec. ITU-R M.1851-1 1 RECOMMENDATION ITU-R M.1851-1 Mathematical models for radiodetermination radar systems antenna patterns for use in interference analyses Scope (9-18) This Recommendation describes radiodetermination radar systems antenna patterns to be used for single-entry and aggregate interference analysis. Dependent on the antenna 3 db beamwidth and first peak side-lobe level, the proper set of equations for both azimuth and elevation patterns may be selected. Both peak, for single interferer, and average patterns, for multiple interferers, are defined. Keywords Antenna patterns, current distribution, illumination field, peak and average mask pattern equations Abbreviations/Glossary ADP Antenna directivity pattern Related ITU-R Recommendations Recommendations ITU-R F.699, ITU-R F.145, ITU-R M.1638, ITU-R M.165, ITU-R M.1849 The ITU Radiocommunication Assembly, considering that a mathematical model is required for generalized patterns of antennas for interference analyses when no specific pattern is available for the radiodetermination radar systems, recommends 1 that, if antenna patterns and/or pattern equations applicable to a radar(s) are available in other ITU-R Recommendations dealing with radiodetermination radar system characteristics, then those should be used; that, in the absence of information concerning the antenna patterns of the radiodetermination radar system antenna involved, one of the mathematical reference antenna models described in Annex 1 should be used for interference analysis.

Rec. ITU-R M.1851-1 Annex 1 Mathematical models for radiodetermination radar systems antenna patterns for use in interference analyses 1 Introduction A generalized mathematical model for radiodetermination radar systems antenna patterns is required when these patterns are not defined in ITU-R Recommendations applicable to the radiodetermination radar system under analysis. Generalized antenna pattern models could be used in analyses involving single and multiple interferer entries, such as that from other radar and communication systems. This text describes proposed antenna patterns to be used. Given knowledge about beamwidth and the first peak side-lobe level, the proper set of equations for both azimuth and elevation patterns may be selected. The result of surveyed antenna parameter ranges from ITU-R Recommendations are recorded in Table 1. TABLE 1 Surveyed antenna parameter limits Antenna parameter Units Description Minimum value Maximum value Transmit and receive frequencies MHz 4 33 4 Antenna polarization type Antenna type Beam type most common Horizontal, vertical, circular Omni, yagi element array, parabolic reflector, phased array Fan, pencil, cosecant squared Transmit and receive gain dbi 5.6 54 Elevation beamwidth ( 3dB) degrees Pencil beam.5 5.75 Cosecant squared (CSC ) (equation (1) and Table 4) 3.6 (θ 3) (θ Max) 3.6 (θ 3) 44 (θ Max) Azimuth beamwidth ( 3dB) degrees Pencil beam.4 5.75 Elevation scan angle limit degrees 6 +9 Azimuth scan angle limit degrees 3 sector 36 First side-lobe level below main lobe peak db 35 15.6 Table 1 was used to guide the development of the antenna types and patterns proposed.

Rec. ITU-R M.1851-1 3 Mathematical formulae.1 Radar antenna with a narrow beamwidth.1.1 Background In the absence of neither particular information concerning the 3 db beamwidth or the shape of the current distribution or illumination field on the antenna aperture, but in the presence of information given about the size of the antenna, the θ3 half power beam-width (degrees) is approximated by 7 λ/d, where λ the wavelength and D the antenna length are expressed in the same units; see Recommendation ITU-R F.699, recommends 4.1. If the information about the shape of the current distribution or illumination field on the antenna aperture is accessible, then a more accurate model of the antenna pattern can be used. To simplify the analysis, the antenna current distribution is considered as a function of either the elevation or azimuth coordinates. The directivity pattern, F(μ), of a given distribution is found from the finite Fourier transform as: 1 1 1 jx F f ( x) e dx (1) where: f (x): relative shape of field distribution, see Table and Fig. 1 l μ: provided in the table below = sin l: overall length of aperture : wavelength : beam elevation or azimuth pointing (scan) angle relative to aperture normal θ: point of interest direction angle relative to aperture normal : point of interest direction angle relative to pointing angle direction (=θ-) x: normalized distance along aperture 1 x 1 j: complex number notation.

4 Rec. ITU-R M.1851-1 FIGURE 1 Antenna polar diagram mask Aperture normal Direction to point of interest Beam pointing direction Radiating mask Antenna aperture M. 1851-1 The proposed theoretical antenna patterns for antennas having uniform phase field distribution are provided in Table. The proposed theoretical antenna patterns for phased array antennas are given in 7, taking into account specific sidelobes effects arising at large scan angles. The parameters and formulae for determining antenna directivity patterns (ADP) that are presented in Table (and thereafter in the related Table 3 and Figures) are correct only in the case where the field amplitude at the edge of the antenna aperture is equal to zero and within the bounds of the main lobe and first two side lobes of the ADP. With other values of field amplitude at the edge of the antenna aperture, the form of the ADP and its parameters may differ significantly from the theoretical ones presented in this Recommendation. In absence of any other information, a simplified antenna pattern fitting with the theoretical main lobe and a mask in other directions may be considered for sharing and compatibility studies with radar systems. Peak or average masks are recommended for doing such studies with respectively single or multiple interferers. The mask departs at break point issued from theoretical pattern and decreases over sidelobes down to a floor mask to represent antenna far side lobes and back lobes, as described in.1.3. If real radar antenna patterns are available, then those should be digitized and used.

Rec. ITU-R M.1851-1 5.1. Theoretical antenna equations Equations of directivity patterns and associated parameters are given in Table for different shape of field distribution on the antenna aperture. TABLE Theoretical antenna directivity parameters Relative shape of field distribution f(x) where 1 x 1 Directivity pattern F(μ) 3 half power beamwidth (degrees) μ as a function of 3 First sidelobe level below main lobe peak (db) Equation No. Uniform value of 1 sin () 5.8 l 5.8sin ( ) 3 13. () COS(*x/) cos ( ) 68.8 l 68.8sin ( ) 3 3 (3) COS (*x/) sin ( ) 83. l 83.sin ( ) 3 3 (4) COS 3 (*x/) COS 4 (*x/) 3 cos ( ) 1 8 4 3 sin( ) 3 4 1 95 l 95sin ( ) 16sin ( ) 16 l 3 3 4 (5) 47 (6)

6 Rec. ITU-R M.1851-1 where θ3 is the 3 db antenna half-power beamwidth (degrees). The relative shapes of the field distribution functions f(x), as defined in Table, are plotted in Fig.. FIGURE Aperture distributions Aperture distributions 1.9.8 Relative on axis gain (db).7.6.5.4.3..1 1.5 1.5.5 1 1.5 Normalized distance along aperture f(x) where 1 <= x <= 1 Uniform Cos 3 Cos Cos Cos 4 M. 1851- Given that the half power beamwidth, θ3, is provided, the value of μ can be redefined as a function of l l the half-power antenna beamwidth. This is done by replacing the quantity in sin by a constant that depends on the relative shape of the field distribution; divided by the half-power beamwidth, θ3, as shown in Table. These constant values of 5.8, 68.8, 83., 95 and 16, shown in Table, can be derived by setting the equation for F(μ) equal to 3 db, and solving for the angle. Figure 3 shows various linear aperture antenna patterns for uniform, cosine (COS), cosine-squared (COS ) and cosine-cubed (COS 3 ) and cosine-to-the-fourth power (COS 4 ) field distribution functions. As the patterns are mathematically symmetric, they have been partially traced on the diagram. For comparison, all patterns are set to a same 3 db beamwidth of 6. degrees, meaning different ratios for λ/l.

Rec. ITU-R M.1851-1 7 FIGURE 3 Antenna pattern comparison for various linear aperture distributions, 3 db beamwidth is 6. degrees (pattern is symmetric) Antenna directivity patterns 1 Normalized antenna pattern (db) 3 4 5 6 7 8 9 1 1 3 4 5 6 7 8 9 Uniform Cosine Cosine Angle measured from beam peak Cosine 3 Cosine 4 M. 1851-3.1.3 Procedure for mask determination Using Fig. 3 above, the mask equations are derived by using a curve fit to the antenna peak side-lobe levels. It has been found, by comparing the integral of the theoretical and the proposed mask patterns, that the difference between the peak and average power in one principal plane cut is approximately 4 db. The following definitions apply: convert equations () to (6) into db using *log1 (absolute value (field directivity pattern)); normalize the antenna pattern gains. Uniform field distribution does not require normalization, for cosine one subtract 3.9 db, for cosine-squared one subtract 6. db and for cosine-cubed one subtract 7.44 db, and for cosine-to-the-fourth power one subtract 8.5 db; to plot the mask, use the theoretical directivity pattern from Table, as shown in the previous two steps, up to the break point for either the peak or average antenna pattern, as required. After the break point, apply the mask pattern as indicated in Table 3; the peak pattern mask is the antenna pattern that rides over the side-lobe peaks. It is used for a single-entry interferer; the average pattern mask is the antenna pattern that approximates the integral value of the theoretical pattern. It is used for aggregated multiple interferers; the peak pattern mask break point is the point in pattern magnitude (db) below the maximum gain where the pattern shape departs from the theoretical pattern into the peak mask pattern, as shown in Table 3; the average pattern mask break point is the point in pattern magnitude (db) below the maximum gain where the pattern shape departs from the theoretical pattern into the average mask pattern, as shown in Table 3;

8 Rec. ITU-R M.1851-1 θ3 is the 3 db antenna beamwidth (degrees); θ is the angle in either the elevation (vertical) or azimuth (horizontal) principal plane cuts (degrees); the average mask is the peak mask minus approximately 4 db. Note that the break points of the peak pattern are different from the average patterns. Table 3 shows the equations to be used in the calculations. Field distribution Uniform COS COS COS 3 COS 4 TABLE 3 Peak and average theoretical mask pattern equations Mask equation beyond pattern break point where mask departs from theoretical pattern (db) Peak pattern break point where mask departs from theoretical pattern (db) Average pattern break point where mask departs from theoretical pattern (db) Constant added to the peak pattern to convert it to average mask (db) Mask floor level (db) Equation No. 8.584ln.876 5.75 1.16 3.7 3 (7) 3 17.51ln.33 14.4.6 4.3 5 (8) 3 6.88ln 1.96.3 9. 4.6 6 (9) 3 35.84ln 1.756 31.5 37.6 4. 7 (1) 3 45.88ln 1.56 3 39.4 4.5.61 8 (11) The function ln() is the natural logarithm function. An example of the break point is shown in Fig. 4.

Rec. ITU-R M.1851-1 9 FIGURE 4 Break point example Antenna radiation pattern, beamwidth = 3 5 Break point (db) where the peak mask departs from the theoretical pattern Normalized antenna pattern (db) 1 15 Break point (db) where the average mask departs from the theoretical pattern 5 3 4 6 8 1 1 14 16 18 Uniform Peak envelope Average envelope Angle measured from beam peak M. 1851-4. Radar antenna with a cosecant-squared elevation pattern The cosecant-squared pattern is a special case. The power (not field-strength) is given by: where: G(θ): G(θ1): 1 CSC 1 CSC G G (1) cosecant squared pattern between angles of θ1 and θmax pattern gain at θ1 θ1: half power antenna beamwidth where cosecant-squared pattern starts = θ3 θmax: maximum angle where cosecant-squared pattern stops θ: elevation angle (degrees) θ3: half power antenna beamwidth (degrees). The average antenna pattern gain is not considered for the cosecant-squared pattern. It should be used for single and multiple interferers. The cosecant pattern is applied as shown in Table 4:

1 Rec. ITU-R M.1851-1 TABLE 4 Cosecant-squared antenna pattern equations Cosecant-squared equation Condition Equation No. sin ; 5.8 sin 3 3 3.88 CSC 1 G Max CSC 1 (13) 3 (14) Cosecant floor level (example = 55 db) Max 9 (15) Note that G G 1 5.8 sin sin 3 1 3 G 1 1 3 5.8 sin1 1 CSC 1 CSC 5.8 sin sin 3 5.8 sin 3 1 1 (16) refers to the amplitude of the power pattern, while sin refer to the Directivity pattern F(μ), field amplitude; which are square of sin power amplitude. The solution might be writing and G A graphical description of the patterns is shown in the Figures below. 1 5.8sin 1 sin 3 5.8sin 1 3 and FIGURE 5 Cosecant squared beam coverage for search radar Height Maximum of CSC pattern Elevation of half power point on the main lobe Maximum height CSC beam Angle Fan beam Range Maximum range M. 1851-5

Rec. ITU-R M.1851-1 11.3 Theoretical diagrams and masks for different antenna radiation patterns FIGURE 6 Antenna pattern, peak sin in radians or sin 18 sin 57.3 uniform field distribution in degrees, and average envelope for Antenna radiation pattern, beamwidth = 3 1 Normalized antenna pattern (db) 3 4 5 6 7 8 9 1 5 1 15 5 3 35 4 Uniform Peak envelope Angle measured from beam peak Average envelope M. 1851-6

1 Rec. ITU-R M.1851-1 FIGURE 7 Example polar plot antenna pattern, peak and average envelope for uniform field distribution 15 Antenna radiation pattern, beamwidth = 3 3 45 6 75 9 1 8 6 4 db Uniform Peak envelope Average envelope M. 1851-7 FIGURE 8 Antenna pattern, peak and average envelope for cosine field distribution Antenna radiation pattern, beamwidth = 3 1 Normalized antenna pattern (db) 3 4 5 6 7 8 9 1 5 1 15 5 3 Angle measured from beam peak Cosine Peak envelope Average envelope M. 1851-8

Rec. ITU-R M.1851-1 13 FIGURE 9 Antenna pattern, peak and average envelope for a cosine-squared distribution Antenna radiation pattern, beamwidth = 3 1 Normalized antenna pattern (db) 3 4 5 6 7 8 9 1 4 6 8 1 1 14 16 18 Cosine Peak envelope Angle measured from beam peak Average envelope M. 1851-9 FIGURE 1 Antenna pattern, peak and average envelope for a cosine-cube distribution Antenna radiation pattern, beamwidth = 3 1 Normalized antenna pattern (db) 3 4 5 6 7 8 9 1 4 6 8 1 1 14 16 18 Cosine 3 Peak envelope Angle measured from beam peak Average envelope M. 1851-1

14 Rec. ITU-R M.1851-1 FIGURE 11 Antenna pattern, peak and average envelope for a cosine-to-the-fourth power distribution Antenna radiation pattern, beamwidth = 3 1 Normalized antenna pattern (db) 3 4 5 6 7 8 9 1 4 6 8 1 1 14 16 18 Cosine 4 Peak envelope Angle measured from beam peak Average envelope M. 1851-11 1 FIGURE 1 CSC antenna pattern envelope Cosecant-squared pattern Example: 3 db beamwidth = 4, maximum CSC = 35 Start pattern using sin( x )/ x from negative 3 db Beamwidth devided by.88 to positive 3dB Beamwidth point Relative gain (db) 3 4 Cosecant-squared pattern Pattern floor level 5 6 5 5 1 15 5 3 35 4 45 5 Angle (degrees) M. 1851-1 3 Antenna pattern selection A suggestion for how the antenna pattern should be selected is based on information about half-power beamwidth and peak side-lobe level. This is provided in Table 5 given information about half power beamwidth.

Rec. ITU-R M.1851-1 15 Range of first side-lobe level below normalized main lobe peak (db) 13. to < to < 3 3 to < 39 39 to <45 TABLE 5 Pattern approximation selection table Possible antenna distribution type and cosine raised to power n Theoretical pattern Equation number Mask equation number Uniform () (7) n = 1 (3) (8) n = (4) (9) n = 3 (5) (1) >= 45 n = 4 (6) (11) 4 Antenna pattern comparison One mathematical model for a radiodetermination radar antenna pattern that has been used in interference analysis is given in Recommendation ITU-R M.165. It includes equations for several patterns as a function of antenna gain. A comparison between the models developed in this Recommendation and Radar-C from Recommendation ITU-R M.1638- shows that the pattern in Recommendation ITU-R M.165 is not optimal. As shown in Fig. 13, the pattern from Recommendation ITU-R M.165 significantly overestimates the antenna gain off the antenna boresight ( ). It should also be noted that the equations defined in Recommendation ITU-R F.699 tends to overestimate the sidelobe levels of some radar systems, and it was not developed for radar systems.

16 Rec. ITU-R M.1851-1 FIGURE 13 Antenna pattern comparison Comparison of ITU-R M.165 to COS patterns (Example radar-c: gain = 44 dbi, El = Az beamwidth =.95, 1st SLL = 35 db) Normalized amplitude (db) 1 3 4 5 6 ITU-R M.165 COS COS a verage pattern with floor ITU-R M.165 in pattern is not valid. This pattern overestimates interference Theoretical COS pattern Average COS pattern "mask + floor pattern" 7.5 1 1.5.5 3 3.5 4 4.5 5 Angle (degrees) M. 1851-1 3 5 Approximating three-dimensional (3-D) patterns Data from the contour plots may be used as simulation analysis tools. The three-dimensional (3-D) antenna pattern can easily be approximated. This is done by multiplying the horizontal and vertical principal plane voltage cuts. To do this, place the vertical principal plane pattern in the centre column of a square matrix, and set all the other elements to zero. Place the horizontal principal plane pattern in the centre row of a square matrix and set all the other elements to zero. Multiply the two matrices together and plot. Note that all patterns must be normalized. The equation for calculating the 3-D pattern is given by: N Pi, h log H k, ivh, k (17) k where the elevation and azimuth matrices, in units of volts, are defined in equations (18) and (19). The vertical pattern is given by:

Rec. ITU-R M.1851-1 17... El1...... El......... El3...... Vertical matrix (Vh,k) =..................... (18)........................ ElN 1...... ElN... The horizontal pattern is given by:.................................... Horizontal matrix (Hk,i) = Az1 Az AzN 1 AzN (19)............... Figures 14 and 15 show an example of a 3-D pattern. FIGURE 14 Contour Normalized (db) Pattern elevation (degrees) 8 6 4 4 6 8 Elevation beamwidth = 7, azimuth beamwidth = 8 6 4 4 6 8 Azimuth (degrees) 1 3 4 5 6 7 8 9 1 Amplitude (db) M. 1851-1 4

18 Rec. ITU-R M.1851-1 FIGURE 15 Example of a 3-D relative azimuth and elevation antenna plot, uniform field distribution of a rectangular aperture, attenuation (db) versus off-axis angle; θ (elevation, degrees) and φ (azimuth, degrees) Elevation beamwidth = 7, azimuth beamwidth = 1 3 Amplitude (db) 4 6 8 4 5 6 Amplitude (db) 1 7 5 Elevation (degrees) 5 5 5 Azimuth (degrees) 8 9 1 M. 1851-1 5 6 Measured pattern examples Figures 16 and 17 show examples of measured radar antenna patterns, in the 9 GHz band. The X axis represents the azimuth angle spanned on more than 36, and Y axis represents the power level received at each azimuth angle. This power pattern has to be normalized respectively to its maximum or an isotrope antenna to be considered as the antenna pattern or the directivity pattern. First analysis of such measured antenna patterns indicates that first side lobes appears near 3 dbc with a noticeable slope of side lobes leading to estimate roughly that a cos aperture illumination law was used. A theoretical mask floor at 6 dbc given by cos model would appear in this case a bit too low due to presence of backlobe and rear diffraction lobes in this antenna pattern, then if necessary, encouraging to use real antenna patterns instead of theoretical ones when possible.

Rec. ITU-R M.1851-1 19 FIGURE 16 Example measured antenna plot M. 1851-1 6 FIGURE 17 Example measured antenna plot M. 1851-1 7 Figures 18 and 19 show two other examples.

Rec. ITU-R M.1851-1 FIGURE 18 Measurement from AN/SPN-6 radar antenna at 3.6 GHz and 38 dbi 4 3 AN/SPN-6 frequency: 3 65 Mc Gain relative to isotropic (db) 1 1 3 18 144 18 7 36 36 7 18 144 18 Degrees M. 1851-1 8 Source: Statistical Characteristics of Gain and Mutual Gain of Radar Antennas, Project No. SF 1 4, Task 577, Department of the Navy 15 September, 1963 FIGURE 19 Doppler radar antenna pattern from meteorological radar with 5 db 1 st sidelobe and 6 db front-to-back ratio 1 Rlative magnitude (db) 3 4 5 6 7 8 18 135 9 45 45 9 135 18 Azimuth (degrees) M. 1851-1 9

Rec. ITU-R M.1851-1 1 Source: USA Federal Meteorological Handbook No. 11, December 5 Part B, FCM-H11B-5 7 Patterns for phased array antennas The following equation could be used in the calculations for uniform linear array antenna normalized pattern: () where g: uniform linear array antenna normalized gain pattern f: Elementary radiating elements normalized gain pattern inserted in the uniform linear array antenna N: number of elementary radiating elements AF: uniform linear array antenna factor; ᴪ (radians): (1) with = (d/)(sin() - sin()) () where d: uniform elementary radiating element regular interspace λ: wavelength at the considered frequency : electronicaly beam steering angle off-axis angle. z FIGURE d x Radiating element No. 1 Radiating element No. N time d Radiating element No. 1 d Radiating element No. N M. 1851- The specific nature of phased array antennas allows to steer electronically the mainlobe of the antenna pattern in a ±9 range from the mechanical antenna boresight. At large scan angles specific sidelobes effects in the antenna patterns should be taken into account as mainlobe significant

Rec. ITU-R M.1851-1 enlargement and desymmetrization (see Fig. ). In fact the main lobe maximum value decreases as cos() and further as the elementary radiating element pattern in the array. This result is a widened mainbeam, max gain losses, and consequently far sidelobes increase. For value of between ±6 and ±9 range from the mechanical antenna boresight the resulting pattern is so perturbed that it is no more usable (see Fig. 4). The practical values of are between and ±6 range from the mechanical antenna boresight. Furthermore, if the array lattice is bigger than / among the elementary radiating elements in the array, grating lobes of the mainlobe could appear for even less than ±6 range from the mechanical antenna boresight (see Fig. 3). And even if the array lattice is / among the elementary radiating elements in the array, sidelobes of the grating lobes of the mainlobe, situated at 9 and +9 from the mechanical antenna boresight, disturb the array pattern (see Fig. 4). FIGURE 1 Theoretical radiating pattern of an Uniform Linear Array of 3 radiating elements with a / lattice (blue curve) with a cosine radiating pattern (red curve) steered at boresight Normalized radiating pattern (db) 1 3 4 5 6 9 8 7 6 5 4 3 1 1 3 4 5 6 7 8 9 M. 1851-1

Rec. ITU-R M.1851-1 3 FIGURE Theoretical radiating pattern of an Uniform Linear Array of 3 radiating elements with a / lattice (blue curve) with a cosine radiating pattern (red curve) steered at 6 Normalized radiating pattern (db) 1 3 4 5 6 9 8 7 6 5 4 3 1 1 3 4 5 6 7 8 9 M. 1851- FIGURE 3 Theoretical radiating pattern of an Uniform Linear Array of 3 radiating elements with a.6 lattice (blue curve) with a cosine radiating pattern (red curve) steered at 45 Normalized radiating pattern (db) 1 3 4 5 6 9 8 7 6 5 4 3 1 1 3 4 5 6 7 8 9 M. 1851-3

4 Rec. ITU-R M.1851-1 FIGURE 4 Theoretical radiating pattern of an Uniform Linear Array of 3 radiating elements with a / lattice (blue curve) with a cosine radiating pattern (red curve) steered at 8 Normalized radiating pattern (db) 1 3 4 5 6 9 8 7 6 5 4 3 1 1 3 4 5 6 7 8 9 M. 1851-4