Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Similar documents
Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

A Broadband Omnidirectional Antenna Array for Base Station

Compact Triple-Band Monopole Antenna for WLAN/WiMAX-Band USB Dongle Applications

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China

Research Article A UWB Band-Pass Antenna with Triple-Notched Band Using Common Direction Rectangular Complementary Split-Ring Resonators

Research Article Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

DUAL BAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Research Article Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS

Research Article Design of a Compact Quad-Band Slot Antenna for Integrated Mobile Devices

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

NOVEL PLANAR INVERTED CONE RING MONOPOLE ANTENNA FOR UWB APPLICATIONS

Research Article CPW-Fed Slot Antenna for Wideband Applications

Research Article Wideband Dual-Element Antenna Array for MIMO Mobile Phone Applications

Miniature Multiband Antenna for WLAN and X-Band Satellite Communication Applications

A COMPACT DUAL INVERTED C-SHAPED SLOTS ANTENNA FOR WLAN APPLICATIONS

Research Article Yagi Array of Microstrip Quarter-Wave Patch Antennas with Microstrip Lines Coupling

Research Article Quad Band Handset Antenna for LTE MIMO and WLAN Application

A Simple Dual-Wideband Magneto-Electric Dipole Directional Antenna

COMPACT DUAL-BAND CIRCULARLY-POLARIZED AN- TENNA WITH C-SLOTS FOR CNSS APPLICATION. Education, Shenzhen University, Shenzhen, Guangdong , China

Research Article Embedded Spiral Microstrip Implantable Antenna

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

A Compact Dual-Band CPW-Fed Planar Monopole Antenna for GHz Frequency Band, WiMAX and WLAN Applications

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

Research Article A High Gain Omnidirectional Antenna Using Negative Permeability Metamaterial

A COMPACT CPW-FED MONOPOLE ANTENNA WITH A U-SHAPED STRIP AND A PAIR OF L-SLITS GROUND FOR WLAN AND WIMAX APPLICATIONS

DUAL WIDEBAND SPLIT-RING MONOPOLE ANTENNA DESIGN FOR WIRELESS APPLICATIONS

UWB ANTENNA WITH DUAL BAND REJECTION FOR WLAN/WIMAX BANDS USING CSRRs

Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

A New UWB Antenna with Band-Notched Characteristic

A MINIATURIZED INTERNAL WIDEBAND ANTENNA FOR WIRELESS USB DONGLE APPLICATION

Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 14 No. 1, June 2015

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

Small-Size Monopole Antenna with Dual Band-Stop Function for Ultra-Wideband Wireless Communications

PRINTED BLUETOOTH AND UWB ANTENNA WITH DUAL BAND-NOTCHED FUNCTIONS

A Compact Dual-Polarized Antenna for Base Station Application

Chapter 7 Design of the UWB Fractal Antenna

Research Article A Compact Experimental Planar Antenna with a USB Connector for Mobile Phone Application

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

Research Article A MIMO Reversed Antenna Array Design for gsm1800/td-scdma/lte/wi-max/wilan/wifi

Double-Sided Microstrip Circular Antenna Array for WLAN/WiMAX Applications

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Research Article Suppression of Cross-Polarization of the Microstrip Integrated Balun-Fed Printed Dipole Antenna

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS

Performance Analysis of Different Ultra Wideband Planar Monopole Antennas as EMI sensors

Wideband Double-Layered Dielectric-Loaded Dual-Polarized Magneto-Electric Dipole Antenna

DESIGN OF A RECTANGULAR SHAPE OMEGA SLOTTED MICROSTRIP PATCH ANTENNA FOR WLAN/WIMAXWIRELESS APPLICATIONS

GPS Patch Antenna Loaded with Fractal EBG Structure Using Organic Magnetic Substrate

A Compact Wideband Slot Antenna for Universal UHF RFID Reader

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Compact UWB Planar Antenna with Triple Band EMI Reduction Characteristics for WiMAX/WLAN/X-Band Satellite Downlink Frequency

A Compact Wideband Circularly Polarized L-Slot Antenna Edge-Fed by a Microstrip Feedline for C-Band Applications

Research Article Compact Multiantenna

A dual-band antenna for wireless USB dongle applications

A WIDEBAND TWIN-DIAMOND-SHAPED CIRCULARLY POLARIZED PATCH ANTENNA WITH GAP-COUPLED FEED

A Compact Dual Band Microstrip Antenna for GPS L1/GS Applications

DESIGN OF A PLANAR MONOPOLE ULTRA WIDE BAND PATCH ANTENNA

A New Compact Printed Triple Band-Notched UWB Antenna

A Compact Broadband Printed Circular Slot Antenna with Stair Shaped Ground Plane

Application of protruded Γ-shaped strips at the feed-line of UWB microstrip antenna to create dual notched bands

A Phase Diversity Printed-Dipole Antenna Element for Patterns Selectivity Array Application

Offset-fed UWB antenna with multi-slotted ground plane. Sun, YY; Islam, MT; Cheung, SW; Yuk, TI; Azim, R; Misran, N

A CPW-Fed Dual-Band Slot Antenna with Circular Polarization

DUAL-WIDEBAND MONOPOLE LOADED WITH SPLIT RING FOR WLAN APPLICATION

Desktop Shaped Broadband Microstrip Patch Antennas for Wireless Communications

Design of a Short/Open-Ended Slot Antenna with Capacitive Coupling Feed Strips for Hepta-Band Mobile Application

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

A Very Wideband Dipole-Loop Composite Patch Antenna with Simple Feed

Design of a Wideband Sleeve Antenna with Symmetrical Ridges

BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR

CHAPTER 4 DESIGN OF BROADBAND MICROSTRIP ANTENNA USING PARASITIC STRIPS WITH BAND-NOTCH CHARACTERISTIC

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

S. Zhou, J. Ma, J. Deng, and Q. Liu National Key Laboratory of Antenna and Microwave Technology Xidian University Xi an, Shaanxi, P. R.

Transcription:

Hindawi International Journal of Antennas and Propagation Volume 217, Article ID 48278, 1 pages https://doi.org/1.1155/217/48278 Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines Linglong Meng, Weimin Wang, Ming Su, Jinchun Gao, and Yuanan Liu Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 1876, China Correspondence should be addressed to Linglong Meng; linglongm@126.com Received 15 November 216; Revised 18 February 217; Accepted 3 March 217; Published 3 May 217 Academic Editor: Paolo Baccarelli Copyright 217 Linglong Meng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A novel wideband monopole antenna employing periodically loaded parallel-plate lines is presented in this paper. The proposed antenna consists of a main square patch, a rectangular ground plane, and a periodical structure which is printed on both sides of substrate. A strong electromagnetic coupling technique is used to design the element that enhances impedance bandwidth and decreases the side-lobe level throughout the effective bandwidth. The antenna achieves a wide impedance bandwidth of about 61.1% or ranging from 2.16 to 4.6 GHz, an omnidirectional far-field pattern, and a peak radiation gain of 2.37 dbi. Finally, the proposed antenna is analyzed and measured. The measured results show satisfactory performance and good agreement with the simulated results. 1. Introduction Recently, the size of mobile devices has become smaller due to the development of modern wireless communication systems, and compact antennas with wide bandwidth and good omnidirectional radiation characteristics are needed [1] to satisfy the various demands for wireless services, such as simple feeding, low profile, and low manufacturing cost. The currently popular designs, which are suitable for the wireless local area network (WLAN: 2.4 2.484 GHz), mobile worldwide interoperability for microwave access (WiMAX: 2.5 2.69 GHz, and 3.4 3.69 GHz), and S-band satellite communication service (2 4 GHz), have been widely researched and used. Planar monopole antenna is a good candidate for wireless communication services because of its wide impedance bandwidth, omnidirectional radiation pattern, compact circuit structure, easy fabrication, and low cost [2]. In addition, printed monopole antennas are fabricated from a conventional monopole easily. Most previous monopole antennas suffer from the protruded structure and the bulky size [3 1]. For instance, in [6], a circular disc monopole antenna has been proposed. The antenna presents a wide impedance bandwidth (1.17 12 GHz). But this configuration is not entirely planar because of the large ground plane (3 3 cm 2 ). It cannot be integrated to the printed circuit board of the communication device. In [8], a planar monopole antenna with two plates that results in more than 5 : 1 bandwidth ratio is reported. Besides, studies on extending the bandwidth of monopole antennas have been widely investigated [11 17]. It has been reported that, by using different ground plane sizes, bandwidth can be increased to a substantial level [11]. For the 5 5 mm 2 groundplane,themeasuredbandwidthwas1.5ghz,which represented a fractional impedance bandwidth of 58%. In a circularly polarized printed monopole antenna using a lumpedcapacitor[12],themeasuredreturnlossbandwidth is raised to 6.5% (3.75 7 GHz). The antenna presented in [13] uses a truncated optimum ground plane for achieving wide bandwidth. In [16], a meandered-microstrip fed circular shaped monopole antenna is designed. Due to meanderedmicrostrip structure, the impedance bandwidth is extended. However, these design solutions are generally bulky, which may be not compatible with the new generation of wireless communication systems. What is more, a novel approach to enhance the impedance bandwidth is reported by loading a trapezoid conductor-backed plane in [17]. The parasitic element is usually placed vertically under the upper radiating patch

2 International Journal of Antennas and Propagation d 2d + g Antenna 1 Antenna 2 Antenna 3 Antenna 4 Figure 1: Antenna geometry evolution for the proposed design. so as to improve the impedance bandwidth. According to the principle, the original broadband antenna is achieved by loading a gap and a rectangular conductor-backed plane. In this paper, a novel printed broadband monopole antenna is proposed and designed for wireless communication systems that can support the WLAN/WiMAX applications. The proposed structure consists of a main square patch, a rectangular ground plane, and a periodical structure which is printed on both sides of substrate. The wideband monopole antenna (2.16 4.6 GHz) can be achieved, and the impedance performance has been largely improved due to the strong electromagnetic coupling between the monopole and the periodical structure. Simulation and experimental results oftheprototypedantennaarepresentedanddiscussed. 2. Design and Analysis 2.1. Novel Broadband Monopole Antenna I. In this part, we present a miniaturized broadband monopole antenna with a gap and a parasitic planar square element. We know that planar printed monopole antennas are good candidates for use in different wireless communications because of their wide impedance bandwidth. The printed rectangular monopole has radiation pattern similar to that of a dipole antenna. Besides, it also possesses simple structure, planar configuration, and easy fabrication. The antenna design evolution process to achieve broadband operation is shown in Figure 1. The proposed antenna (Ant. 4) is fabricated on the TLF-35A dielectric substrate of thickness 1. mm, relative permittivity of 3.5, and dielectric loss tangent of.22. The overall size of the proposed antenna is only 12. mm 39.5 mm or about.12 λ.39 λ, where λ is the free-space wavelength at the first resonant frequency 2.93 GHz. The antenna design starts by a conventional rectangular monopole (Ant. 1). From Figure 2, it can be observed that, in this case, two resonant modes seem to form at about 2.86 GHz and 6.15 GHz. However, the return loss is less than 1 db at the first resonant frequency. More importantly, a wide operating frequency band (4.14 6.67 GHz or 46.8%) is obtained. In Figure 2, the antenna (Ant. 2) with a gap has a wide bandwidth from 4.46 to 6.64 GHz (39.3%) for

International Journal of Antennas and Propagation 3 5 5 1 1 S11 (db) 15 S11 (db) 15 2 2 25 25 3 2 4 6 Ant. 1 Ant. 2 Frequency (GHz) 8 Ant. 3 Ant. 4 Figure 2: Simulated reflection coefficients of the proposed antenna. 3 2 4 6 8 Frequency (GHz) VSWR < 2. The gap can be seen when adding a series capacitance, but impedance matching is not good and the bandwidth does not increase relatively to Ant. 1. In [18], a broadband monopole antenna with a parasitic planar square element has been proposed. By adding a planar square conducting element, the impedance performance has been largely improved due to the strong electromagnetic coupling between the monopole and the parasitic element. So, tripleband characteristics of Ant. 3 are designed. However, this is not what we expect to be broadband. Finally, we present a miniaturized broadband monopole antenna (Ant. 4) with a gap and a parasitic planar rectangular element. As shown in Figure 2, a simulated VSWR of less than 2 has been realized across the 2.66 5.9 GHz band (75.7%). Figure 3 shows the simulated radiation patterns at 2.88, 3.55, and 5.43 GHz in the E-plane (XOY-plane) and the Hplane (XOZ-plane), respectively. The H-plane patterns are almost omnidirectional in this operation frequency band. Radiation pattern for E-plane gives the bidirectional pattern at 3.55 GHz frequency but appears more directional at 2.88 and 5.43 GHz. 2.2. Novel Broadband Monopole Antenna II. From Figure 3, itcanbeobservedthattheization radiation patterns produce some side lobes due to current direction change. In order to obtain stable radiation patterns, a novel broadband printed square monopole antenna loaded with periodic parallel-plate lines is properly designed. The evolution of the proposed broadband antenna is shown in Figure 4, with the corresponding simulated reflection coefficients presented in Figure 5. As the number of parasitic planar square elements increases, the higher resonant frequency decreases, since the path of the antenna is increased. However, the lower resonant frequency has a little change. Furthermore,itcanbeseenthatwhentwounitcells (Ant. 5) are loaded to the monopole antenna, two resonances are separated from each other, giving two narrow bands. While three unit cells were loaded, an enhanced impedance bandwidth of 61.1% ranging from 2.16 to 4.6 GHz for S11 < 1dBisachieved,andthesizeis62.5 12. 1. mm 3. When four unit cells were loaded, a novel printed monopole antenna (Ant. 6) with dual wideband is presented. But the size of the antenna increased to 75. 12. 1. mm 3.From the comparison, the three pluralities of periodically loaded parallel-plate lines achieve both broadband operation and compact size at the same time. As a result of electromagnetic coupling, the plurality of periodically loaded aligned microstrip patches plays an important role in the broadband characteristics of this planar monopole. By adding the loading parallel-plate lines, the broadbandmonopoleantennaisachieved. 3. Antenna Geometry The configuration of the proposed antenna is shown in Figure 6, which is printed on a TLF-35A substrate with a relative dielectric constant of 3.5, dielectric loss tangent of.22, and thickness of 1. mm. The whole substrate occupies an area of 62.5 12. 1. mm 3, when the antenna and the ground plane are printed on different sides. The antenna can be treated as a printed square monopole with a periodical structure. It can be seen from Figure 6 that four square patches and microstrip feed line are printed on the top side of substrate. As shown in Figure 6, the feed line with a length of l 1 is connected to the coaxial cable through a 5Ω SMA connector. The square conducting plane on the top side of the substrate has a length of d,andg is the gap between the square conducting planes on the same side of the substrate. In Figure 6(c), a rectangular ground plane andfoursquareconductingplanesunderthemicrostrip line fed monopole antenna and three square conducting planes, respectively, are printed on the bottom side of the substrate. The antenna elements are simulated in ANSYS

4 International Journal of Antennas and Propagation 27 3 33 1 2 4 3 6 9 27 3 33 1 2 4 3 6 9 24 12 24 12 21 18 15 21 18 15 27 3 33 1 2 4 3 6 9 3 27 33 1 2 4 3 6 9 24 12 24 12 21 18 15 21 18 15 27 3 33 1 2 4 3 6 9 27 3 33 1 2 4 3 6 9 24 12 24 12 21 18 15 21 18 15 (c) Figure 3: Simulated patterns (left: XOY-plane; right: XOZ-plane.) of the proposed Ant. 4 at 2.88 GHz; 3.55 GHz; (c) 5.43 GHz.

International Journal of Antennas and Propagation 5 Unit cell Unit cell Antenna 5 Proposed antenna Antenna 6 Figure 4: Design evolution of the proposed antenna. 5 1 S11 (db) 15 2 25 3 35 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. Ant. 5 Proposed Ant. Ant. 6 Frequency (GHz) Figure 5: Simulated reflection coefficients of the different antenna.

6 International Journal of Antennas and Propagation Monopole antenna Periodical structure Substrate Patch Port g z w g w 1 l 1 x l g l 2 l 3 g d d z x Ground Patch (c) Figure 6: Geometry of monopole antenna. 3D view; top view; (c) bottom view. Table 1: Values of key parameters. Parameter Value (mm) w g 12 l g 62.5 l 1 16 l 2 8 l 3 13.25 l 4 5.25 d 1 h 1 w 1 1 g.5 HFSS full-wave simulator [19]. The optimized parameters of the antennas are given in Table 1. Figure 7: Photograph of the fabricated antenna. Top view; bottom view. 4. Simulation and Experimental Results Figure 7 shows different views of the fabricated prototype. The physical size of the wideband monopole antenna is 62.5 12. 1. mm 3.Figure8showsthesimulatedand measured reflection coefficients of the proposed antenna. The simulated and measured results were obtained using

International Journal of Antennas and Propagation 7 S11 (db) 5 1 15 2 25 3 35 4 45 5 55 2. Simulated Measured 2.5 3. 3.5 4. 4.5 Frequency (GHz) Figure 8: Simulated and measured reflection coefficients of the proposed antenna. 1.7589e + 1 1.335e + 1 6.724e + 3.568e + 2.964e + 1.2318e + 7.2376e 1 4.2526e 1 2.4987e 1 1.4681e 1 8.6263e 2 5.686e 2 2.9781e 2 1.7498e 2 1.282e 2 6.411e 3 3.5496e 3 Jsurf (A_per_m) 2.3841e + 1 1.3744e + 1 7.9237e + 4.5681e + 2.6335e + 1.5182e + 8.7527e 1 5.46e 1 2.99e 1 1.6771e 1 9.6684e 2 5.5739e 2 3.2134e 2 1.8525e 2 1.68e 2 6.157e 3 3.5496e 3 Jsurf (A_per_m) Figure 9: Simulated surface currents distribution versus frequency. f = 2.4 GHz; f = 3.5 GHz. ANSYS HFSS full-wave simulator [19] and Rohde & Schwarz ZVA8 vector network analyzer, respectively. Also, it is evident that the impedance matching is excellent in intermediate frequencies as the matching bandwidth with VSWR < 2 is roughly 61.1% within frequency range of 2.16 4.6 GHz. The higher resonance frequency is almost no offset. Compatible with the fabrication tolerance, the lower resonance frequency hasaslightfrequencyshiftasshowninfigure8. The surface current distributions on the proposed antenna at 2.4 GHz and 3.5 GHz are shown in Figure 9. It is clear that the currents of the proposed monopole antenna remain almost in phase in Figures 9 and 9, respectively. Thus, good radiation patterns at 2.4 GHz and 3.5 GHz are achieved. The measured radiation patterns in the H-plane (x-y plane) and E-plane (x-z plane) at 2.4, 3., and 3.5 GHz are plottedinfigure1.agoodradiationpatternisobtained

8 International Journal of Antennas and Propagation 33 3 33 3 27 3 1 2 3 6 9 27 3 1 2 3 6 9 24 12 24 12 21 18 15 21 18 15 33 3 33 3 27 3 1 2 3 6 9 27 3 1 2 3 6 9 24 12 24 12 21 18 15 21 18 15 33 3 33 3 27 3 1 2 3 6 9 27 3 1 2 3 6 9 24 12 24 12 21 18 15 21 18 15 (c) Figure 1: Measured copolarization and cross-polarization of proposed antenna at different frequencies: 2.4 GHz; 3. GHz; and (c) 3.5 GHz (left: XOZ-plane; right:xoy-plane).

International Journal of Antennas and Propagation 9 Table 2: The performance of proposed antenna compared with other published antenna. Reference S11 < 1dB Relative bandwidth Antenna size Relative dielectric constant [12] 3.75 7 GHz 6.5% 52 55 1.52 mm 3 2.2 [14] 5.1 6.5 GHz 17% 24 36 1.6 mm 3 4.4 [2] 1.85 3.4 GHz 59% 15 18 1mm 3 2.65 Proposed antenna 2.16 4.6 GHz 61.1% 62.5 12 1mm 3 3.5 Efficiency (%) 1 8 6 4 3 2 1 Peak gain (dbi) (3.4 3.69 GHz), and S-band (2 4GHz) satellite communication service. The measured efficiency is higher than 46.5% within frequency bands. Good omnidirectional radiation performances are also obtained at the effective bandwidth. The structure of the proposed antenna is simple and easy to fabricate. The proposed antenna is suitable for the modern wireless communication systems. Conflicts of Interest 2 1 The authors declare that there are no conflicts of interest regarding the publication of this paper. 2. 2.5 3. 3.5 4. 4.5 Peak gain Efficiency Frequency (GHz) Figure 11: Measured peak gain and radiation efficiency of the proposed antenna. Acknowledgments This work was supported in part by National Key Basic Research Program of China (973 Program) (no. 214CB3399) and National Natural Science Foundation of China for the Major Equipment Development (no. 6132786). in the E-plane and H-plane. From an overall view of these patterns, the antenna behaves quite similarly to the typical dipole antenna in the lower and higher frequency bands. The radiation patterns are stable throughout the wideband. The measured peak gain of the proposed antenna is plotted in Figure 11 along with measured radiation efficiency oftheproposedantenna.themeasuredpeakgainofthe proposed antenna varies from.86 to 2.37 dbi within the effective bandwidth. The measured efficiency of the broadband antenna is above 46.5% at the operating band and about 75% peak efficiency at 3.5 GHz. Table 2 shows the performance of proposed antenna compared with other published antenna. It can be seen that the proposed antenna occupies a small volume (62.5 12. 1. mm 3 ) and obtains wide operating bandwidth (61.1%). Finally, this table demonstrates the validity and practicability of the proposed method. 5. Conclusion In this paper, a novel printed square wideband monopole antenna loaded with periodic parallel-plate lines is presented. The wideband enhancement of the antenna can be obtained by coupling between the monopole and the periodical structure. The measured 1 db impedance bandwidth is 1.9 GHz from 2.16 to 4.6 GHz (61.1%), which covers WLAN (2.4 2.484 GHz), mobile WiMAX (2.5 2.69 GHz), WiMAX References [1] C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Application,JohnWiley&Sons, New York, NY, USA, 26. [2] K. P. Ray and Y. Ranga, Printed rectangular monopole antennas, in Proceedings of the IEEE Antennas and Propagation Society International Symposium (APS 6),pp.1693 1696,July 26. [3] Z. N. Chen, Broadband planar monopole antenna, IEE Proceedings: Microwaves, Antennas and Propagation,vol.147,no.6, pp. 526 528, 2. [4]K.P.Ray,P.V.Anob,R.Kapur,andG.Kumar, Broadband planar rectangular monopole antennas, Microwave and Optical Technology Letters,vol.28,no.1,pp.55 59,21. [5] K.-L. Wong, S.-W. Su, and C.-L. Tang, Broadband omnidirectional metal-plate monopole antenna, IEEE Transactions on Antennas and Propagation, vol. 53, no. 1, pp. 581 583, 25. [6]N.P.Agrawall,G.Kumar,andK.P.Ray, Wide-bandplanar monopole antennas, IEEE Transactions on Antennas and Propagation, vol. 46, no. 2, pp. 294 295, 1998. [7] M. Hammoud, P. Poey, and F. Colombel, Matching the input impedance of a broadband disc monopole, Electronics Letters, vol.29,no.4,pp.46 47,1993. [8] S.M.MazinaniandH.R.Hassani, Anovelbroadbandplateloaded planar monopole antenna, IEEE Antennas and Wireless Propagation Letters,vol.8,pp.1123 1126,29. [9] K. Saraswat and A. R. Harish, Split ring loaded monopole antenna, IET Microwaves, Antennas and Propagation, vol. 1, no. 4, pp. 42 425, 216.

1 International Journal of Antennas and Propagation [1] M. Li and K.-M. Luk, A low-profile, low-backlobe and wideband complementary antenna for wireless application, IEEE Transactions on Antennas and Propagation,vol.63,no.1,pp.7 14, 215. [11] M. J. Ammann and M. John, Optimum design of the printed strip monopole, IEEE Antennas and Propagation Magazine,vol. 47,no.6,pp.59 61,25. [12] T. V. Hoang, T. T. Le, and H. C. Park, Bandwidth improvement of a circularly polarised printed monopole antenna using a lumped capacitor, Electronics Letters, vol.52,no.13,pp.191 192, 216. [13] M. N. Suma, P. C. Bybi, and P. Mohanan, A wideband printed monopole antenna for 2.4-GHz WLAN applications, Microwave and Optical Technology Letters,vol.48,no.5,pp.871 873, 26. [14] S. Y. Shi, W. Q. Che, W. C. Yang, and Q. Xue, Miniaturized patch antenna with enhanced bandwidth based on signal-interference feed, IEEE Antennas and Wireless Propagation Letters, vol.14, pp.281 284,215. [15] R. Pandeeswari and S. Raghavan, Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching, Microwave and Optical Technology Letters, vol. 56, no. 1, pp. 2388 2392, 214. [16] M. R. Ahsan, M. T. Islam, M. H. Ullah, and N. Misran, Bandwidth enhancement of a dual band planar monopole antenna using meandered microstrip feeding, The Scientific World Journal, vol. 214, Article ID 85654, 8 pages, 214. [17] C.-Y. Pan, T.-S. Horng, W.-S. Chen, and C.-H. Huang, Dual wideband printed monopole antenna for WLAN/WiMAX applications, IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 149 151, 27. [18] Z.N.ChenandY.W.M.Chia, Broadbandmonopoleantenna with parasitic planar element, Microwave and Optical Technology Letters,vol.27,no.3,pp.29 21,2. [19] High Frequency Structure Simulator (HFSS), version 13, Ansoft Corporation. [2] K. Wei, Z. Zhang, Z. Feng, and M. F. Iskander, A wideband MNG-TL dipole antenna with stable radiation patterns, IEEE Transactions on Antennas and Propagation, vol.61,no.5,pp. 2418 2424, 213.

http://www.hindawi.com Volume 214 http://www.hindawi.com Volume 214 http://www.hindawi.com Volume 21 http://www.hindawi.com Volume 214 http://www.hindawi.com Volume 214 http://www.hindawi.com Volume 214 International Journal of Rotating Machinery Journal of http://www.hindawi.com Volume 21 The Scientific World Journal http://www.hindawi.com Volume 214 Journal of Sensors http://www.hindawi.com Volume 214 International Journal of Distributed Sensor Networks Journal of Control Science and Engineering Advances in Civil Engineering Submit your manuscripts at https://www.hindawi.com Journal of Robotics Journal of Electrical and Computer Engineering http://www.hindawi.com Volume 214 Advances in OptoElectronics http://www.hindawi.com Volume 214 VLSI Design International Journal of Navigation and Observation http://www.hindawi.com Volume 214 Modelling & Simulation in Engineering http://www.hindawi.com Volume 214 International Journal of International Journal of Antennas and Chemical Engineering Propagation Active and Passive Electronic Components Shock and Vibration Advances in Acoustics and Vibration http://www.hindawi.com Volume 214 http://www.hindawi.com Volume 214 http://www.hindawi.com Volume 214 http://www.hindawi.com Volume 214 http://www.hindawi.com Volume 214