Hardware Implementation of Interleaved Converter with Voltage Multiplier Cell for PV System

Similar documents
Implementation of Voltage Multiplier Module in Interleaved High Step-up Converter with Higher Efficiency for PV System

ISSN Vol.07,Issue.06, July-2015, Pages:

Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications.

A High Step-Up Boost-Flyback Converter with Voltage Multiplier Module for Photovoltaic System

DC-DC CONVERTER WITH VOLTAGE MULTIPLIER CIRCUIT FOR PHOTOVOLTAIC APPLICATION

An Innovative Converter to Reduce Current Stress While Constraining Current Ripple in Renewable Energy System

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 2, Issue 12, December ISSN

A NOVEL High Step-Up Converter with a Voltage Multiplier Module for a Photo Voltaic System

An Interleaved High Step-Up Boost Converter With Voltage Multiplier Module for Renewable Energy System

Implementation of an Interleaved High-Step-Up Dc-Dc Converter with A Common Active Clamp

HIGH POWER IGBT BASED DC-DC SWITCHED CAPACITOR VOLTAGE MULTIPLIERS WITH REDUCED NUMBER OF SWITCHES

ADVANCED HYBRID TRANSFORMER HIGH BOOST DC DC CONVERTER FOR PHOTOVOLTAIC MODULE APPLICATIONS

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application

A High Step-Up DC-DC Converter

A High Voltage Gain Interleaved Boost Converter with Dual Coupled Inductors

Hybrid Transformer Based High Boost Ratio DC-DC Converter for Photovoltaic Applications

A Single Switch High Gain Coupled Inductor Boost Converter

Integrating Coupled Inductor and Switched- Capacitor based high gain DC-DC converter for PMDC drive

A High Voltage Gain DC-DC Boost Converter for PV Cells

Fuel Cell Based Interleaved Boost Converter for High Voltage Applications

Comparison Of DC-DC Boost Converters Using SIMULINK

Interleaved Boost Converter with a Voltage Multiplier for PV Module Using Grid Connected Load in Rural Areas

Grid Connected Photovoltic System Using High Gain DC-DC Converter With Voltage Multiplier Circuit

Design of Improved Solar Energy Harvested Hybrid Active Power Filter for Harmonic Reduction, Power factor Correction and Current Compensation

Implementation of a Voltage Multiplier based on High Step-up Converter using FLC

Figure.1. Block of PV power conversion system JCHPS Special Issue 8: June Page 89

Voltage Controlled Non Isolated Bidirectional DC-DC Converter with High Voltage Gain

I. INTRODUCTION II. LITERATURE REVIEW

International Journal of Engineering Science Invention Research & Development; Vol. II Issue VIII February e-issn:

Performance Enhancement of a Novel Interleaved Boost Converter by using a Soft-Switching Technique

A Novel High Step up And High efficiency DC-DC converter for Grid Connected or Standalone PV applications

Simulation of High Step-Up DC-DC Converter with Voltage Multiplier Module Fed with Induction Motor

Grid connected Boost-Full-Bridge photovoltaic microinverter system using Phase Opposition Disposition technique and Maximum Power Point Tracking

Multiple Output Converter Based On Modified Dickson Charge PumpVoltage Multiplier

Photovoltaic Controller with CCW Voltage Multiplier Applied To Transformerless High Step-Up DC DC Converter

A DC-DC Boost Converter with Voltage Multiplier Module and Fuzzy Logic Based Inverter for Photovoltaic System

Low Current Ripple, High Efficiency Boost Converter with Voltage Multiplier

CLOSED LOOP CONTROL OF HIGH STEP-UP DC/DC CONVERTER BASED ON COUPLED INDUCTOR AND SWITCHED-CAPACITOR

High Voltage-Boosting Converter with Improved Transfer Ratio

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER

Modified Buck-Boost Converter with High Step-up and Step-Down Voltage Ratio

LeMeniz Infotech. 36, 100 Feet Road, Natesan Nagar, Near Indira Gandhi Statue, Pondicherry Call: , ,

A High Gain Single Input Multiple Output Boost Converter

Comparison of Voltage and Efficiency of a Modified SEPIC Converter without Magnetic Coupling and with Magnetic Coupling

Investigation and Analysis of Interleaved Dc- Dc Converter for Solar Photovoltaic Module

Soft-Switching Two-Switch Resonant Ac-Dc Converter

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion

A DC DC Boost Converter for Photovoltaic Application

High Step-Up DC-DC Converter

Highly Efficient step-up Boost-Flyback Coupled Magnetic Integrated Converter for Photovoltaic Energy

DC-DC booster with cascaded connected multilevel voltage multiplier applied to transformer less converter for high power applications

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

Smart Time-Division-Multiplexing Control Strategy for Voltage Multiplier Rectifier

High Gain DC-DC ConverterUsing Coupled Inductor and Voltage Doubler

Non-Isolated Three Stage Interleaved Boost Converter For High Voltage Gain

Grid Connected Photovoltaic Micro Inverter System using Repetitive Current Control and MPPT for Full and Half Bridge Converters

A Dual Switch Dc-Dc Converter with Coupled Inductor and Charge Pump for High Step up Voltage Gain

Design and Implementation of a Novel Transformer less DC to DC Converter for LED Display Application

ZVT Buck Converter with Synchronous Rectifier

MODELING AND SIMULATON OF THREE STAGE INTERLEAVED BOOST CONVERTER BASED WIND ENERGY CONVERSION SYSTEM

An Asymmetrical Dc-Dc Converter with a High Voltage Gain

3SSC AND 5VMC BASED DC-DC CONVERTER FOR NON ISOLATED HIGH VOLTAGE GAIN

PERFORMANCE ANALYSIS OF SOLAR POWER GENERATION SYSTEM WITH A SEVEN-LEVEL INVERTER SUDHEER KUMAR Y, PG STUDENT CHANDRA KIRAN S, ASSISTANT PROFESSOR

Theoretical analysis of Zero Voltage and Zero Current Switching Resonant Pulse Width Modulation for High Power Applications

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications

THE MASSIVE usage of the fossil fuels, such as the oil,

Matlab Simulation of a High Step-Up DC-DC Converter for a Micro grid Application

Comparison between the Performance of Basic SEPIC Converter and modified SEPIC Converter with PI Controller

SINGLE PHASE MULTI STRING FIVE LEVEL INVERTER FOR DISTRIBUTED ENERGY SOURCES

International Journal of Research Available at

Analysis and Design of a Bidirectional Isolated buck-boost DC-DC Converter with duel coupled inductors

PHOTO VOLTAIC FED ASYNCHRONOUS MOTOR DRIVE WITH HIGH VOLTAGE GAIN CONVERTER

NOVEL TRANSFORMER LESS ADAPTABLE VOLTAGE QUADRUPLER DC CONVERTER WITH CLOSED LOOP CONTROL. Tamilnadu, India.

Power Factor Correction of LED Drivers with Third Port Energy Storage

VERY HIGH VOLTAGE BOOST CONVERTER BASED ON BOOT STRAP CAPACITORS AND BOOST INDUCTORS USED FOR PHOTOVOLTAIC APPLICATION USING MPPT

Two Stage Interleaved Boost Converter Design and Simulation in CCM and DCM

MATHEMATICAL MODELLING AND PERFORMANCE ANALYSIS OF HIGH BOOST CONVERTER WITH COUPLED INDUCTOR

ZCS-PWM Converter for Reducing Switching Losses

Soft-Switched High Efficiency CCM Boost Converter with High Voltage Gain

Muhammad M, Armstrong M, Elgendy M. A Non-isolated Interleaved Boost Converter for High Voltage Gain Applications.

Passive Lossless Clamped Converter for Hybrid Electric Vehicle

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application

REVIEW OF UNCOUPLED, COUPLED INDUCTOR AND RCN BASED TWO-PHASE INTERLEAVED BOOST CONVERTER FOR PHOTO-VOLTAIC APPLICATIONS

A Pv Fed Buck Boost Converter Combining Ky And Buck Converter With Feedback

Survey on non-isolated high-voltage step-up dc dc topologies based on the boost converter

IJMIE Volume 2, Issue 9 ISSN:

SIMULATION OF HIGH BOOST CONVERTER FOR CONTINUOUS AND DISCONTINUOUS MODE OF OPERATION WITH COUPLED INDUCTOR

A Single Switch DC-DC Converter for Photo Voltaic-Battery System

The Master of IEEE Projects. LeMenizInfotech. 36, 100 Feet Road, Natesan Nagar, Near Indira Gandhi Statue, Pondicherry

Interleaved coupled-inductor boost converter with multiplier cell and passive lossless clamp

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 8, AUGUST

A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR

Dynamic Performance Investigation of Transformer less High Gain Converter with PI Controller

Levels of Inverter by Using Solar Array Generation System

A Switched Capacitor Based Active Z-Network Boost Converter

Research of Switched Inductor Boost Converter Based on Topology Combination

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE

Analysis and comparison of two high-gain interleaved coupled-inductor boost converters

ANALYSIS, SIMULATION AND HARDWARE IMPLEMENTATION OF BOOST DC-DC CONVERTER

Transcription:

IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 12 June 2015 ISSN (online): 2349-784X Hardware Implementation of Interleaved Converter with Voltage Multiplier Cell for PV System Kiruthiga. G PG Student Department of Electrical and Electronics Engineering V.S.B. Engineering College, Karur Kalyana Sundaram M.S Assistant Professor V.S.B. Engineering College, Karur Abstract A novel high step-up converter, which is suitable for renewable energy system is proposed in this paper. A voltage multiplier cell composed of switched capacitors and diodes. The configuration of the proposed converter not only reduces the current ripple and also increases the life span of converters. Due to the lossless passive clamp circuits, the leakage energy is recycled to the output terminals. Hence large voltage spike is avoided. Even the low voltage stress makes the low-voltage-rated MOSFETs can be adopted for reductions of conduction losses and cost. Efficiency improves because the energy stored in leakage inductances is recycled to the output terminal. This design analysis is simulated using hardware which illustrate the better performance of the converter. Keywords: Photovoltaic System, Voltage Multiplier Module, IBC, High Step-Up. I. INTRODUCTION The renewable energy-based distributed generation systems are warmly welcomed and grown up rapidly in recent years, which are powered by multiple sources such as the fuel cells, photovoltaic (PV) panels. Unfortunately, the output voltage of most PV panel is lower than 50 V and the PV series-connected configuration is the commonly employed solution to satisfy the secondstage grid-connected inverter applications. Such systems transform energy from renewable sources into electrical energy, and convert low voltage into high voltage via a step-up converter, which can convert energy into electricity using a grid-by-grid inverter or DC-Micro grid. Theoretically step-up converters such as boost converter, flyback converters cannot achieve a high step-up conversion with high efficiency because of the elements of the resistances and leakage inductances also the voltage stresses are large. Thus in recent years many converters have been developed Conventional interleaved boost converter(ibc) is an excellent candidate for high-power applications and power factor correction (PFC)Theoretically, conventional step-up converters, such as the boost converter and flyback converter, cannot achieve a high step-up conversion with high efficiency because of the resistances of elements or leakage inductance, also the voltage stresses are large. Unfortunately, the step-up gain is limited and the voltage stresses on the semiconductor devices are equal to output voltage. Hence based on the above considerations, to modify the conventional boost converter for high step-up and high power applications is a Fig. 1: Typical Renewable Energy System All rights reserved by www.ijste.org 41

To integrate switched capacitor into interleaved boost converter may make voltage gain reduplicate, but without employment of coupledinductor causes the step-up voltage gain limited. Oppositely, to integrate only coupled inductor into interleaved boost converter is able to make voltage gain higher and adjustable, but without employment of switched capacitor causes the step- up voltage gain ordinary. Thus, the synchronous employment of coupled inductor and switched capacitor is a better concept, as well as the high step-up gain, high efficiency and low voltage stress are achieved even for high power applications. The proposed converter is a conventional interleaved boost converter integrated with a voltage multiplier cell and thevoltage multiplier cell is composed of switched capacitors and coupled inductors. The coupled inductors can be designed to extend step-up gain, and the switched capacitors offers extra voltage conversion ratio. In addition, when one of the switches turns off, the energy stored in magnetizing inductor will transfer via three respective paths, thus, the current distribution not only decreases the conduction losses by lower effective current, but also makes currents through some diodes decreases to zero before they turn off, which alleviate diode reverse recovery losses. The advantages of the proposed converter are as follows: 1) The proposed converter is characterized by low input current ripple and low conduction losses, which increases life time of renewable energy sources and makes it suitable for high power applications. 2) The converter achieves high step up gain that renewable energy systems require. 3) Due to the lossless passive clamp performance, the leakage energy recycled to the output terminal. Hence large voltage spike across the main switches are alleviated and the efficiency is improved. 4) Low cost and high efficiency are achieved by employment of the low voltage rated power switch with low voltage RDS(ON), also the voltage stresses on the main switches are substantially lower than the output voltage. 5) The inherent configuration of the proposed converter makes some diode decrease conduction losses and alleviate diode reverse recovery problems. II. INTERLEAVED BOOST CONVERTER Boost power supplies are popular for creating higher DC voltages from low voltage inputs. As the power demands from these power supply increase, however a single power stage may be insufficient. To rectify this problem we go for interleaving concept. Interleave boost converter is defined as coupling the many stages of boost converter. Fig. 2: Interleaved Boost Converter Interleaving technique meritoriously increases the switching frequency without increases the switching frequency. This topology improves the converter performance at the cost of additional inductor power switching devices and output rectifiers and also it reduces the output capacitor current ripple as a function of duty cycle. Interleaved power converters can be very beneficial for high performance electrical equipment applications. Reductions in size and electromagnetic emission along with an increase in efficiency, transient response, and reliability are among the many advantages to using such converters. For high power applications single stage converter may not sufficient. In the interleaved boost converter two boost converters are connected in parallel manner. This type of converters mainly used in pv source and fuel cell technologies. III. VOLTAGE MULTIPLIER CELL As it name suggests a voltage multiplier circuit is a circuit which has a multiplication factor 4. Voltage multiplier circuit are capable of producing output voltage in the range of few of few 100 s to ten s of 1000 s of voltage depending upon their original input voltage with low current in milli ampere s range. Fig 3 shows a voltage multiplier circuit. The output of this circuit is greater than the input that is four times greater than the input voltage value. During negative half cycle the diode D1 is forward biased and conducts charging up the capacitor C1 to the peak value of the input voltage. There is no path for capacitor C1 to discharge into, it remains fully charged and acts as a storage device in series with the voltage supply. At the same time the diode D2 conducts via D1, charging up the capacitor C2. During the positive half cycle, the diode D1, is reverse biased blocking the discharging of C1 while diode D2 is forward biased charging up the capacitor C2. But there is a voltage across the capacitor is already equal to the peak input voltage, the capacitor C2, charges the twice the peak voltage value of the input voltage. All rights reserved by www.ijste.org 42

Then the voltage across C2 can be calculated as, V OUT = 2Vin This same procedure repeated for diode D3,D4 and capacitance C3,C4 then the final output from the C4 is calculated as, V OUT = 4Vin Fig. 3: Voltage Multiplier Cell IV. OPERATING PRINCIPLES The proposed high step-up interleaved converter with voltage multiplier module is shown in Fig.2. The voltage multiplier module is composed of two coupled inductors and two switched capacitors, and is inserted between a conventional interleaved boost converter to form an modified boost-flyback-forward interleaved structure. In fig2, L1, L2 inductors of IBC S1, S2-MOSFET switches C c1, C c2, D CI, D C2 - Voltage multiplier cell Components R 0 - Load resistance C- Capacitance Fig. 4: Interleaved Boost Converter With Voltage Multiplier Cell In the circuit analysis, the proposed converter operates in continuous conduction mode (CCM), and the duty cycles of the power switches during steady operation are greater than 0.5 and are interleaved with a 180-degree phase shift. All rights reserved by www.ijste.org 43

Mode I [t 0, t 1 ]: At t=t 0, the power switch S 2 remains on-state, and other power switch S 1 begins to turn on. The diodes D c1, D c2, D b1,d b2 and D f1 are reversed-biased, The series leakage inductors L s quickly releases the stored energy to output terminal via flyback-forward diode D f2, and the current through series leakage inductors L s decreases to zero. Mode II [t 1, t 2 ]: At t=t 1, both of the power switches S 1 and S 2 remain onstate, and all diodes are reversed-biased, Mode III [t 2, t 3 ]: At t=t 2, the power switch S 1 remains on-state, and other power switch S 2 begins to turn off. The diodes D c1, D b1 and D f2 are reversed-biased, The voltage stress on power switch S 2 is clamped by clamp capacitor C c1 which equals output voltage of boost converter. The input voltage source, magnetizing inductor L m2, leakage inductor L k2 and clamp capacitor C c2 release energy to output terminal, thus V C1 obtains a double output voltage of boost converter. Mode IV [t 3, t 4 ]: At t=t 3, the current i Dc2 has naturally decreased to zero due to the magnetizing current distribution, and hence diode reverse recovery losses are alleviated and conduction losses are decreased. Both power switches and all diodes remain previous state. Mode V [t 4, t 5 ]: At t=t 4, the power switch S 1 remains on-state, and other power switch S 2 begins to turn on. The diodes D c1, D c2, D b1,d b2 and D f2 are reversed-biased. The series leakage inductors L s quickly releases the stored energy to output terminal via flyback-forward diode D f1, and the current through series leakage inductors decreases to zero Mode VI [t 5, t 6 ]: At t=t 5, both of the power switches S 1 and S 2 remain onstate, and all diodes are reversed-biased. Mode VI [t 5, t 6 ]: At t=t 5, both of the power switches S 1 and S 2 remain onstate, and all diodes are reversed-biased, Mode VII [t 6, t 7 ]: At t=t 6, the power switch S 2 remains on-state, and other power switch S 1 begins to turn off. The diodes D c2, D b2 and D f1 are reversed-biased Mode VIII [t 7, t 8 ]: At t=t 7, the current i Dc1 has naturally decreased to zero due to the magnetizing current distribution and hence the diode reverse recovery problems are alleviated and conduction losses are reduced. V. HARDWARE IMPLEMENTATION A hardware of interleaved boost converter consists of two boostconverter connected in parallel with voltage multiplier component. A sensor also included for an any emergency condition. Fig. 5: Hardware Component In this hardware results, there is no current stress and ripples present. So the output is pure waveform with no distortion. The output also a pure dc waveform. All rights reserved by www.ijste.org 44

A. Hardware Specification: Table 1 Hardware Specification Component Specification Inductor 6.08 µh Capacitor 56 µf Micro controller PIC16FXX40 The pulse output also a ripple free form. The highest efficiency of this model is 98.56%. The output voltage is given by, Vs1=Vs2= V in VI. CRO RESULTS Fig. 6: Pulse Waveform for IBC Fig. 7: Output Waveform for IBC with VMC The above figure explains the final output is a pure waveform with ripple free content. All rights reserved by www.ijste.org 45

VII. CONCLUSION This paper has presented an efficient interleaved boost converter topology for renewable energy sources. This type of configuration suits for high power applications. The proposed converter has been successfully verified with the help of the hardware. Instead of boost converters, the proposed system will be used for renewable energy sources applications. REFERENCES [1] Weichen Li, Xin Xiang, Chushan Li, Wuhua Li, Interleaved High Step-Up ZVT Converter With Built-In Transformer Voltage Doubler Cell for Distributed PV Generation System, IEEE Trans. Ind. Electron vol 25,Jan 2013. [2] J. Selvaraj and N. A. Rahim, Multilevel inverter for grid-connected PV system employing digital PI controller, IEEE Trans. Ind. Electron IEEE Trans. Ind. Electron Apr 2012. [3] B. Yang, W. Li, Y. Zhao, and X. He, Design and analysis of a gridconnected PV power system, IEEE Trans. Power Electron., vol. 25,no. 4, Apr. 2010. [4] Q. Li and P.Wolfs, A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations, IEEE Trans. Power Electron., vol. 23, no. 3, May 2009. [5] V. Scarpa, S. Buso, and G. Spiazzi, Low-complexity MPPT technique exploiting the PV modulempp locus characterization, IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1531 1538, May 2008. All rights reserved by www.ijste.org 46