Practical Electrical Engineering

Similar documents
Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7

Veer Narmad South Gujarat University, Surat

Introductory Electronics for Scientists and Engineers

Microelectronic Circuits

Index. The original version of the index was revised. An erratum can be found at DOI / _19

SpringerBriefs in Electrical and Computer Engineering

DC/AC CIRCUITS: CONVENTIONAL FLOW TEXTBOOKS

Paper-1 (Circuit Analysis) UNIT-I

Associate In Applied Science In Electronics Engineering Technology Expiration Date:

Lesson Plan. Week Theory Practical Lecture Day. Topic (including assignment / test) Day. Thevenin s theorem, Norton s theorem

SETH JAI PARKASH POLYTECHNIC, DAMLA

ELECTRONICS WITH DISCRETE COMPONENTS

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

Syllabus for: Electronics for F Y B Sc (Electronics) Semester- 1 (With effect from June 2014) PAPER I: Basic Electrical Circuits

Introduction... 1 Part I: Getting Started with Circuit Analysis Part II: Applying Analytical Methods for Complex Circuits...

Unit/Standard Number. LEA Task # Alignment

CRN: MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin

Basic Electrical Engineering

Number of Lessons:155 #14B (P) Electronics Technology with Digital and Microprocessor Laboratory Completion Time: 42 months

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications

CHAPTER 9. Sinusoidal Steady-State Analysis

ELECTRIC CIRCUITS. Third Edition JOSEPH EDMINISTER MAHMOOD NAHVI

Electrical and Electronic Principles

UPSC Electrical Engineering Syllabus

Fundamentals of Power Electronics

ELECTRONICS ADVANCED SUPPLEMENTARY LEVEL

EDWARD HUGHES ELECTRICAL AND ELECTRONIC TECHNOLOGY / 1. Revised by John Hiley, Keith Brown and Ian McKenzie Smith

AC : A CIRCUITS COURSE FOR MECHATRONICS ENGINEERING

ENGINEERING CIRCUIT ANALYSIS

ELEN 140 ELECTRICAL CIRCUITS II Winter 2013


Preface... iii. Chapter 1: Diodes and Circuits... 1

ETE 112. Structured Programming Laboratory

Devices and Op-Amps p. 1 Introduction to Diodes p. 3 Introduction to Diodes p. 4 Inside the Diode p. 6 Three Diode Models p. 10 Computer Circuit

Chapter 1 Semiconductors and the p-n Junction Diode 1

DEPARTMENT OF ELECTRONICS

UNIT 1 CIRCUIT ANALYSIS 1 What is a graph of a network? When all the elements in a network is replaced by lines with circles or dots at both ends.

Osmania University B.Sc Electronics - Syllabus (under CBCS w.e.f ) I ST and II nd Year

EE301 Electronics I , Fall

444 Index. F Fermi potential, 146 FGMOS transistor, 20 23, 57, 83, 84, 98, 205, 208, 213, 215, 216, 241, 242, 251, 280, 311, 318, 332, 354, 407

Contents. Acknowledgments. About the Author

Subject-wise Tests Tests will be activated at 06:00 pm on scheduled day

Instrumentation Engineering. Network Theory. Comprehensive Theory with Solved Examples and Practice Questions

Gechstudentszone.wordpress.com

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1

METHODOLOGY FOR THE DIGITAL CALIBRATION OF ANALOG CIRCUITS AND SYSTEMS

K. MAHADEVAN. Professor Electrical and Electronics Engineering PSNA College of Engineering and Technology Dindigul, Tamil Nadu C.

Figure 1.1 Mechatronic system components (p. 3)

ELECTRICAL ENGINEERING (CODE NO. 10) PAPER - I

B.Sc. Syllabus for Electronics under CBCS. Semester-I

V.S.B ENGINEERING COLLEGE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING I EEE-II Semester all subjects 2 & 16 marks QB

* GATE 2017 ONLINE TEST SERIES

Linear Algebra, Calculus, Differential Equations and Vector Analysis. Complex Anaysis, Numerical Methods and Probability and Statistics.

NUMBER OF TIMES COURSE MAY BE TAKEN FOR CREDIT: One

Chapter 13 Oscillators and Data Converters

Revised April Unit/Standard Number. Proficiency Level Achieved: (X) Indicates Competency Achieved to Industry Proficiency Level

BASIC ELECTRONICS/ ELECTRONICS

Electrical Circuits and Systems

DIPLOMA IN (ELECTRICAL/ INSTRUMENTATION & CONTROL ENGG I-SEMESTER ELECTRICAL ENGINEERING (COURSE NO: BEE-101)

Careers in Electronics Using a Calculator Safety Precautions Dc Circuits p. 1 Fundamentals of Electricity p. 3 Matter, Elements, and Compounds p.

NEW HORIZON PRE UNIVERSITY COLLEGE LESSON PLAN FOR THE ACADEMIC YEAR Department of ELECTRONICS

Topic wise Tests. Complex Variables, Numerical Methods, Probability and Statistics & Transfrom Theory.

Contents. 1. Essential Electronics 1. Preface Acknowledgements

GATE: Electronics MCQs (Practice Test 1 of 13)

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

BJT Amplifier. Superposition principle (linear amplifier)

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK UNIT I BASIC CIRCUITS ANALYSIS PART A (2-MARKS)

Circuit Systems with MATLAB and PSpice

DIGITAL ELECTRONICS ANALOG ELECTRONICS

S.E. Sem. III [ETRX] Control System Engineering SYLLABUS

Revised April Unit/Standard Number. High School Graduation Years 2016, 2017 and 2018

POWER ELECTRONICS. Alpha. Science International Ltd. S.C. Tripathy. Oxford, U.K.

TEACHING & EXAMINATION SCHEME For the Examination 2015 ELECTRONICS. B.Sc. Part - I

DEGREE: BACHELOR IN INDUSTRIAL ELECTRONICS AND AUTOMATION YEAR: 2ND TERM: 2ND

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

ELC224 Final Review (12/10/2009) Name:

Paper No. Name of the Paper Theory marks Practical marks Periods per week Semester-I I Semiconductor

Downloaded from / 1

Design of Analog CMOS Integrated Circuits

Electrical, Electronic and Communications Engineering Technology/Technician CIP Task Grid

Theory. Week. Lecture Day. TOPICS Week TOPICS. Intoduction Overview of DC Circuits. 1.use of measuring instruments-multimeter,cro etc.

Gujarat University B. Sc. Electronics Semester I: ELE (Effective from: )

Brief Course Description for Electrical Engineering Department study plan

UNIT-1: CIRCUIT CONCEPT. capacitor. the market to purchase a resistor, apart from resistance what else will you quote so that the safety is ensured?

WASSCE / WAEC BASIC ELECTRONICS / ELECTRONICS SYLLABUS


SRI SATYA SAI INSTITUTE OF SCIENCE AND TECHNOLOGY

SEMESTER SYSTEM, A. PROPOSED SCHEME FOR B.Sc. ELECTRONICS (PASS) COURSE. B.Sc. (ELECTRONICS MAINTENANCE) COURSE

LESSON PLAN. SUBJECT: LINEAR IC S AND APPLICATION NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE. Portions to be covered

ESE 230 Syllabus Prof. D. L. Rode

ECE 215 Lecture 8 Date:

S.No. Name of the Subject/Lab Semester Page No. 1 Electronic devices II 2 2 Circuit theory II 6

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota

Operational amplifiers

Analog Circuits and Signal Processing. Series Editors Mohammed Ismail, Dublin, USA Mohamad Sawan, Montreal, Canada

Integrated Circuit Design for High-Speed Frequency Synthesis

SYLLABUS. osmania university CHAPTER - 1 : OPERATIONAL AMPLIFIER CHAPTER - 2 : OP-AMP APPLICATIONS ARATORS AND CONVERTERS

UMAINE ECE Morse Code ROM and Transmitter at ISM Band Frequency

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

Electrical Materials may be referred to a metal, dielectrics,electrical insulators or conductors,paramagnetic materials and many other.

Transcription:

Practical Electrical Engineering

Sergey N. Makarov Reinhold Ludwig Stephen J. Bitar Practical Electrical Engineering

Sergey N. Makarov ECE Department Worcester Polytechnic Institute Worcester, Washington, USA Reinhold Ludwig ECE Department Worcester Polytechnic Institute Worcester, Massachusetts, USA Stephen J. Bitar Worcester Polytechnic Institute Worcester, Massachusetts, USA ISBN 978-3-319-21172-5 ISBN 978-3-319-21173-2 (ebook) DOI 10.1007/978-3-319-21173-2 Library of Congress Control Number: 2015950619 Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG Switzerland

To Antonina, Margot, and Juliette

1 From Physics to Electric Circuits... 1 1.1 Electrostatics of Conductors... 3 1.1.1 Charges, Coulomb Force, and Electric Field... 3 1.1.2 Electric Potential and Electric Voltage...... 4 1.1.3 Electric Voltage Versus Ground............. 5 1.1.4 Equipotential Conductors... 7 1.1.5 Use of Coulomb s Law to Solve Electrostatic Problems.................... 9 1.2 Steady-State Current Flow and Magnetostatics......... 11 1.2.1 Electric Current... 11 1.2.2 Difference Between Current Flow Model and Electrostatics....................... 11 1.2.3 Physical Model of an Electric Circuit... 13 1.2.4 Magnetostatics and Ampere s Law... 14 1.2.5 Origin of Electric Power Transfer... 16 1.3 Hydraulic and Fluid Mechanics Analogies............ 18 1.3.1 Hydraulic Analogies in the DC Steady State.... 18 1.3.2 Analogies for Alternating-Current (AC) Circuits...... 19 1.3.3 Analogies for Semiconductor Circuit Components..................... 20 Part I DC Circuits: General Circuit Theory Operational Amplifier 2 Major Circuit Elements... 29 2.1 Resistance: Linear Passive Circuit Element........... 31 2.1.1 Circuit Elements Versus Circuit Components... 31 2.1.2 Resistance...... 31 2.1.3 υ-i Characteristic of the Resistance: Open and Short Circuits...... 34 2.1.4 Power Delivered to the Resistance........... 35 2.1.5 Finding Resistance of Ohmic Conductors... 36 vii

2.1.6 Application Example: Power Loss in Transmission Wires and Cables............. 39 2.1.7 Physical Component: Resistor............ 41 2.1.8 Application Example: Resistive Sensors....... 42 2.2 Nonlinear Passive Circuit Elements... 46 2.2.1 Resistance as a Model for the Load... 46 2.2.2 Nonlinear Passive Circuit Elements.......... 47 2.2.3 Static Resistance of a Nonlinear Element.... 48 2.2.4 Dynamic (Small-Signal) Resistance of a Nonlinear Element..... 49 2.2.5 Electronic Switch... 50 2.3 Independent Sources... 52 2.3.1 Independent Ideal Voltage Source.......... 52 2.3.2 Circuit Model of a Practical Voltage Source.... 54 2.3.3 Independent Ideal Current Source............ 55 2.3.4 Circuit Model of a Practical Current Source... 57 2.3.5 Operation of the Voltage Source............. 58 2.3.6 Application Example: DC Voltage Generator with Permanent Magnets.......... 59 2.3.7 Application Example: Chemical Battery... 61 2.4 Dependent Sources and Time-Varying Sources......... 64 2.4.1 Dependent Versus Independent Sources... 64 2.4.2 Definition of Dependent Sources............ 64 2.4.3 Transfer Characteristics... 66 2.4.4 Time-Varying Sources.................... 67 2.5 Ideal Voltmeter and Ammeter: Circuit Ground......... 69 2.5.1 Ideal Voltmeter and Ammeter... 69 2.5.2 Circuit Ground: Fluid Mechanics Analogy.... 70 2.5.3 Types of Electric Ground... 71 2.5.4 Ground and Return Current... 71 2.5.5 Absolute Voltage and Voltage Drop Across a Circuit Element.................. 72 3 Circuit Laws and Networking Theorems... 89 3.1 Circuit Laws: Networking Theorems................ 91 3.1.1 Electric Network and Its Topology........... 91 3.1.2 Kirchhoff s Current Law... 93 3.1.3 Kirchhoff s Voltage Law... 95 3.1.4 Power-Related Networking Theorems... 98 3.1.5 Port of a Network: Network Equivalence...... 99 3.2 Series and Parallel Network/Circuit Blocks........... 100 3.2.1 Sources in Series and in Parallel............. 100 3.2.2 Resistances in Series and in Parallel.......... 102 3.2.3 Reduction of Resistive Networks.......... 104 3.2.4 Voltage Divider Circuit..... 105 3.2.5 Application Example: Voltage Divider as a Sensor Circuit... 107 viii

3.2.6 Application Example: Voltage Divider as an Actuator Circuit... 109 3.2.7 Current Limiter.... 111 3.2.8 Current Divider Circuit... 112 3.2.9 Wheatstone Bridge... 113 3.3 Superposition Theorem and Its Use..... 116 3.3.1 Linear and Nonlinear Circuits.............. 116 3.3.2 Superposition Theorem or Superposition Principle... 117 3.3.3 Y (Wye) and Δ (Delta) Networks: Use of Superposition..... 119 3.3.4 T and Π Networks: Two-Port Networks....... 121 3.3.5 General Character of Superposition Theorem... 122 4 Circuit Analysis and Power Transfer... 139 4.1 Nodal/Mesh Analysis........................... 141 4.1.1 Importance of Circuit Simulators............ 141 4.1.2 Nodal Analysis for Linear Circuits........... 141 4.1.3 Supernode... 145 4.1.4 Mesh Analysis for Linear Circuits........... 146 4.1.5 Supermesh... 147 4.2 Generator Theorems... 149 4.2.1 Equivalence of Active One-Port Networks: Method of Short/Open Circuit............ 149 4.2.2 Application Example: Reading and Using Data for Solar Panels..................... 150 4.2.3 Source Transformation Theorem............ 151 4.2.4 Thévenin s and Norton s Theorems: Proof Without Dependent Sources........... 153 4.2.5 Application Example: Generating Negative Equivalent Resistance...... 158 4.2.6 Summary of Circuit Analysis Methods... 159 4.3 Power Transfer............................... 160 4.3.1 Maximum Power Transfer................. 160 4.3.2 Maximum Power Efficiency......... 162 4.3.3 Application Example: Power Radiated by a Transmitting Antenna................. 163 4.3.4 Application Example: Maximum Power Extraction from Solar Panel...... 164 4.4 Analysis of Nonlinear Circuits: Generic Solar Cell... 167 4.4.1 Analysis of Nonlinear Circuits: Load Line Method........................... 167 4.4.2 Iterative Method for Nonlinear Circuits... 169 4.4.3 Application Example: Solving the Circuit for a Generic Solar Cell... 170 ix

5 Operational Amplifier and Amplifier Models... 189 5.1 Amplifier Operation and Circuit Models........... 191 5.1.1 Amplifier Operation..... 191 5.1.2 Application Example: Operational Amplifier Comparator.................... 194 5.1.3 Amplifier Circuit Model..... 195 5.1.4 Ideal-Amplifier Model and First Summing-Point Constraint..... 197 5.2 Negative Feedback... 199 5.2.1 Idea of the Negative Feedback.............. 199 5.2.2 Amplifier Feedback Loop: Second Summing-Point Constraint..... 199 5.2.3 Amplifier Circuit Analysis Using Two Summing-Point Constraints..... 201 5.2.4 Mathematics Behind the Second Summing-Point Constraint..... 205 5.2.5 Current Flow in the Amplifier Circuit.... 206 5.2.6 Multiple-Input Amplifier Circuit: Summing Amplifier... 207 5.3 Amplifier Circuit Design........................ 209 5.3.1 Choosing Proper Resistance Values.... 209 5.3.2 Model of a Whole Voltage Amplifier Circuit... 211 5.3.3 Voltage Amplifier Versus Matched Amplifier... 212 5.3.4 Cascading Amplifier Stages... 215 5.3.5 Amplifier DC Imperfections and Their Cancellation....................... 217 5.3.6 DC-Coupled Single-Supply Amplifier: Virtual-Ground Circuit..... 220 5.4 Difference and Instrumentation Amplifiers... 222 5.4.1 Differential Input Signal to an Amplifier... 222 5.4.2 Difference Amplifier: Differential Gain and Common-Mode Gain................. 223 5.4.3 Application Example: Instrumentation Amplifier... 225 5.4.4 Instrumentation Amplifier in Laboratory.... 228 5.5 General Feedback Systems....................... 230 5.5.1 Signal-Flow Diagram of a Feedback System.... 230 5.5.2 Closed-Loop Gain and Error Signal.... 230 5.5.3 Application of General Theory to Voltage Amplifiers with Negative Feedback... 232 5.5.4 Voltage, Current, Transresistance, and Transconductance Amplifiers with the Negative Feedback... 233 x

Part II Transient Circuits 6 Dynamic Circuit Elements... 259 6.1 Static Capacitance and Inductance...... 261 6.1.1 Capacitance, Self-Capacitance, and Capacitance to Ground................... 261 6.1.2 Application Example: ESD...... 263 6.1.3 Parallel-Plate Capacitor................... 264 6.1.4 Circuit Symbol: Capacitances in Parallel and in Series........................... 266 6.1.5 Application Example: How to Design a1-μf Capacitor?.... 267 6.1.6 Application Example: Capacitive Touchscreens..... 270 6.1.7 Self-Inductance (Inductance) and Mutual Inductance.......... 272 6.1.8 Inductance of a Solenoid With and Without Magnetic Core...... 273 6.1.9 Circuit Symbol: Inductances in Series and in Parallel...... 275 6.1.10 Application Example: How to Design a 1-mH Inductor?..... 276 6.2 Dynamic Behavior of Capacitance and Inductance...... 278 6.2.1 Set of Passive Linear Circuit Elements... 278 6.2.2 Dynamic Behavior of Capacitance........... 278 6.2.3 Dynamic Behavior of Inductance...... 281 6.2.4 Instantaneous Energy and Power of Dynamic Circuit Elements...... 283 6.2.5 DC Steady State.... 284 6.2.6 Behavior at Very High Frequencies... 285 6.3 Application Circuits Highlighting Dynamic Behavior.... 287 6.3.1 Bypass Capacitor....................... 287 6.3.2 Blocking Capacitor... 289 6.3.3 Decoupling Inductor..................... 289 6.3.4 Amplifier Circuits With Dynamic Elements: Miller Integrator... 290 6.3.5 Compensated Miller Integrator.............. 291 6.3.6 Differentiator and Other Circuits............ 292 7 Transient Circuit Fundamentals... 307 7.1 RC Circuits... 310 7.1.1 Energy-Release Capacitor Circuit... 310 7.1.2 Time Constant of the RC Circuit and Its Meaning... 312 7.1.3 Continuity of the Capacitor Voltage... 313 7.1.4 Application Example: Electromagnetic Railgun... 314 xi

7.1.5 Application Example: Electromagnetic Material Processing... 316 7.1.6 Application Example: Digital Memory Cell.... 317 7.1.7 Energy-Accumulating Capacitor Circuit... 318 7.2 RL Circuits.... 321 7.2.1 Energy-Release Inductor Circuit... 321 7.2.2 Continuity of the Inductor Current... 324 7.2.3 Energy-Accumulating Inductor Circuit...... 325 7.2.4 Energy-Release RL Circuit with the Voltage Supply... 327 7.2.5 Application Example: Laboratory Ignition Circuit..... 328 7.3 Switching RC Oscillator......................... 330 7.3.1 About Electronic Oscillators... 330 7.3.2 Bistable Amplifier Circuit with the Positive Feedback... 330 7.3.3 Triggering... 332 7.3.4 Switching RC Oscillator... 333 7.3.5 Oscillation Frequency...... 334 7.3.6 Circuit Implementation: 555 Timer........... 335 7.4 Single-Time-Constant (STC) Transient Circuits.... 337 7.4.1 Circuits with Resistances and Capacitances..... 337 7.4.2 Circuits with Resistances and Inductances...... 339 7.4.3 Example of a Non-STC Transient Circuit... 341 7.4.4 Example of an STC Transient Circuit... 342 7.4.5 Method of Thévenin Equivalent and Application Example: Circuit with a Bypass Capacitor.... 343 7.5 Description of the Second-Order Transient Circuits... 346 7.5.1 Types of Second-Order Transient Circuits... 346 7.5.2 Series-Connected Second-Order RLC Circuit... 346 7.5.3 Initial Conditions in Terms of Circuit Current and Capacitor Voltage.............. 349 7.5.4 Step Response and Choice of the Independent Function.................... 350 7.5.5 Parallel Connected Second-Order RLC Circuit... 351 7.6 Step Response of the Series RLC Circuit............. 354 7.6.1 General Solution of the Second-order ODE..... 354 7.6.2 Derivation of the Complementary Solution: Method of Characteristic Equation........... 354 7.6.3 Finding Integration Constants... 356 7.6.4 Solution Behavior for Different Damping Ratios... 356 7.6.5 Overshoot and Rise Time... 357 7.6.6 Application Example: Nonideal Digital Waveform... 358 xii

Part III AC Circuits 8 Steady-State AC Circuit Fundamentals... 389 8.1 Harmonic Voltage and Current: Phasor.............. 391 8.1.1 Harmonic Voltages and Currents.......... 391 8.1.2 Phase: Leading and Lagging............... 393 8.1.3 Application Example: Measurements of Amplitude, Frequency, and Phase..... 396 8.1.4 Definition of a Phasor........... 396 8.1.5 From Real Signals to Phasors..... 398 8.1.6 From Phasors to Real Signals..... 399 8.1.7 Polar and Rectangular Forms: Phasor Magnitude....................... 399 8.1.8 Operations with Phasors and Phasor Diagram... 401 8.1.9 Shorthand Notation for the Complex Exponent... 404 8.2 Impedance... 405 8.2.1 The Concept of Impedance................ 405 8.2.2 Physical Meaning of Impedance... 407 8.2.3 Magnitude and Phase of Complex Impedance... 408 8.2.4 Application Example: Impedance of a Human Body... 410 8.3 Principles of AC Circuit Analysis.................. 411 8.3.1 AC Circuit Analysis: KVL, KCL, and Equivalent Impedances................ 411 8.3.2 Complete Solution for an AC Circuit: KVL and KCL on Phasor Diagram... 412 8.3.3 Source Transformation...... 413 8.3.4 Thévenin and Norton Equivalent Circuits... 415 8.3.5 Summary of AC Circuit Analysis at a Single Frequency.... 417 8.3.6 Multifrequency AC Circuit Analysis: Superposition Theorem... 417 9 Filter Circuits: Frequency Response, Bode Plots, and Fourier Transform... 433 9.1 First-Order Filter Circuits and Their Combinations...... 435 9.1.1 RC Voltage Divider as an Analog Filter... 435 9.1.2 Half-Power Frequency and Amplitude Transfer Function.... 440 9.1.3 Bode Plot, Decibel, and Roll-Off.... 441 9.1.4 Phase Transfer Function and Its Bode Plot.... 444 9.1.5 Complex Transfer Function: Cascading Filter Circuits... 445 9.1.6 RL Filter Circuits...... 448 9.2 Bandwidth of an Operational Amplifier... 451 9.2.1 Bode Plot of the Open-Loop Amplifier Gain.... 451 xiii

9.2.2 Unity-Gain Bandwidth Versus Gain-Bandwidth Product.................. 452 9.2.3 Model of the Open-Loop AC Gain........... 453 9.2.4 Model of the Closed-Loop AC Gain... 454 9.2.5 Application Example: Finding Bandwidth of an Amplifier Circuit.............. 455 9.2.6 Application Example: Selection of an Amplifier IC for Proper Frequency Bandwidth.......... 456 9.3 Introduction to Continuous and Discrete Fourier Transform...... 458 9.3.1 Meaning and Definition of Fourier Transform... 458 9.3.2 Mathematical Properties of Fourier Transform... 460 9.3.3 Discrete Fourier Transform and Its Implementation...... 461 9.3.4 Sampling Theorem... 463 9.3.5 Applications of Discrete Fourier Transform... 464 9.3.6 Application Example: Numerical Differentiation via the FFT... 464 9.3.7 Application Example: Filter Operation for an Input Pulse Signal.................. 466 9.3.8 Application Example: Converting Computational Electromagnetic Solution from Frequency Domain to Time Domain...... 467 10 Second-Order RLC Circuits... 481 10.1 Theory of Second-Order Resonant RLC Circuits...... 483 10.1.1 Self-Oscillating Ideal LC Circuit............ 483 10.1.2 Series Resonant Ideal LC Circuit... 485 10.1.3 Series Resonant RLC Circuit: Resonance Condition...... 486 10.1.4 Quality Factor Q of the Series Resonant RLC Circuit... 488 10.1.5 Bandwidth of the Series Resonant RLC Circuit... 490 10.1.6 Parallel Resonant RLC Circuit: Duality.... 493 10.2 Construction of Second-Order RLC Filters... 496 10.2.1 Second-Order Band-Pass RLC Filter......... 496 10.2.2 Second-Order Low-Pass RLC Filter... 499 10.2.3 Second-Order High-Pass RLC Filter... 500 10.2.4 Second-Order Band-Reject RLC Filter... 502 10.2.5 Second-Order RLC Filters Derived from the Parallel RLC Circuit......... 504 10.3 RLC Circuits for Near-Field Communications and Proximity Sensors...... 506 10.3.1 Near-Field Wireless Link... 506 10.3.2 Transmitter Circuit...................... 507 10.3.3 Receiver Circuit... 508 xiv

10.3.4 Application Example: Near-Field Wireless Link in Laboratory...................... 510 10.3.5 Application Example: Proximity Sensors...... 511 11 AC Power and Power Distribution... 523 11.1 AC Power Types and Their Meaning...... 525 11.1.1 Instantaneous AC Power... 525 11.1.2 Time-averaged AC Power... 526 11.1.3 Application Example: rms Voltages and AC Frequencies Around the World... 528 11.1.4 rms Voltages for Arbitrary Periodic AC Signals............................ 529 11.1.5 Average AC Power in Terms of Phasors: Power Angle..... 531 11.1.6 Average Power for Resistor, Capacitor, and Inductor... 532 11.1.7 Average Power, Reactive Power, and Apparent Power... 533 11.1.8 Power Triangle......................... 535 11.1.9 Application Example: Wattmeter..... 538 11.2 Power Factor Correction: Maximum Power Efficiency and Maximum Power Transfer.... 539 11.2.1 Power Factor Correction... 539 11.2.2 Application Example: Automatic Power Factor Correction System... 542 11.2.3 Principle of Maximum Power Efficiency for AC Circuits...... 542 11.2.4 Principle of Maximum Power Transfer for AC Circuits...... 544 11.3 AC Power Distribution: Balanced Three-Phase Power Distribution System... 546 11.3.1 AC Power Distribution Systems............. 546 11.3.2 Phase Voltages: Phase Sequence.... 547 11.3.3 Wye (Y) Source and Load Configurations for Three-Phase Circuits... 549 11.3.4 Application: Examples of Three-Phase Source and the Load..................... 550 11.3.5 Solution for the Balanced Three-Phase Wye-Wye Circuit...... 551 11.3.6 Removing the Neutral Wire in Long-Distance Power Transmission... 553 11.4 Power in Balanced Three-Phase Systems: Delta-connected Three-Phase Circuits............... 556 11.4.1 Instantaneous Power..................... 556 11.4.2 Average Power, Reactive Power, and Apparent Power... 558 xv

11.4.3 Application Example: Material Consumption in Three-Phase Systems... 558 11.4.4 Balanced Delta-Connected Load... 560 11.4.5 Balanced Delta-Connected Source........... 560 12 Electric Transformer and Coupled Inductors... 577 12.1 Ideal Transformer as a Linear Passive Circuit Element... 579 12.1.1 Electric Transformer... 579 12.1.2 Ideal Open-Circuited Transformer: Faraday s Law of Induction... 579 12.1.3 Appearance of Transformer Currents......... 583 12.1.4 Ampere s Law... 583 12.1.5 Ideal Loaded Transformer... 584 12.1.6 Ideal Transformer Versus Real Transformer: Transformer Terminology.... 586 12.1.7 Mechanical Analogies of a Transformer....... 589 12.2 Analysis of Ideal Transformer Circuits... 590 12.2.1 Circuit with a Transformer in the Phasor Form... 590 12.2.2 Referred (Or Reflected) Source Network in the Secondary Side...... 590 12.2.3 Referred (Or Reflected) Load Impedance to the Primary Side... 592 12.2.4 Transformer as a Matching Circuit........... 593 12.2.5 Application Example: Electric Power Transfer via Transformers................. 595 12.3 Some Useful Transformers.... 598 12.3.1 Autotransformer........................ 598 12.3.2 Multiwinding Transformer................. 599 12.3.3 Center-Tapped Transformer: Single-Ended to Differential Transformation.............. 600 12.3.4 Current Transformer... 602 12.4 Real-Transformer Model... 604 12.4.1 Model of a Nonideal Low-Frequency Transformer........................... 604 12.4.2 Model Parameters and Their Extraction....... 604 12.4.3 Analysis of Nonideal Transformer Model... 606 12.4.4 Voltage Regulation and Transformer Efficiency............................. 609 12.4.5 About High-Frequency Transformer Model..... 610 12.5 Model of Coupled Inductors..... 612 12.5.1 Model of Two Coupled Inductors.......... 612 12.5.2 Analysis of Circuits with Coupled Inductors.... 613 12.5.3 Coupling Coefficient..................... 616 12.5.4 Application Example: Wireless Inductive Power Transfer...... 618 12.5.5 Application Example: Coupling of Nearby Magnetic Radiators... 622 xvi

Part IV Digital Circuits 13 Switching Circuits... 641 13.1 Principle of Operation...... 643 13.1.1 Switch Concept..... 643 13.1.2 Switch Position in a Circuit... 644 13.1.3 MOSFET Switches and Threshold Voltage... 645 13.1.4 Sketch of Transistor Physics............... 647 13.2 Power Switching Circuits...... 650 13.2.1 Switching Quadrants..................... 650 13.2.2 Switching a Resistive Load... 651 13.2.3 Switching a DC Motor..... 651 13.2.4 One-Quadrant Switch for a DC Motor........ 652 13.2.5 Half H-Bridge for a DC Motor.... 653 13.2.6 Full H-Bridge for a DC Motor... 655 13.2.7 Application Example: Pulse-Width Modulation (PWM) Motor Controller PWM Voltage Form....... 657 13.3 Digital Switching Circuits..... 660 13.3.1 NOT Gate or Logic Inverter................ 660 13.3.2 NOR Gate and OR Gate.................. 661 13.3.3 NAND Gate and AND Gate... 664 13.3.4 Simple Combinational Logic Circuits: Switching Algebra...................... 668 13.3.5 Universal Property of NAND Gates: De Morgan s Laws... 669 13.3.6 Logic Circuit Analysis and Application Example: Logic Gate Motor Controller.... 670 13.3.7 Logic Circuit Synthesis................... 672 13.3.8 The Latch............................. 673 14 Analog-to-Digital Conversion... 689 14.1 Digital Voltage and Binary Numbers... 691 14.1.1 Introduction: ADC and DAC Circuits......... 691 14.1.2 Analog Voltage Versus Digital Voltage...... 692 14.1.3 Bit Rate, Clock Frequency: Timing Diagram.... 695 14.1.4 Binary Numbers...... 698 14.1.5 Hexadecimal Numbers..... 700 14.1.6 ASCII Codes and Binary Words... 702 14.1.7 Tri-state Digital Voltage................... 704 14.2 Digital-to-Analog Converter...................... 707 14.2.1 Digital-to-Analog Converter... 707 14.2.2 Circuit (A Binary-Weighted-Input DAC)... 707 14.2.3 Underlying Math and Resolution Voltage...... 708 14.2.4 DAC Full-Scale Output Voltage Range, Resolution, and Accuracy................. 711 14.2.5 Other DAC Circuits..................... 714 xvii

14.3 Sample-and-Hold Circuit: Nyquist Rate... 717 14.3.1 Analog-to-Digital Converter... 717 14.3.2 A Quick Look at an Analog Sinusoidal Voltage... 717 14.3.3 Sample-and-Hold Voltage........ 719 14.3.4 Sample-and-Hold Circuit (SH Circuit)..... 720 14.3.5 Nyquist Rate... 721 14.4 Analog-to-Digital Converter...................... 724 14.4.1 Flash ADC...... 724 14.4.2 ADC Resolution in Bits, Full-Scale Input Voltage Range, and Voltage Resolution... 726 14.4.3 ADC Equation and Quantization Error... 726 14.4.4 Successive-Approximation ADC............ 728 15 Embedded Computing... 745 15.1 Architecture of Microcontrollers... 747 15.1.1 A Generic Microcontroller.... 747 15.1.2 Central Processing Unit................... 748 15.1.3 Memory..... 749 15.1.4 Input and Output Devices... 750 15.1.5 Timers....... 750 15.1.6 Buses................. 750 15.1.7 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)... 751 15.2 Memory... 753 15.2.1 Organization of Memory.................. 753 15.2.2 Types of Memory....................... 755 15.2.3 Flash Memory in Embedded Devices...... 756 15.3 Arduino Uno: An Embedded Microcontroller......... 757 15.3.1 What Is Arduino?....................... 757 15.3.2 Arduino IDE... 757 15.3.3 Getting Started with Arduino IDE... 758 15.3.4 Arduino Language, Program Storage, and Basic Program Setup......... 759 15.3.5 Compiling and Uploading Code to Arduino Uno... 761 15.4 Basic Arduino Syntax....................... 762 15.4.1 Data Types... 762 15.4.2 Assignment Statements and Their Features..... 763 15.4.3 Arithmetic Operations... 764 15.4.4 Functions............................. 765 15.4.5 Libraries........ 767 15.4.6 Objects. Application Example: A Servomotor... 768 15.4.7 Interfacing with IO Pins.... 769 15.5 More Advanced Arduino Programming... 771 15.5.1 Conditional Statements................... 771 15.5.2 Switch Statements......... 773 xviii

Part V 15.5.3 Loops... 774 15.5.4 Arrays and Strings..... 777 15.5.5 Serial Communication... 779 15.5.6 Interrupts. Application Example: Emergency Motor Stop... 780 15.5.7 Square Wave and PWM Generation with Arduino....... 782 Diode and Transistor Circuits 16 Electronic Diode and Diode Circuits... 795 16.1 Diode Operation and Classification................. 797 16.1.1 Circuit Symbol and Terminals... 797 16.1.2 Three Regions of Operation................ 797 16.1.3 Mechanical Analogy of Diode Operation..... 798 16.1.4 Forward-Bias Region: Switching Diode....... 798 16.1.5 Reverse-Bias Region: Varactor Diode........ 800 16.1.6 Breakdown Region: Zener Diode............ 801 16.1.7 Other Common Diode Types............... 801 16.2 Diode Models.... 804 16.2.1 Ideal-Diode Model: Method of Assumed States... 804 16.2.2 Constant-Voltage-Drop Model... 808 16.2.3 Exponential Model in the Forward-Bias Region and Its Use... 809 16.2.4 Load-Line Analysis.............. 810 16.2.5 Iterative Solution... 811 16.2.6 Linearization About a Bias Point: Small-Signal Diode Model..... 811 16.2.7 Superposition Principle for Small-Signal Diode Model.......................... 813 16.3 Diode Voltage Regulators and Rectifiers... 814 16.3.1 Voltage Reference and Voltage Regulator...... 814 16.3.2 Voltage Regulator with Zener Diode...... 815 16.3.3 Half-Wave Rectifier... 817 16.3.4 Full-Wave Rectifier with a Dual Supply...... 819 16.3.5 Diode Bridge Rectifier... 820 16.3.6 Application Example: Automotive Battery-Charging System... 821 16.3.7 Application Example: Envelope (or Peak) Detector Circuit...... 823 16.4 Diode Wave-Shaping Circuits... 827 16.4.1 Diode Clamper Circuit (DC Restorer).... 827 16.4.2 Diode Voltage Doubler and Multiplier.... 828 16.4.3 Positive, Negative, and Double Clipper...... 830 16.4.4 Transfer Characteristic of a Diode Circuit..... 832 xix

17 Bipolar Junction Transistor and BJT Circuits... 851 17.1 Physical Principles and Operation Laws............. 853 17.1.1 Physical Structure: Terminal Voltages and Currents..... 853 17.1.2 Principle of Operation... 854 17.1.3 Operating Regions...... 856 17.1.4 Active Region... 857 17.1.5 Saturation Region and Cutoff Region... 859 17.1.6 Transistor v i Dependencies... 861 17.1.7 Early Effect... 863 17.1.8 The pnp Transistor...................... 863 17.2 Large-Signal Circuit Models of a BJT..... 866 17.2.1 Large-Signal Circuit Model of a BJT.... 866 17.2.2 Large-Signal DC Circuit Model of a BJT... 868 17.2.3 Method of Assumed States.... 870 17.2.4 Transistor Circuit Analysis Using the Method of Assumed States.............. 871 17.2.5 DC Transistor Bias Circuits.......... 873 17.2.6 β-independent Biasing and Negative Feedback..... 874 17.2.7 Common Discrete-Circuit Bias Arrangement.... 876 17.2.8 Other Bias Circuits...................... 878 17.3 Practical BJT Circuits at DC...................... 880 17.3.1 Constant-Current Sources: Active Region of Operation...... 880 17.3.2 Voltage Follower (Voltage Buffer): Active Region of Operation..... 882 17.3.3 BJT Switches: Saturation Region... 884 17.3.4 Application Example: Automotive BJT Dome Light Switch... 886 17.3.5 Application Example: Door Lock BJT Switch and Darlington Pair...... 887 17.4 Small-Signal Transistor Amplifier... 889 17.4.1 Generic Voltage-Gain Amplifier... 889 17.4.2 Simplified Model of the BJT Common-Emitter Amplifier... 890 17.4.3 Small-Signal BJT Analysis and Superposition... 892 17.4.4 Analysis of Small-Signal Common-Emitter Amplifiers... 894 17.4.5 Application Example: Transistor Amplifier Bandwidth..... 898 18 MOS Field-Effect Transistor (MOSFET)... 919 18.1 Principle of Operation and Threshold Voltage... 921 18.1.1 Physical Structure: Terminal Voltages and Currents..... 921 18.1.2 Simplified Principle of Operation............ 923 18.1.3 NMOS Capacitor....................... 924 xx

18.1.4 Voltage Across the Oxide Layer Before and at the Onset of Strong Inversion...... 925 18.1.5 Voltage Across the Semiconductor Body....... 926 18.1.6 Threshold Voltage... 928 18.1.7 PMOS Transistor... 929 18.1.8 Oxide Thicknesses and Capacitances in CMOS Processes... 930 18.1.9 Family Tree of FETs... 931 18.2 Theoretical Model of a MOSFET.................. 932 18.2.1 Test Circuit and Operating Regions... 932 18.2.2 Linear Subregion of Triode Region at Strong Inversion... 933 18.2.3 Nonlinear Subregion of Triode Region at Strong Inversion... 934 18.2.4 Saturation Region... 935 18.2.5 The v-i Dependencies... 937 18.2.6 PMOS Transistor... 939 18.2.7 Large-Signal MOSFET Model in Saturation.... 939 18.2.8 Device Parameters in CMOS Processes.... 940 18.3 MOSFET Switching and Bias Circuits...... 942 18.3.1 Triode Region for Switching Circuits: Device Parameter Extraction... 942 18.3.2 Resistor-Switch Model in Triode Region..... 944 18.3.3 Application Example: Output Resistance of Digital Logic Gates.................... 945 18.3.4 MOSFET Circuit Analysis at DC...... 947 18.3.5 Application Example: Basic MOSFET Actuator.... 951 18.4 MOSFET Amplifier... 953 18.4.1 MOSFET Common-Source Amplifier... 953 18.4.2 Voltage Transfer Characteristic... 953 18.4.3 Principle of Operation and Q-Point........... 955 18.4.4 MOSFET Biasing for Amplifier Operation..... 956 18.4.5 Small-Signal MOSFET Model and Superposition... 956 18.4.6 MOSFET Transconductance...... 957 18.4.7 Analysis of Common-Source MOSFET Amplifier... 958 Erratum... E1 Index... 973 xxi