Design and development of three-dimensional woven fabrics with stab resistance

Similar documents
Comparison of the Mechanical Properties Between 2D and 3D Orthogonal Woven Ramie Fiber Reinforced Polypropylene Composites

Influence of Metal Fiber Content and Arrangement on Shielding Effectiveness for Blended Electromagnetic Shielding Fabric

Influence of Metal Fibre Content of Blended Electromagnetic Shielding Fabric on Shielding Effectiveness Considering Fabric Weave

Development of a high-density nonwoven structure to improve the stab resistance of protective clothing material

Fibres and polymers used in Textile Filtration Media

Conversion of Glass Reinforced and Polypropylene Matrix Hybrid Materials into Thermoplastic Laminates

A BIOMIMIC THERMAL FABRIC WITH HIGH MOISTURE PERMEABILITY

CHAPTER 3 MATERIALS AND METHODS

Keywords: Dry spun acrylic fiber;ultrafine heterosexual acrylic;environmentally friendly acrylic fiber; Performance research

Woven textiles. Principles, developments and. applications. The Textile Institute. Edited by K. L. Gandhi

The Preparation and Optical Properties Analysis of High Visible Light and Low UV Transmittance Window Screening Fabric

DEVELOPING NEW TREND IN HONEYCOMB WOVEN METHOD TO BENEFIT IT IN CREATIVE DESIGN FOR DECORATIVE CURTAINS USING DOUBLE FACE FABRICS

Man-made staple fibres

An Investigation into the Parameters of Terry Fabrics Regarding the Production

Electronic supplementary material

Objectives. You will understand: Fibers

Non-woven. Bonding systems in non-woven. Discussion. Needled felts Adhesives Heat bonding Stitch bonding

RENEWABLE RESOURSE INTEGRATION IN BIODEGRADABLE COMPOSITES

EFFECT OF APPLYING FLOCKING METHOD ON THE ABRASION PROPERTIES OF SELECTED UPHOLSTERY FABRICS

Study on Measuring Microfiber Diameter in Melt-blown WebBased on Image Analysis

Design of woven fabrics using DYF1.0 specialized software code

Process of Preparing a Nonwoven/Filament/Woven-Fabric Sandwich Structure with Cushioning Effect of Ballistic Resistance

Objectives. You will understand: Fibers

Subject: Fabric studies. Unit 5 - Other textile fabrics. Quadrant 1 e-text

MAN-MADE FILAMENTS; STRIP AND THE LIKE OF MAN-MADE TEXTILE MATERIALS

INDUSTRIAL WOVEN NON-CRIMP MULTILAYER FABRICS FOR BETTER IMPACT PROPERTIES

Evaluating performance characteristics of different fusible intertinings

INFLUENCE OF KNITS STRUCTURE ON FLAMMABILITY AND COMFORTABILITY

Draft Tanzania Standard. Textiles Specification for open mouth woven poly-sacks made from polypropylene tape- yarns

Year 11 Revision Tasks

3D PRINTING ON TEXTILES: TESTING OF ADHESION

Simulation Research on Pistol Bullet Penetrating Gelatin Target with Soft Body Armor

1 WEAVE Plain. YARN WRAP EC9 430tex ETG 11.6 (tex) WEFT EC9 430tex ETG 11.6

TEARING BEHAVIOUR OF FABRIC USING VARIOUS TESTING

SPORTS CARPET TECHNICALITIES

ASSESSMENT OF COMPOSITES REINFORCED WITH INNOVATIVE 3D WOVEN HOLLOW FABRICS

INFLUENCE OF STITCHING SEAMS ON TWO-DIMENSIONAL PERMEABILITY

tbs TDC3 (5614)P 3 Draft Tanzania Standard Textiles Towels Specifications TANZANIA BUREAU OF STANDARDS

CHAPTER V SUMMARY AND CONCLUSIONS

SPECIAL WOVEN FABRICS; TUFTED TEXTILE FABRICS; LACE; TAPESTRIES; TRIMMINGS; EMBROIDERY

Chitra Siva Sankar. A 06Text07 Final Year Textile

An experimental study on fabric softness evaluation Peihua Zhang College of Textiles, Donghua University, Shanghai, People s Republic of China, and

HYBRID REINFORCING FABRICS FOR ADVANCED POLYMERIC COMPOSITES

WORKING of nidaplast

PUNCTURE AND TEAR OF WOVEN FABRICS

Machine solutions for the production of automotive composites. Composites without borders October 14-16, 2014 / Moscow

AQA GCSE Design and Technology 8552

FORENSIC SCIENCE. Trace Evidence

Design and Technology: Textiles Technology Unit 2: Knowledge and Understanding of Textiles Technology

Textile Processes Page 10

STUDYING THE FUNCTIONAL PERFORMANCE PROPERTIES OF THE FABRICS INCLUDING METALLIC YARN

Handbook for zero microplastics from textiles and laundry

EXPERIMENTAL FORMING STUDIES ON 3D WARP INTERLOCK FABRICS

CHAPTER 9 DEPENDENCE OF WICKABILITY ON VARIOUS INTEGRATED FABRIC FIRMNESS FACTORS

CUSTOMS TARIFF - SCHEDULE XI - 1

EFFECT OF STITCH TYPE ON AIR PERMEABILITY 0F SUMMER OUTERWEAR KNITTED FABRICS

Proceedings Improving the Durability of Screen Printed Conductors on Woven Fabrics for E-Textile Applications

Woven interlinings and linings for apparel purposes Specification

YEAR 7 TEXTILES. Homework Booklet

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

Digital Jacquard Textile Design In A Colorless Mode

DEVELOPMENT AND CHARACTERIZATION OF COMPOSITES CONSISTING OF WOVEN FABRICS WITH INTEGRATED PRISMATIC SHAPED CAVITIES

COOPERATIVE PATENT CLASSIFICATION

Improve UV Protection Property of Single Jersey for Summer Protective Clothes

EFFECT OF FINISHING AGENTS ON STIFFNESS AND DRAPE OF KHADI FABRIC FOR THEIR UTILITY IN GARMENT DESIGNING

Notification New Delhi, dated the 1st March, 2003

TEPZZ A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

Behavioural Analysis of Multi Design Woven Fabric

CUSTOMS TARIFF - SCHEDULE 58 - i

Analysis of Mechanical Properties of Fabrics of Different Raw Material

SKSHHT2 - SQA Unit Code H9EK 04 Preparation for weaving Harris Tweed on a handloom

PROPERTY ANALYSIS OF SKIRTS MADE FOR READY-TO-WEAR COLLECTION.PART I: TENSILE TESTING OF SEWING THREADS AND WOVEN FABRICS

CUSTOMS TARIFF - SCHEDULE 58 - i

IMPACT OF REPEATED WASHINGS ON THE THERMAL INSULATION PROPERTIES OF WOVEN COTTON FABRIC

LESSON 6 PRODUCTION OF FANCY YARNS STRUCTURE 6.0 OBJECTIVES 6.1 INTRODUCTION 6.2 STRUCTURE OF FANCY YARNS 6.3 SOME EXAMPLES OF FANCY YARNS

Seam Performance of the Inseam of a Military Trouser in Relation to Garment Fit

Anisotropic mechanical behavior of thermally bonded nonwoven fabric

3D WEAVING POSSIBILITIES ON AN 8 SHAFT LOOM

Fashion Design. Fibers & Fabrics

EFFECT OF SKEWNESS ON IMAGE PROCESSING METHODS FOR WOVEN FABRIC DENSITY MEASUREMENT Bekir Yildirim 1, Mustafa Eren 2

MOULDABILITY OF ANGLE INTERLOCK FABRICS

CHAPTER 7 DESIGN AND DEVELOPMENT OF MULTILAYERED HOSPITAL TEXTILES

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

SHIN KWANG HOT MELT CO., LTD.

Handout: WOVEN WORDS

EFFECT OF DIFFERENT CONDUCTIVE YARNS ON HEATING BEHAVIOUR OF FABRICS

SIGRATEX. Textile Products Made from Carbon Fibers. Composite Materials. Broad Base. Best Solutions.

Investigating the Effect of the Variation of Stitch Density on Seam Puckering

Packaging. Tape you can trust PPM PACKAGING

Penetration of Multi-Layered E-Glass Armors by Small Projectiles

Investigation on Thermal Properties of Double-Layered Weft Knitted Fabrics

Studies on elastane-cotton core-spun stretch yarns and fabrics: Part II Fabric low-stress mechanical characteristics

TECHNICAL BULLETIN Weston Parkway, Cary, North Carolina, Telephone (919) PROCESSING WOVEN COTTON SEERSUCKER FABRICS

The Effect of Backrest Roller on Warp Tension in Modern Loom

Countryside Crafts: Dorset Weaving Buttony. Weaving. Page

Model of Vertical Porosity Occurring in Woven Fabrics and its Effect on Air Permeability

Apparel and Sport Fabric File Fabric Descriptions. Denim: twill weave made of single hard-twisted yarns with colored warp and

GOZO COLLEGE HALF YEARLY EXAMINATION 2012 NINU CREMONA LYCEUM COMPLEX, VICTORIA, GOZO.

Investigation of Puncture Behaviour of Flexible Silk Fabric Composites for Soft Body Armour

Properties of Polyester, Nylon blended Air-Jet Textured Fabrics

Transcription:

Proceedings of the 8 th World Conference on 3D Fabrics and Their Applications Manchester, UK, 28-29March 2018 Design and development of three-dimensional woven fabrics with stab resistance Shiyan Lu 1, Shan Du 1,Jianbin Nie 1 and Xiaogang Chen 1,2 + 1 Key Laboratory of Functional Textiles, Zhongyuan University of Technology, Zhengzhou, 450007, China 2 School of Materials, University of Manchester, UK Abstract. In this paper, the body protective composite, shaped like an armor, is fabricated via threedimensional manufacturing and hot processing. By one shot process, a sandwich structure is formed. It is constructed with multi- woven fabrics and various fibres.the upper and the lower are formed with high-strength aramid fibres, whilst the middle s are constituted by polypropylene (PP) fibres.due to the high melting point of armaid fibres, when PP fibres are heated to melt, armaid fibres still exist in the form of yarns. The yarns connect each melt PP blocks, and overall forms folding and wearable anti-damage fabrics. Through finishing process, these fabrics could be made into suits of armor, which can be applied in the fields of protective garments for policemen and soldiers Keywords: Stab-resistant Fabrics, Sandwich Structure, Fabric Design, Weaving, Hot-melt Compound 1. Introduction In the early-stage, the stab resistant fabrics were mainly made of hard materials, such as animal skins, metals and ceramics. Those fabrics typically appeared in the form of armors in the ancient China. However, due to the heavy weight, they normally limited the flexibility of human bodies. Nowadays, the stab resistant materials have been developed towards semi-rigid, soft and liquid materials. Many researchers have reported the recent design and development of the stab resistant fabrics. Zhao et al. introduced soft metal wires and high performance fibres to weave or knit stab resistant fabrics [1]. High density fabrics had been weaved, nonwoven and compounded by high performance fibres in order to promote their stab resistant properties [2]. Shear Thickening Fluid (STF) was also employed to weave liquid protective clothing [3, 4]. Despite of its good stab resistance, this kind of material is very expensive. To promote the stab resistant property, composites compounded with resin and fabrics have been becoming a new trend [5], which can be achieved through coating, dipping and laminating. For example, aramid no-woven cloth and aramid woven cloth (sandwich structure composite) have been laminated via traditional compound technique with various adhesives [6] ; aramid fabrics, dipped in thermoplastic resin, yet possess poor permeability and comfort [7] ; by screen printing and UV curing methods, stab resistant materials can also be formed, with resin regularly arranged on the base cloth [8] ; fabrics have been successfully coated with resin via net plate performing process, with resin divided evenly [9] ; some resin films have been bonded directly to garment fabrics [10] 2. The design mechanism of the overall structure By adopting multi- woven cloths and various fibres, the stab-resistant fabric is achieved. Figure 1 and Figure 2 show its morphology structure and profile structure after hot processing. The armour block, shown in Figure. 1, possesses sandwich structure. Each block is connected by multi- cloths, constructed with high density, high strength and high melting point fibres. Figure 2 shows that, in the block region, the upper and the lower are formed with high density cloths, whilst the middle is constructed by multi-ed cloths made of low melting point fibres. Whenthe middle is heated to melt, the upper and lower still exist in the form of yarns. The yarns connect each melt block in the middle, and overall forms a folding and wearable stab resistant fabric. + Corresponding author. Tel.: +44 (0)1613064113, Mob:+44(0)7740167749 E-mail address: xiaogang.chen@manchester.ac.uk

Fig. 1: Morphology structure of the three-dimensional anti-stab fabrics 3. Fabric design Fig. 2 The profile structure after hot processing 3.1 Materials High strength filaments are required for the upper and lower s. The middle needs to choose some materials which melting point are relatively lower than those of the upper and lower s. In this paper, aramid fibres and polypropylene (PP) fibres were chosen and used as received. The melting point of aramid fibres is about 560 C, while that of PP fibres is 168 ~ 174 C with thermal decomposition temperature of 350 ~ 380 C. The difference in melting point, could ensure when PP fibres melt, aramid fibres still exist in the form of yarns to form fabrics. 3.2 Methods 3.2.1 Fabric design (1) Design of the upper and the lower : plain weave is employed in the block regions and nonblock regions. (2) Design of the middle : a. In the block region: any pattern can be taken in this area, such as plain weave and twill weave. It also works with only warp threads. b. In the non-block region (joint area): correspondingly, weft yarns can only be hired in this area; plain weave and twill weave can also be applied. It is noteworthy that, the joint area needs to be kept away when hot processing. (3) Connectivity between s: in the block region, s are melt into one integrated mass, whilst the joint area need remain its natural state and tie together in order to promote the integrity and the stab resistance. In this paper, two kinds of connectivities are carried out: Case 1: warp float threads are applied in the block region; the upper and the lower are interweaved together in the joint area. Case 2: in the block region, three s of plain weave cloth are served as the middle ; in the joint area, three s of 2/1 twill weave cloth in the middle are interweaved together. 3.2.2 Determination of the looming draft

In the weave pattern, is the warp float point in the upper ; is the warp float point in the lower ; is the warp float point in the first of the middle; is the warp float point in the second of the middle; is the warp float point in the third of the middle; is the interweaved point; is the the lifers. As shown in Figure 3 (Case 1). The yarn A and B are the polypropylene (PP) fibres, which are formed blocks after hot melting. The arrangement in warp is 1:2, the upper warp is 1 yarns, the middle s warp is 2 yarns. Figure 4 ~ 7 show the weave and the draft of Case 2: A indicates the block region (Figure 4) ; B shows the joint area (Figure 5) ; Figure 6 is weave pattern of case 2,which include different parts; Figure 7 shows the draft. Five warp threads drawing through per reed dent. As shown in Figure 4 and Figure 6, NJ1 and NW1 mean the numbers of warp repeat and weft repeat in the block region, while NJ2 and NW2 indicate the number of warp repeat and weft repeat in the non-block region, respectively. These four parameters vary according to the fabric density and the size of block regions as well as non-block regions. Fig.3 Weaving plan of case 1 Fig.4 The block region of Case 2 Fig.5 The non-block region of Case 2

Fig.6 The weave pattern of case 2 Fig.7 The draft of case 2 3.2.3 Determination of the fabric density and the number of threads in the yarns The fabric densities of the upper and the lower play significant roles in the stab resistance property of this composite; meanwhile the achievement of weave is also affected by this. Experimental results show that the optimal effect appears when thread densities of warp and weft yarn are both 120/10cm. Table 1 and Table 2 show the number of yarns in Case 1 and Case 2, respectively (on the condition that every block region is 15 mm 15 mm, and the joint length between two blocks is 5 mm). Figure 8 demonstrates the sample before weaving but after thermal compounding. Items Table 1 The number of yarns in the block regions and non-block regions of Case 1 The upper Block region The middle The lower The upper Non-block region The lower Nw1 9 0 9 9 9 Nw2 3 0 3 3 3 Nj1 9 9 9 null null Nj2 null null null 3 3 warp yarns weft yarns 18 36 18 6 6 24 0 24 24 24 Items Table 2 The number of yarns in the block regions and non-block regions of Case 2 The upper Block region Non-block region the middle The The The middle lower upper 1 st 2 nd 3 rd 1 st 2 nd 3 rd Nw1 9 9 9 9 9 9 9 9 9 9 Nw2 3 3 3 3 3 3 3 3 3 3 Nj1 9 9 9 9 9 null Nj2 null 3 3 3 3 3 warp yarns weft yarns 18 18 18 18 18 6 6 6 6 6 The lower 24 24 24 24 24 24 24 24 24 24

Fig.8 The sample picture after weaving but before thermal bonding 4. Methods of the hot processing During the hot processing, the block region is heated to melt, but the non-block region is avoided in order to maintain the pliability of the composite. Figure 9 shows the ceramic-strip hot plate, which is applied for the thermal compound of Case 1. When heated, the ceramic hot plate clamps the blocks and slides in the direction of weft yarns, so that the non-block region is kept away in case of damage. Figure 10 shows the stainless-block hot plate, which is served as the heater for the sample of Case 2. Its clamping direction is available in warp and weft directions. Fig.9 The ceramic strip hot plate Fig.10 The stainless block hot plate At present, hot plate is currently in use in laboratory. When heated, the clamping force of the hot plate should be moderate. For factory production, roller heating is more suitable. It is noted that, the distribution of heating area has to be consistent in each block of the stab resistant fabric. Temperature control is extremely vital to thermal compound. Higher temperature will damage the upper and the fibres in the joint area. Lower temperature cannot ensure the blocks melt. 5. Research prospects For the time being, the optimum design parameters still need to be determined with further experimental data. Several aspects for future study are provided in the following sections. (1) The size and the thickness of the blocks: the stab resistant effect and the comfort of the fabric are affected by this. Further experiments will be carried out to find the basis justification. (2) The size of the joint area: it will affect the softness and the stab resistant effect. The best combination of the two needs further progress. (3) Materials selection: theoretically, many materials can be applied. For example, aramid and high strength polyethylene (HSPE) fibres for upper and lower s; polypropylene (PP) and Nylon fibres for the middle. (4) The state of the blocks in the middle : in this paper, the three middle s are plain weave and interweaved together. However, it is still unknown whether direct feeding of the middle without interweaving will attain better stab resistant effect or not. This needs to be studied further. References [1] ZHAO Linghang, CAI Puning, LIN Na.Analysis on the present situation and development of stab resistant fabrics

[J]. Synthetic Filer in China, 2017,46 (5): 49-51. [2] GU Zhaowen. Study on the principle of soft complex stab-resistant body armor [J]. Journal of Textile Research, 2006,27(8): 80-84. [3] LI Wei, XIONG Dangsheng. Dynamic stab resistance ofultra-high molecular weight polythylene fabric impregnated with shear thickening fluid [J]. Materials and Design, 2016,42(10): 77-81. [4] Xinglong Gong, Yulei Xu, Wei Zhu, et al. Study of the knife stab andpuncture-resistant performance forshear thickening fluid enhanced fabric [J]. Journal of Composite Materials,2014, 48(6): 641 657 [5] ZHENG Qin, QIAN Xiaoming, ZHANG Heng. Research situation and prospect of stab-resistant materials[j].cotton Textile Technology,201442(10):77-81. [6] GONG Xiaozhou, GUO Yilun, WU Zhongwei, et al. Anti-stabbimg performance of laminated composite fabric [J]. Journal of Textile Research, 2014,35(5): 55-59. [7] JESSIE B, MAYO J, ERIC D W, et al.stab and puncture characterization of thermalplastic-impregnated aramid [J]. International Journal of Impact Engineering,2009,36(9): 1095-1105. [8] KIM Younghwa. Supple penetration resister fabric and making method: US,02/10667 A2[P]. 2002-02-07. [9] MA Feifei.Design and properties of flexible stab-resistant materials made by resin modling[d]. Shanghai: Donghua University, 2014:25-36. [10] LIAN Ying, LIU Chunna, WANG Xinhou. Study on the stab-resistance performance of flexible stab-resistance materials by means ofresin molding [J]. Technical Textiles, 2016 (10): 21-25