Compression vs. Fusion: The Source of Strength in Fused Sight Glasses for Chemical and Pharmaceutical Processes

Similar documents
6 Tips for Critical Sight Glass Applications

SIGHT GLASS. Sight glass components allow operators to safely observe processes inside tanks, pipes, reactors and vessels.

Sight glass window Sight flow indicator

2003 SAE; 2004 SAE World Congress Paper Session: Sealing and Gaskets 04M-206

UNIVERSITY OF THESSALY

SANDVIK 20C STRIP STEEL

Types of Glass by Composition

Disclaimer. Socket Products Socket depth limits maximum torque. Torque figures are based on 80% of maximum torque for a given key size.

A training course delivered at a company s facility by Matrix Engineering, an approved provider of Bolt Science Training

TECHNICAL SPECIFICATION FOR. CONTACT WIRE HARD-DRAWN COPPER 161mm2

Copyright 2013 Boart Longyear. All Rights Reserved. XQ WIRELINE CORING ROD. Technical Overview

Photovoltaic Glass Technologies

Reinforced all-rubber HSS seals. Reliable protection for large size bearings

Hanger bolts and solar fasteners in sandwich panels

DESIGN OF MACHINE MEMBERS-I

Optimizing Microwave Signal Transmissions In Extreme Cryogenic Environments Times Microwave Systems SiO2 Products

A training course delivered at a company s facility by Matrix Engineering, an approved provider of Bolt Science Training

Technical Manual. ETP-CLASSIC incl type R. Content

COIL WINDING ISSUES P. Fabbricatore INFN Genova LCD - Magnet 13Oct09. Coil winding issues

AMTS STANDARD WORKSHOP PRACTICE. Bond Design

Assembly instructions

4728 Gravois Ave. St. Louis, MO SIMAX

BMM3643 Manufacturing Processes Metal Casting Processes (Sand Casting)

Assembly instructions

Assmann Corporation of America TANK INSTALLATION AND USE GUIDELINES FOR BULK STORAGE TANKS

Psi casing ENd seals type Kt type du type KG/Ko type HA type stm

Where Art & Science Come Together.

Formulae for calculations A) Nomenclature

Wear Analysis of Multi Point Milling Cutter using FEA

Evaluation of In-Pavement Light Fixture Designs and Performance

Rotary Steering Spindle System Parameter Design Based on Fatigue Life

SECTION EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING

Assembly instructions

DEVELOPMENT OF A NOVEL TOOL FOR SHEET METAL SPINNING OPERATION

Best practices in product development: Design Studies & Trade-Off Analyses

Drawing of Hexagonal Shapes from Cylindrical Cups

Practical Bolting and Gasketing for the Non Standard-Flanged Joint

Injection moulding BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF POLYMER ENGINEERING

Operating & Maintenance Instructions 320 Dome Blowing Unit

Product Information Report Hardflex Band Saw Blades

MESP TECHNICAL SPECIFICATION FOR MURL JUMPER WIRE HARD-DRAWN COPPER 19/ mm 2

Tubular Glass Photobioreactors. Bringing Light to Algae

1. Enumerate the most commonly used engineering materials and state some important properties and their engineering applications.

Prediction Of Thrust Force And Torque In Drilling On Aluminum 6061-T6 Alloy

An Alternative Formulation for Determining Stiffness of Members with Bolted Connections

Thermodynamic Modelling of Subsea Heat Exchangers

A training course delivered to Engineers and Designers, at a company s premises, on the technical aspects of bolting.

Activating Your Ideas. In Stainless Steel Pipe

MESP TECHNICAL SPECIFICATION FOR TRANSMISSION WIRE HARD-DRAWN COPPER 19/ mm 2

Appliances. Barbecue Grills. Plumbingware. Architectural

FASTENERS - BOLTED CONNECTIONS

ERECTION & CONSTRUCTION

TECHNICAL INFORMATION

CHAPTER 2 ELECTROMAGNETIC FORCE AND DEFORMATION

TORQUE DESIGN, ANALYSIS AND CHARACTERIZATION OF CRITICAL FASTENERS IN DIESEL ENGINES

CH # 8. Two rectangular metal pieces, the aim is to join them

Brazing Braze Welding

Glued laminated timber beams repair.

Optical Ground Wires (OPGW)

Moment-Resisting Connections In Laminated Veneer Lumber (LVL) Frames

Essex County College - West Essex Campus Addition And Renovations dlb # / SECTION EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING

KEITH PANEL SYSTEMS FUNDERMAX- MAX EXTERIOR EXPOSED FASTENER PRESSURE EQUALIZED WALL SYSTEM

MESP TECHNICAL SPECIFICATION FOR CATENARY WIRE HARD-DRAWN COPPER 37/ mm 2

ALLIGATOR All-Purpose Anchors

Makrolon Solid Polycarbonate Sheets

Numerical analysis of the process of pipe connection with a clamping ring using the finite element method

tubing Cutting and Cleaning

S-BT screw-in stainless steel and carbon steel threaded studs

Machining Titanium. Losing the Headache by Using the Right Approach (Part 2)

Wire Drawing 7.1 Introduction: stock size

COYOTE. Product Guide VOLUME 1

Washers - a critical element of successful bolting integrity. A technical article presented by James Walker

Superior Accuracy for Industrial Applications. Precision Tapered Roller Bearings

Finite element analysis of circular cross sections subjected to combined loading

Effect Of Drilling Parameters On Quality Of The Hole

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

Eurocode EN Eurocode 3: 3 Design of steel structures. Part 1-1: General rules and rules for buildings

Modeling and Optimizing of CNC End Milling Operation Utilizing RSM Method

Bending. the bend radius is measured to the inner surface of the bent part

1/2/2016. Lecture Slides. Screws, Fasteners, and the Design of Nonpermanent Joints. Reasons for Non-permanent Fasteners

Methodology for Selection of Cutting Tool and Machining Data for High Speed Flank Milling

Welding Engineering Dr. D. K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee

DXe SUBSEA WELLHEAD CONNECTORS

American Institute of Timber Construction 7012 South Revere Parkway Suite 140 Centennial, CO Phone: 303/ Fax: 303/

EFFECTS OF PROCESS VARIABLES ON DIMENSIONAL CONTROL OF COLD DRAWN 1526 GRADE STEEL TUBING NICKOLAS LANGILOTTI

A. Compatibility: Products shall be suitable for piping service fluids, materials, working pressures, and temperatures.

4.0 MECHANICAL TESTS. 4.2 Structural tests of cedar shingles

Fastener Design. Fastener Materials. Coated Corrosion-Resistant Fasteners. Metal Alloy Capped Fasteners

MESP TECHNICAL SPECIFICATION FOR FLEXIBLE DROPPER WIRE TIN-BEARING COPPER 7/7/ mm 2

Nonlinear behavior of Reinforced Concrete Infilled Frames using ATENA 2D

Design Manual for M.C.M.E.L ALUMINUM STAIRCASE System

- Clamshell - OD-Mounted Pipe Cutting and Beveling Machine. Split frame. cutting and beveling simultaneously

HOLLOW CORRUGATED SHEETS

The influence of gouge defects on failure pressure of steel pipes

DETAIL SPECIFICATION SHEET INSULATION SLEEVING, ELECTRICAL, HEAT SHRINKABLE, POLYOLEFIN, DUAL-WALL, OUTER WALL CROSSLINKED

Hollo Set Drop-In Anchors

HEICO FASTENING SYSTEMS HEICO-LOCK WEDGE LOCKING SYSTEMS

bolts: G Cr-1/5Mo (A193 B7) 16 x M20 (EN ISO 4014) MPR GASKET 'SP' PETRO 4,0mm 363 x 323 x 4,5 mm (2 pieces)

Vallabh Vidyanagar , Gujarat, India

Design of Punch and Die for Trimming Operation of Differential Bearing Cap

Transcription:

Compression vs. Fusion: The Source of Strength in Fused Sight lasses for Chemical and Pharmaceutical Processes Manufacturers of sight glasses use different combinations of metal and glass to achieve a strong, leak-proof view into a variety of chemical, pharmaceutical and industrial processes. Sight glass users must sort through the controversies surrounding the relative merits of each combination, the alloys used, and the glass formulation. These controversies are compounded by a common misunderstanding of the role of compression on the glass element, the strength of the bond between the metal and the glass, and how these considerations impact the optimum operating pressure and maximum limit realized. This paper compares the two most common combinations and discusses the correct methodology for calculating the strength resulting from each. The study concludes that whichever combination of glass and metal provides the most compression also provides the highest strength, and therefore it is compression, rather than fusion, that predicts the reliability of a sight glass. Manufacturing Process During heating, the glass is melted within the metal ring as the ring expands. Then, temperature is raised to the point where the glass and the metal ring fuse together. When the unit cools, the glass hardens before the metal ring shrinks back to its original size. This places the metal ring in tension and the glass in uniform radial compression. This compression strengthens the glass because it is stronger than tensile forces that could cause a bending moment (internal torque) on the glass. In fact, under very high compression, glass actually becomes elastic: the surprising ability to bend without cracking. The most compression is produced by using an alloy of metal that shrinks a lot as it cools in combination with a type of glass that shrinks little when it cools: the greater the difference, the greater the compression. This is trickier than it sounds: too much compression and the sight glass will shatter. Sight glass manufacturers have tried different steel alloys and different kinds of glass, but in practice, soda lime glass and borosilicate glass are the two types of glass used because these provide the optimal coefficients of thermal expansion. Various types of metal are used by manufacturers, including Duplex, Hastelloy, and carbon steel. The 316 stainless steel is not recommended because its coefficient of thermal expansion is too high and will crack the glass. Whichever materials are used, the amount of compression can be predicted by the difference in the thermal coefficients of expansion between the materials. Comparison Methodology To compare these glass/metal combinations, this paper employs mathematical models based on the known physical properties of each material, as described in published sources. These mathematical models are able to determine precisely how much compressive force is generated as the glass solidifies and the metal ring contracts, approaching its theoretical diameter.

For the purpose of the study, C (68 F) was assumed. A standard sight glass size was selected with the following characteristics: Outside diameter: 1 mm (3.94 in.) Inside diameter of 55 mm (.17 in.) Thickness of 15 mm (.59 in.) The primary goal of this study was to quantify the amount of radial compression created by the difference between the glass and the metal in coefficient of thermal expansion as the sight glasses cool. In order to make this determination the following formula is used: τ = ρ = ( α α ) ( T S T ) µ S + 1+ µ + 1 r r + E EM 1 r i E [N/mm ] modulus of elasticity µ Poisson ratio a /3 [ K -1 ] coefficient of thermal linear expansion T i inversion temperature r 1 inner radius of metal ring r outer radius of metal ring T operating temperature Ti inversion temperature = 38 C (653 K) Results: Soda Lime versus Borosilicate lass Applying this equation to two sight glasses, we see that a sight glass made with borosilicate glass creates significantly more compression than one made with soda lime glass. Also, there is a direct relationship between the amount of compression and the strength of the sight glass. The borosilicate sight glass has far greater pressure capability. Strength is also important for worker safety and because it reduces the need for sight glass maintenance and replacement. Soda-lime glass with Duplex stainless steel frame: Compression: 73.5 MPa (166 psi) Max. Pressure Working Pressure: 4 bar (348 psi) Optimal Working Pressure: 16 bar (3 psi) Borosilicate glass with Duplex stainless steel frame: Compression: 195.9 MPa (841 psi) Max. Pressure Working Pressure: 96.9 bar (145 psi) Optimal Working Pressure: 64.6 bar (937 psi)

Pressure (psi) 16 14 1 8 6 4 Pressure Capability Soda Lime vs. Borosilicate Soda Lime/Duplex Borosilicate/Duplex Optimal lass Type Max. Working Resolving the Controversy: Soda Lime/Hastelloy versus Borosilicate/Duplex Recently, a sight glass made with proprietary soda-lime glass coupled with a Hastelloy C stainless steel ring has been introduced to the industry. This glass/metal combination has been the source of some of the controversies discussed earlier because its supplier claims its combination of glass and metal is superior because it has better glassmetal fusion. The central questions of this paper are: Where does the strength of a sight glass come from? Which alloys of metal and which types of glass create the strongest sight glasses? The answers come from comparing the compressive force of a Hastelloy/soda-lime sight glass with the compressive force of a Duplex/borosilicate sight glass. Soda lime glass with Hastelloy C- stainless-steel frame: Compression: 67 MPa (9717 psi) Max. Working Pressure: 1. bars (37 psi) Optimal Working Pressure: 14.1 bars (4 psi) Borosilicate glass with Duplex stainless-steel frame: Compression: 159.9 MPa (841 psi) Max. Pressure Working Pressure: 96.9 bar (145 psi) Optimal Working Pressure: 64.6 bar (937 psi) Pressure (psi) 15 Pressure Capability Soda Lime/Hastelloy vs. Borosilicate Soda Lime/Hastelloy Borosilicate/Duplex 5 Optimal lass/metal Types Max. Working

Such results were not at all unexpected. The difference in coefficients of thermal expansion among the materials in question predicts the differing results. Coefficients of Thermal Expansion Soda lime glass 9.4 1 6 Hastelloy C 1.3 1 5 Borosilicate glass Duplex stainless steel 4.15 1 6 1.38 1 5 The result of compression on the borosilicate glass translates to three times the compression realized on the proprietary soda-lime glass. In turn, we can confidently rate the borosilicate glass/duplex stainless steel construction as providing four and a half times the pressure capability. In addition, these results may explain why there has never been a reported case of a fused borosilicate sight glass that leaked. In addition to the normal fusion between glass and metal, the extreme pressure secures the bond between the duplex stainless steel and the borosilicate glass making it, for all practical purposes, a fused transition rather than a junction. Operating Pressure Comparison Having determined that the borosilicate glass coupled with a Duplex stainless steel ring produces the strongest fused sight glasses, we then produced a chart of Maximum Working Pressure over a wide range of operating temperatures. Maximum working pressure is the highest continuous pressure that the sight glass can accept without exceeding a safety factor of 8. It is not the bursting pressure. No cracks will appear on the glass at this pressure. The study results were arrived at by iterations of a mathematical model above with the following results: 18 16 Pressure/Temperature Comparison Borosilicate vs. Soda Lime Max. Working Pressure (psi) 14 1 8 6 4 Borosilicate lass Soda Lime lass 4 6 8 1 1 14 16 18 4 6 8 3 3 34 36 38 4 4 44 46 48 5 5 54 Temperature ( F) This chart compares a sight glass comprised of duplex stainless steel and borosilicate glass with a sight glass comprised of Hastelloy C- steel and soda lime glass. The sight glass that uses borosilicate glass is many times stronger across a range of operating temperatures.

In conclusion, the strength of a fused sight glass is directly related to the amount of compression on the glass. Fusion getting the glass to stick to the metal is easy to achieve; it is a normal byproduct of manufacturing. However, the reliability of a sight glass has almost nothing to do with fusion. Rather, it is compression that secures the glass to the metal and creates a leak proof seal. In addition, a strong (high compression) sight glass provides reliability in other ways. Its glass is more elastic, making the glass more resistant to cracking during cold water washdowns, temperature cycling, high pressure, scratches, misaligned installation, and impacts. Moreover, improper sight glass maintenance, wear, and other factors can dramatically lower the failure point and endanger workers. The best safety strategy is to start with the strongest sight glass available. Hastelloy is a registered trademark name of Haynes International, Inc. www.ljstar.com (33) 45-34 getmoreinfo@ljstar.com