An Update on Reducing the Uncertainty in Solar Radiometric Measurements

Similar documents
Reducing Broadband Shortwave Radiometer Calibration-Bias Caused by Longwave Irradiance in the Reference Direct Beam

Radiation measurements

Evaluating calibrations of normal incident pyrheliometers

Research Objectives Definition of Global Horizontal Irradiance (GHI) Solar Monitoring History in KIER

LP PYRA 06. REV Jan. 2007

USER S GUIDE. for MIDDLETON SOLAR SECONDARY STANDARD PYRANOMETER WITH INTEGRATING CAVITY DETECTOR

PHOTODIODE BASED PYRANOMETER

Radiometric Measurement Traceability Paths for Photovoltaic Calibrations. Howard W. Yoon Physical Measurement Laboratory NIST

LP PYRA 03. REV jan. 2007

Pyranometers SP- 100 Series SP -200 Series

AMF2 MAGIC SPN INTEGRATION TO THE PRP

CNR 1. Net radiometer. Instruction Manual

MS-80 Secondary Standard Pyranometer High-end for an industrial application EKO Instruments Co., Ltd. K. Hoogendijk / W. Beuttell / A.

PRECISE MEASUREMENTS OF SOLAR BEAM IRRADIANCE THROUGH IMPROVED SENSOR CALIBRATION

A History of Solar and Ultraviolet Radiometer Calibration Standards

Upcoming Changes of International Standards for the Classification of Radiometers

PERFORMANCE EVALUATION FOR NET PYRRADIOMETERS

IRRADIATION MEASUREMENTS ON GROUND

LP UVA Introduction. 2 Working Principle. TEL r.a. FAX

SOLAR RADIATION & PHOTONIC SENSORS.

apogeeinstruments.com Introducing the PV-100 PV Monitoring Package

Solar Radiation & Photonic Sensors

A Method of Correcting for Tilt from Horizontal in Downwelling Shortwave Irradiance Measurements on Moving Platforms

Measurements of Infrared Sources with the Missile Defense Transfer Radiometer

Capabilities of NIST SIRCUS for Calibrations of SSI Vis-IR Instruments

MULTI-FILTER ROTATING SHADOW BAND RADIOMETER MODEL MFR-7 BULLETIN MFRSR-7

RADIATION BUDGET INSTRUMENT (RBI): FINAL DESIGN AND INITIAL EDU TEST RESULTS

LP PYRA 02. REV jan. 2007

LBIR Fluid Bath Blackbody for Cryogenic Vacuum Calibrations

Dr E. Kaplani. Mechanical Engineering Dept. T.E.I. of Patras, Greece

USER MANUAL SR30. Hukseflux. Thermal Sensors. Next level digital secondary standard pyranometer. compliant with IEC :2017 Class A

LI-192 Underwater Quantum Sensor

Evaluating the Effectiveness of Maximum Power Point Tracking Methods in Photovoltaic Power Systems using Array Performance Models

Part 1: New spectral stuff going on at NIST. Part 2: TSI Traceability of TRF to NIST

LI-1500 Light Sensor Logger

RESEARCH AVIATION FACILITY BULLETIN NO. 25

Impact of Spectral Irradiance on Energy Yield of PV Modules Measured in Different Climates

Hukseflux. Thermal Sensors USER MANUAL SRA20. Secondary standard albedometer. Copyright by Hukseflux manual v1705

LP UVA 02. REV jan. 2007

USER MANUAL SR15-A1. Hukseflux. Thermal Sensors. Analogue first class pyranometer with millivolt output and heater

SOLAR MEASUREMENTS

LI-193 Spherical Quantum Sensor

The Physikalisch Meteorologisches Observatorium Davos, World Radiation Center (PMOD/WRC) Julian Gröbner

Hukseflux. Thermal Sensors USER MANUAL LP02. Second class pyranometer. Copyright by Hukseflux manual v1606

USER MANUAL SR05 SERIES, DIGITAL VERSIONS. second class pyranometers with various outputs

Hukseflux. Thermal Sensors USER MANUAL IR02. Pyrgeometer with heater. Copyright by Hukseflux manual v1604

Hukseflux. Thermal Sensors USER MANUAL SR11. First class pyranometer. Copyright by Hukseflux manual v

The Radiation Balance

The Standard for over 40 Years

Committee E44 on Solar, Geothermal and Other Alternative Energy Sources

manual INSTRUCTION MANUAL

Workshop 1 Measurement techniques and sensors

USER MANUAL IR02. Pyrgeometer with heater

USER MANUAL SR20-D2. Digital secondary standard pyranometer with Modbus RTU and 4-20 ma output

UV-VIS-IR Spectral Responsivity Measurement System for Solar Cells

NR-LITE NET RADIOMETER INSTRUCTION MANUAL

Accurate Radiometric Measurement of the Atmospheric Longwave Flux at the Sea Surface

Product Line. With this catalog, we celebrate our 20th anniversary. Much has changed.

Solar Radiation & Photonic Sensors

BTS2048-UV. Product tags: UV, Spectral Data, LED Binning, Industrial Applications, LED.

LP PHOT 03 LP RAD 03 LP PAR 03 LP UVA 03 LP UVB 03

2. Instrumentation Design, Specifications, and Installation of the SUV-100

HEAT FLUX MEASUREMENT ON CSP

Integrating Spheres. Why an Integrating Sphere? High Reflectance. How Do Integrating Spheres Work? High Damage Threshold

CNR4 Net Radiometer Revision: 11/10

Irradiance Calibration Using a Cryogenic Radiometer and a Broadband Light Source

Influence of the light spectral distribution used in the radiometers calibration

RADIOMETRIC CALIBRATION

THE WORLD OF WEATHER DATA Measurement and Documentation: Thies range of service for meteorology, environmental protection and industry

INSTRUCTION MANUAL PYRANOMETER

Hukseflux. Thermal Sensors USER MANUAL SR20. Secondary standard pyranometer. Copyright by Hukseflux manual v

USER MANUAL SR25. Copyright by Hukseflux manual v

Of straying photons, shiny apertures and inconstant solar constants Advances in TSI radiometery

INSTRUCTION MANUAL. CNR4 Net Radiometer Revision: 2/17. Copyright Campbell Scientific, Inc.

GEO-SolarSIM-D2 and SunTracker-2000/3000

INSTRUCTION MANUAL. CNR4 Net Radiometer Revision: 2/15. Copyright Campbell Scientific, Inc.

Hukseflux. Thermal Sensors USER MANUAL SR20. Secondary standard pyranometer. Copyright by Hukseflux manual v

Earth Emitted Longwave Energy. 240 W/m 2. Top of the Atmosphere (TOA)

Instruction Manual. AMPBOX Signal Amplifier

USER MANUAL DR30-D1. Next level digital first class pyrheliometer, with heating and tilt sensor

TRACEABLE SOLAR RADIATION MEASUREMENTS

Total solar irradiance measurements with PREMOS/PICARD

CNR4 Net Radiometer Revision: 9/13

LASP / University of Colorado

INSTRUCTION MANUAL. NR01 Four-Component Net Radiation Sensor Revision: 9/15. Copyright Campbell Scientific, Inc.

Legacy of NOAA, NASA and NIST Cooperation in Developing Radiometric Calibration Standards Equipment and Methodologies. Raju Datla, Michael Weinreb

White Paper on SWIR Camera Test The New Swux Unit Austin Richards, FLIR Chris Durell, Joe Jablonski, Labsphere Martin Hübner, Hensoldt.

INSTRUCTION MANUAL UV RADIOMETERS

Calibration of ARM Spectral Shortwave Radiometers

Supporting Information A comprehensive photonic approach for solar cell cooling

Measurements and simulations of the performance of the PV systems at the University of Gävle

Alexandrine Huot Québec City June 7 th, 2016

Application Note 26. Optical Hazard Measurements with JETI specbos 1211UV

Forest Fire Detection by Low-Cost 13GHz Radiometer

CU-LASP Test Facilities! and Instrument Calibration Capabilities"

Lecture Notes Prepared by Prof. J. Francis Spring Remote Sensing Instruments

INDOOR AND OUTDOOR CHARACTERIZAITION OF a-si:h P-I-N MODULES

Hukseflux. Thermal Sensors USER MANUAL IR20. Research grade pyrgeometer. Copyright by Hukseflux manual v

THE WORLD OF WEATHER DATA

2. Instrumentation Design, Specifications, and Installation of the SUV-100

Transcription:

An Update on Reducing the Uncertainty in Solar Radiometric Measurements Daryl Myers, Ibrahim Reda, Stephen Wilcox National Renewable Energy Laboratory Golden Co 80401 Alisha Lester Smith College, Northampton, MA 01603 daryl_myers@nrel.gov May 26-27, 2005 Athens, Greece NREL/PR-560-38202

Solar Radiation Component Equation

Solar Radiometer Responsivity Issues Pyranometer Thermopile Offset IR voltage Corrections at calibration time Post-hoc correction schemes based on cosine response though DAY and Year IR radiation exchange error voltage Pyrheliometer Environmental Influences Correction at calibration time α Wind speed,dtemperature/dt,, Irradiance Post-hoc correction based on Ws,dT,, I

Shade/Unshade Response Beam x Cos(z) Z Beam Reda, I., T. Stoffel, D. Myers, A Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance. Solar Energy, 2003. 74: p. p. 103-112.

Shade/Unshade Response Z Beam Δ z α B cos Reda, I., T. Stoffel, D. Myers, A Method to Calibrate a Solar Pyranometer for Measuring Reference Diffuse Irradiance. Solar Energy, 2003. 74: p. p. 103-112.

U Rs = ------------- [B Cos(z) + D ] Component Sum Method U = Test Pyranometer signal volts; D= Diffuse B = Beam radiation; Z = Zenith Angle Diffuse: Shade/Unshade calibrated pyranometer (vs Beam) Shade B from Working Reference Absolute Cavity Pyrheliometers

Empirical Reference Irradiance Uncertainties Cavity Reference (World Radiometric Reference) Transfer Uncertainty ±0.35% Diffuse Pyranometer Calibration Uncertainty

Pyranometer Offset Error Signal All Black thermopile detectors with reference junctions in instrument body are never in thermal equilibrium; suffer 5 W/m 2 to 20 W/m 2 thermal offset. Offset produced by INFRARED exchange between detector & Sky/domes. Black & White reference and hot junctions in same thermal conditions, low thermal offsets. All-black unshaded units posses offset! Dutton, E. G., J. J. Michalsky, T. Stoffel, B. W. Forgan, J. Hickey, T. L. Alberta, I. Reda, Measurement of Broadband Diffuse Solar Irradiance Using Current Commercial Instrumentation with a Correction for Thermal Offset Errors. Journal of Atmospheric and Oceanic Technology, 2001. 18(3): p. 297-314

Pyranometer Offset Error Signal All Black thermopile detectors with reference junctions in instrument body are never in thermal equilibrium; suffer 5 W/m 2 to 20 W/m 2 thermal offset. Offset produced by INFRARED exchange between detector & Sky/domes. Black & White reference and hot junctions in same thermal conditions, low thermal offsets. All-black unshaded units posses offset! Dutton, E. G., J. J. Michalsky, T. Stoffel, B. W. Forgan, J. Hickey, T. L. Alberta, I. Reda, Measurement of Broadband Diffuse Solar Irradiance Using Current Commercial Instrumentation with a Correction for Thermal Offset Errors. Journal of Atmospheric and Oceanic Technology, 2001. 18(3): p. 297-314

Characterize shortwave pyranometer net-ir response using Blackbody IR system W NET W bb -W c (Wm -2 ) -110.8 Pyran Signal (uv) -243.7 NET IR Rs(bb) uv W -1 m -2 2.20-60.3-130.8 2.17-131.6-289.5 2.20-71.3-154.7 2.17-83.6-183.9 2.20 Reda, I., J. Hickey, C. Long, D. Myers, T. Stoffel, S. Wilcox, J.J. Michalsky, E.G. Dutton, D. Nelson, Using a Blackbody to Calculate Net-Longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method. Journal of Atmospheric and Oceanic Technology, 2005. In Press.

Shortwave pyranometer signals in response to net infrared (longwave) radiation Pyranometer Model # Tested RS bb (µv/wm -2 ) RS MFR (µv/wm -2 ) EPLAB 8-48 2 0.8314 K&Z CM-22 1 0.8872 EPLAB PSP 12 2.1757 9.465 9.300 8.46 Spectrosun SR-75 1 1.1851 8.69

Pyranometer Responsivity Calibration Results Pyranometer Rs U95 = +2% -5% ± 1.0%

Pyranometer Calibration IR Corrections Pyranometer Rs( offset corrected)

Pyranometer Calibration IR Corrections Pyranometer Rs( offset corrected)

Daily Calibration & Characterization Pyranometer Rs through the Year Lester, A., D. Myers, A Method for Improving Global Pyranometer Measurements by Modeling Responsivity Functions. Solar Energy, 2005. In Press.

Daily Calibration & Characterization Pyranometer Rs through the Year RS u8-48 (Z,D,I)= 0.6392 ln[cos(z)] - 0.0936 COS[(D 2π 360)/365] +0.0008 I + 7.545 Lester, A., D. Myers, A Method for Improving Global Pyranometer Measurements by Modeling Responsivity Functions. Solar Energy, 2005. In Press.

RS 8-48U (Z, DA, IR) Applied to Pyranometer mv One year of data +60 to -40 W m -2 ± 20 W m -2

Pyrheliometer Rs Calibration Results Pyrheliometer Rs U95 = ± 1.8% ± 1.0%

Pyrheliometer Rs environmental influences (flange, window, instrument) Flange Shading Effect vs Wind Speed (by Irradiance) Flange Shading Effect (mv) (Unshaded - Shaded) 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00-0.01 Irradiance (W/m 2 ) 0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800 800-900 900-1000 1000-1100 -0.02 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ Wind Speed (m/s) Environmental Thermal Effects on the Eppley Normal Incidence Pyrheliometer Stephen Wilcox, John Hickey,Daryl Myers Draft research summary; April 5, 2005

Pyrheliometer Rs environmental influences (flange, window, instrument) Flange Shading Effect vs Wind Speed (by Irradiance) Flange Shading Effect (mv) (Unshaded - Shaded) 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00-0.01-0.02 Flange Shading Effect (mv) (Unshaded - Shaded) 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 Flange Shading Effect vs Irradiance Irradiance (by Wind Speed) (W/m 2 ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ -0.01 Wind Speed (m/s) -0.02 0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800 800-900 900-1000 1000-1100 100 200 300 400 500 600 700 800 900 1000 1100 Direct Beam Irradiance (W/m 2 ) Wind Speed (m/s) <1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ Environmental Thermal Effects on the Eppley Normal Incidence Pyrheliometer Stephen Wilcox, John Hickey,Daryl Myers Draft research summary; April 5, 2005

Pyrheliometer Rs environmental influences (flange, window, instrument) Flange Shading Effect vs Wind Speed (by Irradiance) Flange Shading Effect (mv) (Unshaded - Shaded) 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00-0.01-0.02 Flange Shading Effect (mv) (Unshaded - Shaded) 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 1 2 3 4 5 6 7 8 9 10 11 12-0.05 13 14 15 16 17 18 19 20+ -0.01 Wind Speed (m/s) -0.02 Thermopile Output (mv) Flange Shading Effect vs Irradiance Wind Speed Irradiance (m/s) (by Wind Speed) (W/m 2 ) <1 0-100 2 Effective of Temperature Change on the Flange-shaded Instrument 100-200 200-300 300-400 y = 0.0251x 400-500 + 0.0121 R 2 = 500-600 0.9909 600-700 700-800 800-900 900-1000 1000-1100 0.15 0.10 0.05 0.00-0.10 100 200 300 400 500 600 700 800 900 1000 1100-0.15 Direct Beam Irradiance (W/m 2 ) -4-3 -2-1 0 1 2 3 4 10-minute Delta Temperature (degrees C) 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+ Environmental Thermal Effects on the Eppley Normal Incidence Pyrheliometer Stephen Wilcox, John Hickey,Daryl Myers Draft research summary; April 5, 2005

Shade window Instrument Calibration & Characterizaton Minus Shade Flange DNI Pyrheliometer Responsivity variations from environmental influences (on flange, instrument)

Pyrheliometer Calibration Corrections Pyrheliometer Rs(-Environment corrected-)

Solar Radiometer Responsivity Issues Pyranometer Thermopile Offset IR voltage Corrections at calibration time Monitor IR; reduce U95 by ½ to 1% Z Post-hoc correction schemes based on cosine response though DAY and Year Global data uncertainty 60 Wm - 2 -> > 20 Wm -2 Pyrheliometer Environmental Influences Correction at calibration time α Ws,dT/dt,, DNI Reduce U95 offset in Rs ~ 1/3; 0.6% to 0.2% Post-hoc correction based on Ws,dT/dt,, I Research continues!