Multi-Touchpoint Design of Services for Troubleshooting and Repairing Trucks and Buses

Similar documents
Resource Integration as a Perspective on Value in Interaction Design

Some UX & Service Design Challenges in Noise Monitoring and Mitigation

PLEASE NOTE! THIS IS SELF ARCHIVED VERSION OF THE ORIGINAL ARTICLE

A Service Walkthrough in Astrid Lindgren's Footsteps

Service Design methods and UCD practice

Wi-Fi Fingerprinting through Active Learning using Smartphones

Service designers on including stakeholders in service prototyping

User experience goals as a guiding light in design and development Early findings

Development of Software for Early Failure Detection and Prevention in Technical Systems Subjected to Normal Distribution until Failure

Introduction to Foresight

Using Variability Modeling Principles to Capture Architectural Knowledge

Prototyping Automotive Cyber- Physical Systems

THE CONSTRUCTION- AND FACILITIES MANAGEMENT PROCESS FROM AN END USERS PERSPECTIVE - ProFacil

Malmö stad Malmö Museer File Number: KN

Country Paper : Macao SAR, China

Enhancing industrial processes in the industry sector by the means of service design

MEASURING SAFETY IN AVIATION - DEVELOPING METRICS FOR SAFETY MANAGEMENT SYSTEMS. SMICG Rome, May 27th 2016 R.J. de Boer PhD, MSc

Design Fiction as a service design approach

Supporting Intelligent Control Design of Rail Infrastructures

Space Assets and the Sustainable Development Goals

Written response to the public consultation on the European Commission Green Paper: From

ECONOMIC AND SOCIAL RESEARCH COUNCIL IMPACT REPORT

The Brand s Pocket Guide to UX & Usability Research

Invitation to Third Software Technology Exchange Workshop (STEW) 2014 September , Kista, Sweden

What does the Process Automation understand under Diagnosis?

The Mediated Action Sheets: Structuring the Fuzzy Front-End of UX

P1: OTA/XYZ P2: ABC JWBT483-fm JWBT483-Mckinsey February 16, :11 Printer Name: Hamilton VALUATION WORKBOOK i

Publishable summary. 1 P a g e

*Plans are customized per client. We would not necessarily suggest every single element included in this sample.*

Toward the Desired State: Developing More Helpful Relationships between Districts and Technical Assistance Providers

What s Next for Independent Living?

Beyond the switch: explicit and implicit interaction with light Aliakseyeu, D.; Meerbeek, B.W.; Mason, J.; Lucero, A.; Ozcelebi, T.; Pihlajaniemi, H.

Enforcement of Intellectual Property Rights Frequently Asked Questions

5th Creative Industries Research Seminar 14 December 2017, 14:00-18:00

Validation Plan: Mitchell Hammock Road. Adaptive Traffic Signal Control System. Prepared by: City of Oviedo. Draft 1: June 2015

Softing TDX ODX- and OTX-Based Diagnostic System Framework

Color Reproduction Algorithms and Intent

FORESIGHT METHOD HORIZONS. Module. Introduction to Foresight for Canada Beyond 150

EFRAG s Draft letter to the European Commission regarding endorsement of Definition of Material (Amendments to IAS 1 and IAS 8)

Sustainability issues in the computing curriculum

AGILE USER EXPERIENCE

Copyright 2008 IEEE.

SAMPLE COURSE OUTLINE AUTOMOTIVE ENGINEERING AND TECHNOLOGY GENERAL YEAR 12

Transferring knowledge from operations to the design and optimization of work systems: bridging the offshore/onshore gap

Tuuli Ma(elmäki Intro to service design sept

Final Report Non Hit Car And Truck

Our digital future. SEPA online. Facilitating effective engagement. Enabling business excellence. Sharing environmental information

Service design in the later project phases: Exploring the service design handover and introducing a service design roadmap

A manifesto for global sustainable health. Sustainable Health Symposium Cambridge, UK 25th July 2017

Working in and with African Photo Archives

Media Literacy in the Age of Convergence

Computer Aided Manufacture: Some Introductory Remarks

"Working Groups for Harmonisation and Alignment in Brain Imaging Methods for Neurodegeneration" Final version

Accuracy, Precision, Tolerance We understand the issues in this digital age?

Profitable Consulting Fees

The Industry 4.0 Journey: Start the Learning Journey with the Reference Architecture Model Industry 4.0

The Railway Bridge Game usability, usefulness, and potential usage for railways management

Early Take-Over Preparation in Stereoscopic 3D

Erwin Mlecnik 1,2. Keywords: Renovation, Supply Chain Collaboration, Innovation, One Stop Shop, Business models. 1. Introduction

PhD Vlog Week 4 Eddie Procter. Location: Exeter

The skilled collaborators - the winners in a digitized maritime sector

Enabling ICT for. development

SCOE SIMULATION. Pascal CONRATH (1), Christian ABEL (1)

THE METHODOLOGY: STATUS AND OBJECTIVES THE PILOT PROJECT B

CONSTRUCTION MACHINES IN THE DIGITAL AGE CONSTRUCTION EQUIPMENT MAKERS NEED TO FIND THEIR PLACE IN SMART BUILDING SITES. Romed Kelp and David Kaufmann

University of Huddersfield Repository

Best Practice: Development and implementation of a CSR strategy in a medium sized Austrian publishing company

TRB Workshop on the Future of Road Vehicle Automation

SESAR EXPLORATORY RESEARCH. Dr. Stella Tkatchova 21/07/2015

Applied Safety Science and Engineering Techniques (ASSET TM )

ty of solutions to the societal needs and problems. This perspective links the knowledge-base of the society with its problem-suite and may help

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN ICED 03 STOCKHOLM, AUGUST 19-21, 2003 UTILIZATION OF SCENARIO BUILDING IN THE TECHNICAL PROCESS

White paper The Quality of Design Documents in Denmark

Understanding generalisability from networkconscious service design projects

Interdisciplinary Topics in Science 40S Course Code 0140 DRAFT November 2008 GLO A Nature of Science and Technology

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

P2122. P Accelerator Pedal Position Sensor 1 Circuit Low

Society of Petroleum Engineers Applied Technical Workshop Digital Transformation in E&P: What s Next, Ready to Scale-Up? Sponsorship Proposal

Research integrity. House of Commons Science and Technology Committee. Submission from the Royal Academy of Engineering.

Aalborg Universitet. The immediate effects of a triple helix collaboration Brix, Jacob. Publication date: 2017

Who are your users? Comparing media professionals preconception of users to data-driven personas

Technology forecasting used in European Commission's policy designs is enhanced with Scopus and LexisNexis datasets

10 Kinds Of Blog Posts You Can Create In Just 10 Minutes

UbiBeam++: Augmenting Interactive Projection with Head-Mounted Displays

King s Research Portal

Behavioral Strategies in Zero-Sum Games in Extensive Form

Design and Technology Subject Outline Stage 1 and Stage 2

FROM SMART OFFICE TO HEALTHY OFFICE

Project Status Update

Haptics in Remote Collaborative Exercise Systems for Seniors

DoReMi-MELODI Training and Education Forum Introduction and background

NBS2017 JPI WORKSHOP MAIN OUTPUTS OF THE WORLD CAFÉ DISCUSSIONS

OUR IT CONSULTANTS GIVE YOUR BUSINESS A COMPETITIVE EDGE

Economies of the Commons 2, Paying the cost of making things free, 13 December 2010, Session Materiality and sustainability of digital culture)

PROJECT FACT SHEET GREEK-GERMANY CO-FUNDED PROJECT. project proposal to the funding measure

Port radio data networks

The ISO Revision: Looking back and into the future

ENHANCED HUMAN-AGENT INTERACTION: AUGMENTING INTERACTION MODELS WITH EMBODIED AGENTS BY SERAFIN BENTO. MASTER OF SCIENCE in INFORMATION SYSTEMS

The Challenge of Transmedia: Consistent User Experiences

Evaluation of Guidance Systems in Public Infrastructures Using Eye Tracking in an Immersive Virtual Environment

Transcription:

Multi-Touchpoint Design of Services for Troubleshooting and Repairing Trucks and Buses Tim Overkamp Linköping University Linköping, Sweden tim.overkamp@liu.se Stefan Holmlid Linköping University Linköping, Sweden stefan.holmlid@liu.se Copyright is held by the owner/author(s). Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Experience Design for Multiple Customer Touchpoints workshop in conjunction with NordiCHI 16. October 23-27, 2016, Gothenburg, Sweden. Abstract For professional transport companies, the time that a vehicle is not used for work the downtime of a vehicle is costly. In this paper, we introduce a research project that aims to speed up troubleshooting for trucks and buses through a combination of process improvements and development of software support. The result is a service that consists of multi-touchpoint encounters. During the project, we want to investigate how multi-touchpoint encounters can be represented, introduce the concept of implementation during the design of multi-touchpoint services and explore the consequences of the presence of multiple (non-)human actors that follow from multi-touchpoint encounters. We discuss preliminary results regarding these aspects. Thereby, we contribute with knowledge about how multi-touchpoint service encounters can be explored and how their implementation can be discussed as part of the process of designing them. Author Keywords Multi-touchpoint design; service design; service implementation; Service Logic

Introduction Transportation companies want to limit the time that their vehicles are standing still to a minimum. Standing still might lead to missing delivery deadlines and when a truck or bus stands still, it cannot be used to earn money. Therefore, it is important for transporters to have reliable vehicles that in case of an unplanned stop are quickly available for work again. Manufacturers of trucks and buses work to meet this need by constantly improving both the performance of their vehicles and by speeding up the process of troubleshooting and repair. Many different actors are involved in this process of troubleshooting and repairing trucks and buses, either directly or indirectly: driver, owner, workshop receptionist, mechanic, etc. As a consequence, the process involves a variety of touchpoints between different service systems. Technological support that is part of the process adds to this complexity. Guided remote and workshop diagnostics We are part of an ongoing research project with a truck and bus manufacturer, that aims to speed up the process of troubleshooting and repairing their vehicles. These improvements include adding new steps in the existing processes and development of advanced software technology as support for those trying to solve the problem. The software allows to remotely perform tests on the vehicle, to collect information and ideally identify the cause of the problem earlier in the process. The software provides step-by-step guidance for troubleshooting based on the information collected from the vehicle. The general scenario starts when a Driver identifies a problem. He or she then informs the Owner of the vehicle (in the case where the Driver is not selfemployed) about the problem. They decide to contact a call centre that we will refer to as Helpdesk in this paper where an operator will use the software under development in this research project to remotely perform an initial troubleshooting. This includes downloading fault codes and running tests on the vehicle. Based on the fault codes, the software support can suggest which test(s) to run to collect information that is most helpful in finding the cause of the problem. As part of such a test, the Driver might need to perform actions (e.g. press the brake pedal) to help collect information. The generated data is stored in the software support system and can be used to demarcate and ideally pinpoint the cause of the problem. After the initial troubleshooting, Helpdesk contacts a workshop and discusses with the Receptionist of the workshop whether that workshop can take the case. The information stored in the software system is available for this Receptionist, for planning the work. If the workshop takes the case, the truck is brought in to the workshop or a Mechanic drives to the truck. Using the information collected by the Helpdesk, the Mechanic determines what parts and tools might be needed for the repair and prepares these, either for repair at the workshop or for a roadside repair. The Mechanic receives suggestions from the software regarding the best next action(s) to perform, based on information about the problem that has been fed into the software. The service thus exists of distinct service moments. In the background of most of these moments, the software support is an extra layer that results in additional touchpoints for information throughput or

support. Especially the encounters that involve troubleshooting on the truck are multi-touchpoint encounters: Drivers might receive instructions from the system, while also on the phone with the Helpdesk, the Mechanic may require the Driver to do additional tests (other than those done by Helpdesk), and might do additional troubleshooting on site, for parts that could not be completed remotely. The process improvements and software development aim to improve the service experience for actors involved in the process in the following ways: Customers know earlier what the (extent of the) problem is so they can make better decisions and plan their operations accordingly. Workshop receptionists experience less difficulties in planning the work and predicting time, parts and skills required for the work. Mechanics feel more confident when approaching the problem because they can use the information that is collected to better prepare before they start working and they have the software to support them Research themes We want to use this research project to study the following themes regarding successful realisation of multi-touchpoint service experiences: Representations of multi-touchpoint services Implementation during service design Switches between actors with complementing resources Representations of multi-touchpoint services Service representations are central in service design tools and methods (e.g. [1]) and are used by service designers for different purposes [2]. We want to look at how current techniques to represent services in a definite and ongoing way [3] can be used to represent multi-touchpoint encounters and what role such representations can play in discussions about realisation of multi-touchpoint designs. We want to learn about ways to depict how several touchpoints are related and built up to become multi-touchpoint encounters. For instance, when Drivers are on the phone with the Helpdesk, they might simultaneously receive instructions to perform tests on the dashboard of their vehicle. How can you explore these situations and aspects such as order of importance of the touchpoints? Implementation during service design Services often involve a complex combination of resources (e.g. skills, information, technology). As a result, service implementation is a challenging endeavour, but has received little attention so far [4]. We argue that the concept of implementation should be introduced during the design process of a service to increase the odds of a smooth implementation and want to investigate how this could work. More specifically, we want to look at how a holistic, designerly way of working [5] can contribute to knowledge and discussions about successful realisation of future value co-creation during design processes. Besides this, we want to investigate how the Service Logic framework presented by [6] can be useful to go from a provider-oriented view on implementation, that

is common in discussions about service implementation [7], to a more holistic, view that includes, for instance, what changes and developments are required from customers for successful service implementation. On the overall level of the project, we want to learn more about how you can structure a dialogue about implementation during design processes and how to structure the process moving from a service idea to an implemented service in sequences. Switches between actors with complementing resources In the service described above, actors from different service systems are involved to varying extents at different points in the process. The Owner, Driver and Vehicle form one service system, who decide to interact with the service system of the manufacturer, consisting of the Helpdesk, the workshop network, Mechanics, etc. The resources and information are obviously not equal for all actors: The driver might be the only access point to certain information about the problem (information that cannot be reproduced or collected through tests afterwards, only retold). Only the Owner might have the authority to take decisions about what tests and repairs may be performed. Furthermore, there is not one actor that is part of all the encounters. Instead, the service involves switches between the different actors. The Driver does not talk directly to the Mechanic until the vehicle is at the workshop or the Mechanic has arrived at the vehicle, but then the mechanic already has a mental image of the problem through the Receptionist, who draws on the software and information from the Helpdesk. The Owner of the vehicle is involved in decisions but is otherwise not part of nor at the locus of the repair; he or she is dependent on information updates from other actors, such as the Driver. The Owner is sometimes the only one communicating with the customer of the transport company (about e.g. delays in delivery). Given these dyadic relationships during the process, where few actors are constant over time, transparency and providing all actors with the same information is important, to prevent a whisper-game scenario. Method We want to research these topics and questions through a combination of co-design workshops, interviews, collaborative data-analysis sessions, field visits as well as the development and discussion of representations of the service process. Preliminary results Workshops sessions as well as interviews at garages and transportation companies have provided the following preliminary results: Channel-smoothening occurs, for instance as a result of trust and habit. Similar to how a river smoothens a riverbed by constantly flowing through it, some service channels are used more intensively, creating paths of least resistance. When new channels or touchpoints are introduced, they contain more friction relative to existing ones. Therefore, service journeys are more likely to follow the desire paths that have already been formed instead: Driver or Owner might call their home workshop rather than Helpdesk because they know and trust the people at their home workshop more than the Helpdesk.

An actor s service willingness influences the quality and effectiveness of value co-creation: Drivers may have different levels of interest for participating in the (remote) tests or might be stressed, for instance if their truck stalled on an inconvenient location. Service resources, new roles and positions that actors mention as required for the future service process are expressed in the terms (resources, roles and positions) of the existing service, rather than being separate from it. For instance, an interviewee mentioned that the workshop would need a second workshop manager to deal with the calls from the Helpdesk. In this service, there are several guided touchpoints: the driver receives guidance from the Helpdesk operator in performing tests, the Helpdesk operator and the mechanic receive guidance from the software in their touchpoints with the driver, customer and vehicle. Conclusions Development and implementation of technology as a part of service processes can add another layer of touchpoints to the service journey, leading to multitouchpoint encounters. In this paper we have presented a research project that involves a multi-touchpoint service for troubleshooting and repairing trucks and buses. In this project we want to look at representations for multi-touchpoint encounters, the introduction of the concept of implementation during the service design process and the dynamics resulting from different actors being involved in different encounters of the same service journey. We want to develop knowledge that can help to improve the design and successful implementation of multi-touchpoint service journeys. Acknowledgements We want to thank VINNOVA for funding this research project, via the Fordonsstrategisk Forskning och Innovation (FFI) research programme. References [1] Stickdorn, M., & Schneider, J. (2011). This is service design thinking: basics, tools, cases. Amsterdam, The Netherlands: BIS Publishers. [2] Segelström, F. (2013). Stakeholder Engagement for Service Design: How service designers identify and communicate insights. PhD Thesis. Linkoping University Electronic Press. [3] Blomkvist, J., & Segelström, F. (2014). Benefits of External Representations in Service Design: A Distributed Cognition Perspective. The Design Journal, 17(January), 331 346. [4] Overkamp, T., & Holmlid, S. (2016). Views on Implementation and How They Could Be Used in Service Design. In ServDes.2016 Geographies - Proceedings of the fifth service design and innovation conference, Aalborg University, Denmark, 24-26 May (pp. 205 214). [5] Cross, N. (2001). Designerly ways of knowing: design discipline versus design science. Design Issues, 17(3), 49 55. [6] Grönroos, C., & Voima, P. (2013). Critical service logic: making sense of value creation and co-creation. Journal of the Academy of Marketing Science, 41(2), 133 150. [7] Tax, S. S., & Stuart, I. (1997). Designing and implementing new services: The challenges of integrating service systems. Journal of Retailing, 73(1), 105 134.