Unit Vector Theory based Unified Power Quality Conditioner for Power Quality Improvement

Similar documents
Enhancement of Power Quality based on Unified Power Quality Conditioner (UPQC) K.S.Srikanth, Shaik. Musthak Ahmed, Y.Srinivasa Rao

Design of Unified Power Quality Conditioner (UPQC) Connected To Three Phase Four Wire System

Power Quality improvement of a three phase four wire system using UPQC

A Simple Control Algorithm for Three-Phase Shunt Active Power Filter for Reactive Power and Current Harmonic Compensation

ANALYSIS OF SYNCHRONOUS-REFERENCE-FRAME-BASED CONTROL METHOD FOR UPQC UNDER UNBALANCED AND DISTORTED LOAD CONDITIONS Salava Nagaraju* 1

Power Quality Improvement in Fourteen Bus System using UPQC

Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating

ISSN Vol.04,Issue.08, July-2016, Pages:

Enhancement of Power Quality Using Advanced Series Active Power Filters

2020 P a g e. Figure.2: Line diagram of series active power filter.

ISSN: Page 20. International Journal of Engineering Trends and Technology- Volume2Issue3-2011

A Novel FPGA based PWM Active Power Filter for Harmonics Elimination in Power System

Power Control Scheme of D-Statcom

Improvement of Power Quality Using a Hybrid Interline UPQC

ICCCES Application of D-STATCOM for load compensation with non-stiff sources

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

Unified Power Quality Conditioner (UPQC) in Alleviation of Power Quality Issues

Implementation of SRF based Multilevel Shunt Active Filter for Harmonic Control

ANALYSIS OF UNIFIED POWER QUALITY CONDITIONER DURING VOLTAGE SAG AND SWELL CONDITIONS

Application of Fuzzy Logic Controller in Shunt Active Power Filter

IJCSIET--International Journal of Computer Science information and Engg., Technologies ISSN

Mitigation of Voltage Sag, Swell and Load Hamonics by the Combined Opertation of Series APF and Solar System

IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 12 June 2016 ISSN (online): X

Power-Quality Improvement with a Voltage-Controlled DSTATCOM

Cascaded H-Bridge Five Level Inverter for Harmonics Mitigation and Reactive Power Control

A THREE PHASE SHUNT ACTIVE POWER FILTER FOR HARMONICS REDUCTION

Power Quality Improvement Using Hybrid Power Filter Based On Dual Instantaneous Reactive Power Theory With Hysteresis Current Controller

Improvement of Power Quality Using Hybrid Active Power Filter in Three- Phase Three- Wire System Applied to Induction Drive

Power Quality Improvement using Shunt Passive Filter

Modified three phase Unified Power Quality Conditioner with capacitor midpoint topology

Kalman Filter Based Unified Power Quality Conditioner for Output Regulation

A Novel Approach to Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Using UPQC

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

Fuzzy Logic Control of APF for Harmonic Voltage Suppression in Distribution System

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System

Mitigation of Voltage Sag/Swell Using UPQC

Enhancement of Power Quality with Multifunctional D-STATCOM Operated under Stiff Source for Induction Motor Applications

PERFORMANCE ANALYSIS OF SVPWM AND FUZZY CONTROLLED HYBRID ACTIVE POWER FILTER

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

IMPROVING EFFICIENCY OF ACTIVE POWER FILTER FOR RENEWABLE POWER GENERATION SYSTEMS BY USING PREDICTIVE CONTROL METHOD AND FUZZY LOGIC CONTROL METHOD

5DESIGN PARAMETERS OF SHUNT ACTIVE FILTER FOR HARMONICS CURRENT MITIGATION

ISSN Vol.07,Issue.21, December-2015, Pages:

Power angle control of UPQC to compensate load reactive power and voltage sag /swells

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Interline Power Quality Conditioner for Power Quality Improvement

HYSTERESIS CONTROL FOR CURRENT HARMONICS SUPPRESSION USING SHUNT ACTIVE FILTER. Rajesh Kr. Ahuja

DRIVE FRONT END HARMONIC COMPENSATOR BASED ON ACTIVE RECTIFIER WITH LCL FILTER

SIMULATION AND COMPARISON OF SPWM AND SVPWM CONTROL FOR TWO LEVEL UPQC

ISSN Vol.04,Issue.16, October-2016, Pages:

Control Of Shunt Active Filter Based On Instantaneous Power Theory

Downloaded from

LOAD REACTIVE POWER COMPENSATION BY USING SERIES INVERTER OF UPQC

SPACE VECTOR PULSE WIDTH MODULATION SCHEME FOR INTERFACING POWER TO THE GRID THROUGH RENEWABLE ENERGY SOURCES

A Control Scheme for Dual Unified Power Quality Conditioner to Improve Power Quality

Mitigation of Voltage Sag and Swell Using Distributed Power Flow Controller

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads

Power Quality Improvement And Mitigation Of Voltage Sag And Current Swell Using Distributed Power Flow Controller

Design of Shunt Active Power Filter by using An Advanced Current Control Strategy

Improving the Power Quality by Four Leg VSI

Sinusoidal Current Control based Shunt Active Power Filter for Current Harmonics Reduction

Enhancement of Power Quality using active power filter in a Medium-Voltage Distribution Network switching loads

PLL Synchronization with PID Controller Based Shunt Active Power Line Conditioners

Power Quality Improvement by Simultaneous Controlling of Active and Reactive Powers in UPQC-S

A Voltage Controlled DSTATCOM using Hybrid Renewable Energy DC Link VSI for Power Quality Improvement

Implementation of D-STACTOM for Improvement of Power Quality in Radial Distribution System

COMPENSATION OF POWER QUALITY PROBLEMS USING ACTIVE POWER FILTER

CHAPTER 5 DESIGN OF DSTATCOM CONTROLLER FOR COMPENSATING UNBALANCES

Design and Simulation of Three Phase Shunt Active Power Filter Using SRF Theory

Multi Level Inverter Based Active Power Filter for Harmonic Reduction

POWER QUALITY IMPROVEMENT BY USING ACTIVE POWER FILTERS

A Versatile Control Scheme for UPQC for Power Quality Improvement using fuzzy controller


Mitigating Voltage Sag Using Dynamic Voltage Restorer

Comparison of Shunt Active Power Filter Control Strategies for Harmonic Compensation in a Paper Industrial Factory

Design and Control of Interline Unified Power Quality Conditioner for Power Quality Disturbances

Power Quality Improvement By Using DSTATCOM Controller

Shunt Active Power Filter based on SRF theory and Hysteresis Band Current Controller under different Load conditions

Review on Shunt Active Power Filter for Three Phase Four Wire System

PERFORMANCE OF DISTRIBUTION STATIC COMPENSATOR IN LOW VOLTAGE DISTRIBUTION SYSTEM

P.CHAITHANYAKUMAR, T.VARAPRASAD/

Analysis of Hybrid Power Conditioner in Three-Phase Four-Wire Distribution Power Systems for Suppressing Harmonics and Neutral-Line Current

Power Quality Improvement in Distribution System Using D-STATCOM

A NOVEL TCHNOLOGY FOR HARMONICS AND UNBALANCE COMPENSATION IN ELECTRIC TRACTION SYSTEM USING DIRECT POWER CONTROL METHOD

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method

Mitigation of Current Harmonics with Combined p-q and Id-IqControl Strategies for Fuzzy Controller Based 3Phase 4Wire Shunt Active Filter

Power Control and Quality Management in DG Grid Interfaced Systems

Improved Active Power Filter Performance for Renewable Power Generation Systems

ROLE of DC-MLI based D-STATCOM in Distribution Network with FOC Induction Motor Drive

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION

Harmonics Reduction using 4-Leg Shunt Active Power Filters

A New Control Method for Series Active Filter in Distribution System using Unit Vector Control

Power Quality Improvement using Active shunt Power filter using PI Controller

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality

Design of Hybrid Active Filter for Power Quality Improvement of Electrical Distribution System Using Fuzzy Logic Controller

International Journal of Research (IJR) e-issn: , p- ISSN: X Volume 2, Issue 09, September 2015

Synchronous Reference Frame Theory (SRF) along with PI Controller Based Dynamic Voltage Restorer

Improved Performance of STATIC Compensator for Grid Connected Wind System Using IRP Theory

Series Active Power Filter for Power Quality Improvement Based on Distributed Generation

Unified Power Quality Conditioner based on an Indirect Matrix Converter with a PV panel

Transcription:

Unit Vector Theory based Unified Power Quality Conditioner for Power Quality Improvement N.C.Kotaiah 1, Dr.K.Chandra Sekhar 2 Associate Professor, Department of Electrical & Electronics Engineering, R.V.R & J.C. College of Engineering, Chowdavaram, Guntur, A.P, India 1 Professor& HOD, Department of Electrical & Electronics Engineering, R.V.R & J.C. College of Engineering, Chowdavaram, Guntur, A.P, India 2 ABSTRACT:In power system networks power quality problem may come from load side or source side. Load side problems causes harmonics and reactive power issues and source side problems cause voltage stability problems. Power quality improvement for sensitive load by a unified power quality conditioner (UPQC) with a distribution system is conferred. UPQC consists of series and shut compensators for compensation of voltage disturbances and current disturbances. Till now various control strategies are proposed for shunt and series compensators. In this paper the instantaneous unit vector control theory under various loading conditions is analysed. With the proper control strategy UPQC can compensate the harmonic and reactive power of the load. MATLAB/SIMLINK based model is developed and simulation results are presented for various loading condition. KEYWORDS:unified power quality conditioner (UPQC), Instantaneous d-q theory, harmonic currents, reactive power and voltage distortion, I. INTRODUCTION Due to the presence of linear and non-linear loads the use of power quality compensator in distribution network is increased from time to time. The non-linear loads draws harmonics andlinear loads draws reactive power from the grid. This current drawn by harmonic load distorts the voltage at the utility grid and consequently distorts the operation of sensitive loads. By using UPQC [1]-[2] not only improves power quality, it also regulates voltage for the sensitive loads. UPQC comprises two compensators such as series compensators and shunt compensators [3], [4].The shunt compensators control by non-sinusoidal current reference and the series compensators control the distorted voltage supply i.e. accountable for compensating the grid voltage. These current and voltage references may be obtained through advanced control strategies [4],[5]. Some work shows effective technique for shunt and series compensators that uses the sinusoidal references, but the requirement of harmonic extraction is gaining importance so that it does not affect the smooth operation of various loads. Many control strategies have been developed for UPQC. However still performance of UPQC is in contradiction under various loading conditions. In this paper shunt compensator reference current is generated by using unit vector current theory and series compensator voltage is derived from Synchronous Reference Frame theory. II.UPQC TOPOLOGY,CONTROL STRETEGY UPQC can eliminate both current and voltage quality problems. By using a unified power quality conditioner (UPQC) [5] [6], it is likely to certify a regulated voltage for the loads is balanced with little harmonic distortion at the grid. The UPQC consists of two voltage source converters. One will act as shunt compensator and other will act as series Copyright to IJIRSET DOI:10.15680/IJIRSET.2015.0506052 9898

compensator the volt-ampere rating of the shunt compensator is selected based on harmonic contents of the load. The volt-ampere rating of series compensator is selected based on voltage sags and voltage swells. The dc-link voltage of the UPQC is selected based on the peak value of the supply voltage. Fig.1 shows the complete block diagram of proposed UPQC topology. It consists of two voltage sources converters connected back to back, the shunt converter is connected to PCC through inter facing Inductors, linear and non-linear loads that are considered. Series converter is connected in series with grid through injection transformers and LC filters. Here voltage sag and swell problems are occurred from grid side. For harmonic and reactive power compensation the dc-link voltage must be greater than supply voltage peak value with some multiplication factor. But for sag and swell compensations dc-link voltage at most equal to supply peak voltage. For compensation of harmonics, reactive power, voltage sags and swell the value of dc-link voltage must be chosen based on shunt compensator. Fig 1. Block diagram of the proposed UPQC topology. III. SHUNT CONVERTER WITH UNIT VECTOR CONTROLLER Instantaneous unit vector control theory is used for reference current generation for non linear load. Calculations are similar to instantaneous power theory, but d-q load currents are obtained from equations (1) and (2). Here the load current is measured in a-b-c frames, then converted to rotating V max 2 2 2 VLa V Lb V 3 2 Lc Fig.2.Block Diagram of shunt ControlledUPQC. Unit Vector Template: U = sin (θ) Copyright to IJIRSET DOI:10.15680/IJIRSET.2015.0506052 9899

U = sin (θ 2π 3 ) U = sin (θ + ) (1) The dc-link voltage error V () at nth sampling instant is given as: V ()() () (2) The output of discrete-pi regulator at sampling instant is expressed as I () = I () + K V () V () + K V () (3) Where K PVdc = 10 and K IVdc = 0.05 are proportional and integral gains of dc-voltage regulator. The instantaneous values of reference three phase grid currents are computed as I = I. U I = I. U (4) I = I. U The reference grid currents (I * a, I * b, I * c) are compared with actual grid currents ( Ia, Ib, Ic) to compute the current errors as I = I I I = I I I = I I I = I I (5) These current errors are given to hysteresis current controller. The hysteresis controller then generates the switching pulses (P 1 to P 8 ) for the gate drives of grid-interfacing inverter. The average model of 4-leg inverter can be obtained by the following state space equations di dt di dt di dt = (V V ) L = (V V ) L = (V V ) L = ( ) (6) = ( ) (7) WhereV,V, V and V are the three-phase ac switching voltages generated on the output terminal of the inverter.these inverter output voltages can be modelled in terms of instantaneous dc bus voltage and switching pulses of the inverter as V = (P P ) V 2 V = (P P ) V 2 V = (P P ) V = ( ) V 2 V (8) Similarly the charging currentsi,i, I on dc bus due to the each leg of inverter can be expressed as I = I (P P ) I = I (P P ) Copyright to IJIRSET DOI:10.15680/IJIRSET.2015.0506052 9900

I = I (P P ) I = I (P P ) (9) IV. SERIES CONTROLLER FOR UPQC Figure.3.shows the block diagram of series controlled UPQC. It is the dual of the shunt APF, and is able to compensate for distortion in the power line voltages, making the voltages applied to the load sinusoidal (compensating for voltage harmonics). The filter consists of a voltage-source inverter (behaving as a controlled voltage source) and requires three single-phase transformers to interface with the power system. The series active filter does not compensate for load current harmonics but it acts as high-impedance to the current harmonics coming from the power source side. Therefore, it guarantees that passive filters eventually placed at the load terminals will not drain harmonic currents from the rest of the power system. Another solution to solve the load current harmonics is to use a shunt active filter together with the series active filter, so that both load voltages and the supplied currents are guaranteed to have sinusoidal waveforms SERIES CONTROLLER EQUATIONS: Fig.3.Block Diagram of Series Controlled UPQC. V 1 V = 0 V coswt sinwt sinwt V coswt V (10) V V.MATLAB/SIMULINK ANALYSIS Therefore by using the above control strategies for series active power filter, shunt active power filter combindly helps to design a UPQC.The following MATLAB/SIMULINK model. Different cases of the UPQC, Case I: Harmonics and Re-active power compensation with unit vector Controlled Shunt converter, Case II: Voltage Sag compensation with Series Converter, Case III: Harmonics, Re-active power and Voltage Compensation with both Series and shunt converter based UPQC. Copyright to IJIRSET DOI:10.15680/IJIRSET.2015.0506052 9901

Case I: Harmonics and Re-active power compensation with unit vector Controlled Shunt converter. Fig.4. Simulink model of Harmonics and Re-active power compensation with Shunt converter. Fig.4. Shows the Simulink model of power system network with harmonics and re-active power compensation with shunt converter. Fig.5. Simulink model of the unit vector controller. Copyright to IJIRSET DOI:10.15680/IJIRSET.2015.0506052 9902

Fig.5. shows the control strategies for shunt converter of UPQC. Fig.6. Simulated output wave form of Source voltage, Source current, Load current and Shunt Converter current. Fig.6. shows the source voltage and current, load current and shunt converter current for harmonic and re-active power compensation with unit vector controlled shunt converter. Fig.7. THD of Load Current shows 30.62%. Fig.7. shows the total harmonic distortion of load current shows 30.62%. Fig.8. Source Voltage and Source Current with unit vector controlled Shunt Converter. Copyright to IJIRSET DOI:10.15680/IJIRSET.2015.0506052 9903

Fig.8. shows the source voltage and current with unit vector controlled shunt converter. Fig.9. Total Harmonic Distortion of Source Current shows 3.93%. Fig.9.total harmonic distortion of source current with unit vector controlled shunt converter shows that it is reduced to 3.05%. Case II: Voltage Sag compensation with Series Converter Fig.10. Simulink model of Voltage Sag compensation with Series converter of UPQC. Fig.10. shows the Matlab/Simulink model of power system network with voltage sag compensation with series converter. Fig.11.Simulated output wave form of Source Voltage with sag, Series converter injected voltage and load voltage. Copyright to IJIRSET DOI:10.15680/IJIRSET.2015.0506052 9904

Fig.11. shows the output wave form of source voltage with sag, series converter injected voltage and load voltage with voltage sag compensation with series converter. Case III: Harmonics, Re-active power and Voltage Compensation with both Series and shunt converter based UPQC. Fig.12. Simulink model of Harmonics, Re-active power and Voltage sag compensation with Shunt and Series converter of UPQC. Fig.12.shows the Matlab/Simulink model of power system network with harmonics re-active and voltage sag compensation with shunt and series converters of UPQC. Fig.13. Simulated output wave forms of Source voltage, Source current, Load current and Shunt converter injected current. Fig.13.shows the output wave forms of source voltage and current, load current and shunt converter injected current. Fig.14. Source Voltage and Source Current with unit vector controlled Shunt Converter. Copyright to IJIRSET DOI:10.15680/IJIRSET.2015.0506052 9905

Fig.14. shows the source voltage and current with unit vector controlled shunt converter. Fig.15. THD of Load Current shows 29.91%. Fig.15. shows the total harmonic distortion of load current shows 29.91%. Fig.16. Total Harmonic Distortion of Source Current shows 2.77%. Fig.16.total harmonic distortion of source current with unit vector controlled shunt converter shows that it is reduced to low value 2.77% Fig.17. Simulated output wave form of Source Voltage, Series converter injected voltage and load voltage under both harmonic load and voltage distortion. Fig.17. shows the output wave form of source voltage, series converter injected voltage and load voltage under both harmonic load and voltage distortion. Copyright to IJIRSET DOI:10.15680/IJIRSET.2015.0506052 9906

Table Parameter Source Voltage Source Impedance Value 320 V (0.1+j0.28) Ω DC Link Capacitance 3000µF Load resistance Load Inductance Interfacing Inductor 150 Ω 30mH 8.98nH VI. CONCLUSION In this paper UPQC topology has been proposed with unit vector controlled shunt converterwhich has theability to compensate voltage sagsand current harmonics at the load side. Thus large harmonic problems with non linear loads anddistorted voltage magnitudes are also avoided. In this work a unit vector theory based control algorithm is used for shunt converter and DQ control strategy is used for series converter. The system is tested for three conditions case 1: only sag swells are considered and series compensation is tested and results are presented, case 2: only harmonics are considered and shunt compensation is tested and results are presented, case 3: voltage sag and harmonics are considered and results are presented. Simulation results are clearly show that power quality problems are well mitigated with vector controller based UPQC. REFERENCES [1] M. Bollen, Understanding Power Quality Problems. Piscataway, NJ, USA: IEEE, 2000, ch. 1, pp. 1 35. [2] H. Fujita and H. Akagi, Voltage-regulation performance of a shunt active filter intended for installation on a power distribution system, IEEE Trans. Power Electron., vol. 22, no. 3, pp. 1046 1053, May 2007. [3] K.Kowalenko, Distributed Power Offers an Alternative to Electric Utilities, vol. 25, IEEE Press, Piscataway, NJ, 2001. [4] F. Blaabjerg, Z. Chen, S.B. Kjaer, Power electronics as efficient interface in dispersed power generation systems, IEEE Trans. Power Electron. 19 (September (5)) (2004) 1184 1194. [5] M. Aredes, K. Heumann, and E. Watanabe, An universal active power line conditioner, IEEE Trans. Power Del., vol. 13, no. 2, pp. 545 551, Apr. 1998. [6] K. Dai, P. Liu, G. Wang, S. Duan, and J. Chen, Practical approaches and novel control schemes for a three-phase three-wire series parallel compensated universal power quality conditioner, in Proc. IEEE APECExpo., 2004, vol. 1, pp. 601 606. [7] H. Fujita and H. Akagi, The unified power quality conditioner: The integration of series and shunt-active filters, IEEE Trans. Power Electron., vol. 13, no. 2, pp. 315 322, Mar. 1998. [8] F.Z. Peng, Editorial: Special issue on distributed power generation, IEEE Trans. Power Electron. 19 (September (5)) (2004) 1157 1158. [9] T.S. Perry, Deregulation may give a boost to renewable resources, IEEE Spectr. (January) (2001) 87. [10] H. Fujita, H. Akagi, The unified power quality conditioner: the integration of series and shunt active filters, IEEE Trans. Power Electron. 13 (March (2)) (1998) 315 322. [11] Yash Pal1, A. Swarup, Bhim Singh, "A control strategy based on UTT and I CosΦ theory of three-phase, four wire UPQC for power quality improvement" International Journal of Engineering, Science and TechnologyVol. 3, No. 1, 2011, pp. 30-40. Copyright to IJIRSET DOI:10.15680/IJIRSET.2015.0506052 9907

BIOGRAPHY N.C. Kotaiah has obtained B.Tech degree in Electrical & Electronics Engineering from Regional Engineering College, Calicut (RECC), Kerala, India in the year 1996 and Post Graduation M.Tech. Electrical Power Engineering from JNTU, Kakinada in the year 2005. He is currently a Ph.D. student in the EE E Dept. at ANU, Nagarjuna Nagar, Guntur.He is having a teaching experience of 17 years and now associated with R.V.R & J.C. College of Engineering, Guntur, Andhra Pradesh, India. His research interests related to FACTS - converter based compensators for enhancement of power quality, high voltage engineering and power system protection. Controllers. Dr.K.Chandra Sekhar received his B.Tech degree in Electrical & Electronics Engineering from V.R.Siddartha Engineering College, Vijayawada, India in 1991 and M.Tech with Electrical Machines & Industrial Drives from Regional Engineering College, Warangal, India in 1994. He Received the PhD, degree from the J.N.T.U, Hyderabad, India in 2008. He is having 19 years of teaching and research experience. He is currently Professor&Head in the Department of Electrical & Electronics Engineering, R.V.R & J.C.College of Engineering Guntur, India. His Research interests are in the areas of Power Electronics, Industrial Drives & FACTS Copyright to IJIRSET DOI:10.15680/IJIRSET.2015.0506052 9908