Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA

Similar documents
S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Optical monitoring technique based on scanning the gain profiles of erbium-doped fiber amplifiers for WDM networks

A broadband fiber ring laser technique with stable and tunable signal-frequency operation

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

Multiwavelength and Switchable Erbium-Doped Fiber Lasers

Multiwavelength fiber lasers based on multimode fiber Bragg gratings using offset launch technique

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Multiwavelength Single-Longitudinal-Mode Ytterbium-Doped Fiber Laser. Citation IEEE Photon. Technol. Lett., 2013, v. 25, p.

Loop Mirror Multi-wavelength Brillouin Fiber Laser Utilizing Semiconductor Optical Amplifier and Fiber Bragg Grating

Gain-clamping techniques in two-stage double-pass L-band EDFA

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs)

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber

A tunable and switchable single-longitudinalmode dual-wavelength fiber laser with a simple linear cavity

Channel wavelength selectable singleõdualwavelength erbium-doped fiber ring laser

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Tunable single frequency fiber laser based on FP-LD injection locking

Tunable Multiwavelength Erbium-Doped Fiber Laser Employing PM-FBG and Mach Zehnder Interferometer with Optical Fiber Delay Line

Recon gurable WDM add/drop multiplexer based on optical switches and bre Bragg gratings

A bidirectional radio over fiber system with multiband-signal generation using one singledrive

FIBER OPTICAL PARAMETRIC OSCILLATOR WITH SWITCHABLE AND WAVELENGTH-SPACING TUN- ABLE MULTI-WAVELENGTH

To generate a broadband light source by using mutually injection-locked Fabry-Perot laser diodes

Performance of optical automatic gain control EDFA with dual-oscillating control lasers

A WDM passive optical network enabling multicasting with color-free ONUs

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

Single-longitudinal mode laser structure based on a very narrow filtering technique

1014 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 8, AUGUST 2004

sensors ISSN

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

A continuously tunable and filterless optical millimeter-wave generation via frequency octupling

ARTICLE IN PRESS. Optics and Lasers in Engineering

Single mode EDF fiber laser using an ultra-narrow bandwidth tunable optical filter

Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers

Optical Fibre Amplifiers Continued

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Index Terms WDM, multi-wavelength Erbium Doped fiber laser.

O. Mahran 1,2 and A.A.Samir 1

Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

Multipoint temperature-independent fiber-bragg-grating strain-sensing system employing an optical-power-detection scheme

Full duplex 60-GHz RoF link employing tandem single sideband modulation scheme and high spectral efficiency modulation format

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Fiber optics devices for photonic communication and network

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 3, MARCH

Multi-channel FBG sensing system using a dense wavelength division demultiplexing module

High order cascaded Raman random fiber laser with high spectral purity

Tunable single-frequency fiber laser based on the spectral narrowing effect in a nonlinear semiconductor optical amplifier

EDFA Applications in Test & Measurement

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

EDFA WDM Optical Network using GFF

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers

Novel RF Interrogation of a Fiber Bragg Grating Sensor Using Bidirectional Modulation of a Mach-Zehnder Electro-Optical Modulator

CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

AN EFFICIENT L-BAND ERBIUM-DOPED FIBER AMPLIFIER WITH ZIRCONIA-YTTRIA-ALUMINUM CO-DOPED SILICA FIBER

Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a Differential Phase-shift-keyed Transmission

A novel 3-stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier *

Tunable Single-Mode Fiber Laser with a Low-Cost Active Fabry-Perot Filter of Ultra-Narrow-Linewidth and High Side-Mode-Suppressing Ratio

Remote (250 km) Fiber Bragg Grating Multiplexing System. Montserrat Fernandez-Vallejo *, Sergio Rota-Rodrigo and Manuel Lopez-Amo

DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS

Effects of MPI noise on various modulation formats in distributed Raman amplified system

Progress In Electromagnetics Research Letters, Vol. 8, , 2009

1.25 Gb/s Broadcast Signal Transmission in WDM-PON Based on Mutually Injected Fabry-Perot Laser Diodes

AN EXPERIMENT RESEARCH ON EXTEND THE RANGE OF FIBER BRAGG GRATING SENSOR FOR STRAIN MEASUREMENT BASED ON CWDM

Optical Amplifiers (Chapter 6)

Low-Frequency Vibration Measurement by a Dual-Frequency DBR Fiber Laser

I. INTRODUCTION II. FABRICATION AND OPERATION OF SLM FIBER LASER

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

2007 Elsevier Science. Reprinted with permission from Elsevier.

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Supplementary Figures

Differential measurement scheme for Brillouin Optical Correlation Domain Analysis

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

Theoretical Analysis of Tunable Single-Core Comb Filter Based on MZI

Optical Communications and Networking 朱祖勍. Oct. 9, 2017

BROAD-BAND rare-earth-doped fiber sources have been

Optical Fiber Technology

FMCW Multiplexing of Fiber Bragg Grating Sensors

EDFA-WDM Optical Network Analysis

LABORATORY INSTRUCTION NOTES ERBIUM-DOPED FIBER AMPLIFIER

Wavelength spacing tenable capability of optical comb filter using Polarization Maintaining Fiber

A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm

Simultaneous Second Harmonic Generation of Multiple Wavelength Laser Outputs for Medical Sensing

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor

All-optical logic gates using a semiconductor optical amplifier assisted by an optical filter

Performance Investigation of RAMAN-EDFA HOA for DWDM System (Received 17 September, 2016 Accepted 02 October, 2016)

Powerful Narrow Linewidth Random Fiber Laser

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

Transcription:

Optics Communications 252 (2005) 127 131 www.elsevier.com/locate/optcom Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA Peng-Chun Peng a, *, Kai-Ming Feng b, Wei-Ren Peng a, Hung-Yu Chiou b, Ching-Cheng Chang b, Sien Chi a,c a Institute of Electro-Optical Engineering, National Chiao-Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan, ROC b Institute of Communications Engineering, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC c Department of Electrical Engineering, Yuan Ze University, Chungli 320, Taiwan, ROC Received 17 January 2005; received in revised form 15 March 2005; accepted 30 March 2005 Abstract This investigation presents and demonstrates the feasibility of a novel fiber Bragg grating (FBG) sensor system using a fiber ring laser with a hybrid amplifier. The hybrid amplifier comprises an erbium-doped waveguide amplifier (EDWA) and a semiconductor optical amplifier (SOA). Experimental results demonstrate that the hybrid amplifier has a higher amplifier spontaneous emission power and gain spectrum. Moreover, this novel fiber ring laser provides a stable multiwavelength output with an optical signal-to-noise ratio over 50 db, even when FBGs are located at a 25 km remote sensing position. The primary feature of the proposed fiber laser is that it facilitates a long-distance or a large-scale sensor system. Ó 2005 Elsevier B.V. All rights reserved. Keywords: Fiber sensor; Fiber Bragg grating; Fiber laser; Erbium-doped waveguide amplifier; Semiconductor optical amplifier 1. Introduction Fiber Bragg gratings (FBGs) are effective optical devices for multipoint sensing in smart structures. In general-use FBG sensor systems, a broadband * Corresponding author. Tel.: +886 3 571 2121x52992; fax: +886 3 571 6631. E-mail address: pcpeng.eo90g@nctu.edu.tw (P.-C. Peng). erbium-doped fiber amplifier (EDFA) or light-emitting diode is employed as the light source. Recently, FBG sensor systems employing fiber laser schemes have been the focus of a significant amount of research due to their high power output, high resolution for wavelength shift, and high optical signalto-noise ratio (SNR) in noisy environments [1 4]. Because the homogeneous broadening of an erbium-doped fiber is dominant at room temperature, 0030-4018/$ - see front matter Ó 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.optcom.2005.03.036

128 P.-C. Peng et al. / Optics Communications 252 (2005) 127 131 it is difficult to obtain multiwavelength lasing in an erbium-doped fiber laser [5]. Therefore, multiwavelength fiber lasers employing an EDFA at room temperature have received considerable attention. For example, a technique that inserts variable attenuators into the erbium-doped fiber laser cavity for multiwavelength oscillations has been developed [2]. However, the cavity loss corresponding to each wavelength has to be balanced carefully in such techniques. Multiwavelength oscillations in a fiber laser source that uses a semiconductor optical amplifier (SOA) has been reported [3]. An interesting technique developed recently employs two SOAs in the laser cavity to increase both the lasing bandwidth and the average output power [6]. However, SOAs have a relatively high noise figure. Addition of an extra SOA in the laser cavity decreases the optical SNR of the fiber laser. To overcome this limitation, an EDFA rather than an SOA can be inserted into the multiwavelength laser cavity to increase gain and broaden the lasing bandwidth. Moreover, the optical SNR is higher than that of the two SOA systems [7]. Erbium-doped waveguide amplifiers (EDWAs) are now very attractive for used in metro networks due to their compactness, low processing cost, and compatibility with other optical devices. Furthermore, the EDWAs have the advantage of the fundamental qualities of the EDFAs, such as a low noise figure, negligible polarization dependence, and the absence of inter-channel crosstalk. Moreover, they have potential to be integrated with pump lasers and other optical devices [8,9]. In this study, a FBG sensor system in the fiber ring laser scheme with a hybrid amplifier as gain medium is proposed. The ring cavity comprises a series of FBGs and a 25-km single mode fiber (SMF); both EDWA and SOA are employed as the gain medium. In this experiment, this multiwavelength fiber laser scheme provided a high optical SNR over 50 db, even when FBGs were located at 25 km remote sensing points. Additionally, the peak power of each lasing wavelength was stable, even when different strains were imposed on the FBG. These features could facilitate a long-distance or largescale fiber sensor system and could be easily extended for multipoint sensing applications. 2. Experiment and results Fig. 1 shows the schematic diagram of the proposed long-distance FBG sensor system. The fiber ring laser comprises a hybrid amplifier with an EDWA and an SOA, a circulator (OC), a 1 2 optical coupler with a coupling ratio of 90:10 (C), a 25 km section of SMF, and a series of FBGs simultaneously acting as cavity mirrors and sensors. The lasing wavelength is derived by the sensing FBG chain. The EDWA is manufactured by Teem Photonics (France) via a two-step ion-exchange process. The EDWA driven by a 150 ma current source has a saturated output power of about 10 dbm and an amplified spontaneous emission (ASE) power of 3 mw. The SOA is manufactured by Kamelian Limited (United Kingdom). The SOA has a saturated output power of about 13.7 dbm and an ASE power of 3.4 mw. In the fiber-laser-based sensor system, the principal limitation on the maximum distance separating the sensors and number of sensors is the gain medium. To evaluate the performance of this proposed hybrid amplifier, a tunable laser and an optical spectrum analyzer (OSA) are used to measure its gain spectra. Fig. 2 shows the gain spectra of the amplifiers. Input power was set at 25 dbm. The maximum gain of the hybrid amplifier was 36.71 db at 1532 nm. In contrast to the single EDWA or SOA, the hybrid amplifier had a higher gain. Furthermore, this hybrid amplifier can facilitate a long-distance or large-scale fiber sensor system. Moreover, for a long-distance sensor system, the light source with high output power is C Output OSA Hybrid Amplifier Hybrid Amplifier 3 2 OC 1 25 km SMF EDWA Er-Yb waveguide 980nm pump FBG1 FBG2 FBG3 SOA Fig. 1. Schematic diagram of the long-distance FBG sensor system: OSA, optical spectrum analyzer; C, 1 2 coupler with coupling ratio 90:10; OC, optical circulator; SMF, single mode fiber; EDWA, erbium-doped waveguide amplifier; SOA, semiconductor optical amplifier.

P.-C. Peng et al. / Optics Communications 252 (2005) 127 131 129 Gain (db) 50 45 40 35 30 25 20 15 Hybrid Amplifier EDWA SOA 1552.52, 1554.47, and 1556.53 nm, respectively. The peak reflectivity for each FBG sensor was 99%. The 1 2 optical coupler provided 90% of the recirculating light to the output. The ASE power of hybrid amplifier at the FBG wavelengths was around 10 dbm. Under these conditions, the fiber ring laser with the proposed hybrid amplifier lased a continuous wave with three wavelengths simultaneously. Fig. 4(a) shows the output spectrum of this fiber laser. The optical SNRs provided by FBG1, FBG2, and FBG3 for the sensor system were over 50 db, even when the three sensing 10 1520 1530 1540 1550 1560 1570 1580 Wavelength (nm) Fig. 2. Optical gain spectra of the EDWA, SOA, and hybrid amplifier with input power set at 25 dbm. required. The ASE power of amplifiers was measured. Fig. 3 shows the ASE spectra of EDWA and hybrid amplifier. The ASE power from EDWA was only 3 mw. However, the hybrid amplifier increased ASE power from 3 to 23.2 mw. In this experiment, three sensing FBGs were examined. These three sensing FBGs generated a triple-wavelength fiber laser for the proposed long-distance sensor system. The Bragg wavelengths of FBG1, FBG2, and FBG3 were Fig. 3. ASE spectra of the EDWA and hybrid amplifier. Fig. 4. Output spectra of the fiber ring laser with (a) hybrid amplifier, (b) SOA, and (c) EDWA.

130 P.-C. Peng et al. / Optics Communications 252 (2005) 127 131 locations were 25 km from the optical spectrum analyzer. The peak power of lased output at triple-wavelength was approximately 13.3 dbm. To compare the characteristics of different gain media, experiments with only the SOA and the EDWA incorporated into the laser cavity were performed. The ASE power of SOA and EDWA at the FBG wavelengths were around 26.3 and 21.1 dbm, respectively. Fig. 4(b) shows the output spectrum of this fiber laser with only the SOA. The optical SNRs and peak power were only around 22 db and 47.1 dbm, respectively, because the SOA did not have sufficient gain and power to generate multiwavelength oscillations. Fig. 4(c) shows the output spectrum of this fiber laser with only the EDWA. Due to the homogeneous broadening property of the EDWA, this fiber laser was only lasing one wavelength. Therefore, we employ the hybrid amplifier (EDWA + SOA) for the FBG sensor system. Fig. 5 shows the wavelength shifts of FBG3 when different strains were imposed on it. There was no influence on the lasing wavelengths for FBG1 and FBG2 when the wavelength of FBG3 drifted. Fig. 6 shows the peak power variations of the fiber laser as a function of time. The fluctuations of the lasing peaks were less than 0.58 db. Such a lasing output is stable and sufficiently intense for the long-distant fiber sensor system. The wavelength operation range and maximum number of sensors for this FBG sensor system depend on the gain of hybrid amplifier and the cavity loss at different wavelengths. In the previous study [7], the hybrid amplifier can support 24 lasing wavelengths with wavelength spacing of 0.5 nm and SNR better than 42 db. Furthermore, the maximum peak intensity fluctuation between the 24 wavelength lines was less than 1.5 db. Therefore, the hybrid amplifier for FBG sensor systems could support 6 sensors with wavelength spacing 2 nm. The lasing wavelengths would be stable enough for sensor systems. 3. Conclusion This investigation proposed a long-distance FBG sensor system using a fiber ring laser with Fig. 5. Wavelength shifts of FBG3 when different strains were imposed. Peak power (dbm) -5-10 -15-20 FBG1 FBG2 FBG3-25 0 2 4 6 8 Time (min) Fig. 6. Variation of peak power as a function time for each lasing wavelength. an EDWA and an SOA. Owing to the higher ASE power and gain spectrum, the proposed fiber laser generated multiwavelength output for multipoint sensing at a long distance. Experimental results demonstrated that the multiwavelength fiber laser generated stable and intense peak power, even when the FBGs were at a location of 25 km. Furthermore, employing EDWA made the system more compact and has potential for integrating the system into planar waveguides. The proposed fiber 10

P.-C. Peng et al. / Optics Communications 252 (2005) 127 131 131 sensor system could be used for long-distance or large-scale smart structures. Acknowledgments This work was supported in part by the Media- Tek Fellowship and in part by the National Science Council of ROC under Contract NSC 93-2752-E-009-009-PAE, Contract NSC 93-2219- E-007-001, and Contract NSC 93-2215-E-155-005. References [1] A.D. Kersey, M.A. Davis, H.J. Partrick, M. Leblance, K.P. Koo, C.G. Askins, M.A. Putnam, E.J. Friebele, J. Lightwave Technol. 15 (1997) 1442. [2] L. Talaverano, S. Abad, S. Jarabo, M. Lopez-Amo, J. Lightwave Technol. 19 (2001) 553. [3] S. Kim, J. Kwon, S. Kim, B. Lee, IEEE Photon. Technol. Lett. 13 (2001) 350. [4] Y. Yu, L. Lui, H. Tam, W. Chung, IEEE Photon. Technol. Lett. 13 (2001) 702. [5] H.L. An, X.Z. Lin, E.Y.B. Pun, H.D. Liu, Opt. Commun. 169 (1999) 159. [6] N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, H. Avramopoulos, IEEE Photon. Technol. Lett. 14 (2002) 693. [7] D.N. Wang, F.W. Tong, X. Fang, W. Jin, P.K.A. Wai, J.M. Gong, Opt. Commun. 228 (2003) 295. [8] K.C. Reichmann, P.P. Ianonne, M. Birk, N.J. Frigo, D. Barbier, C. Cassagnettes, T. Garret, A. Verlucco, S. Perrier, J. Philipsen, IEEE Photon. Technol. Lett. 13 (2001) 1130. [9] Y. Jaouën, L.D. Mouza, D. Barbier, J.-M. Delavaux, P. Bruno, IEEE Photon. Technol. Lett. 11 (1999) 1105.