Econ 302: Microeconomics II - Strategic Behavior. Problem Set #5 June13, 2016

Similar documents
NORMAL FORM (SIMULTANEOUS MOVE) GAMES

ECON 282 Final Practice Problems

Domination Rationalizability Correlated Equilibrium Computing CE Computational problems in domination. Game Theory Week 3. Kevin Leyton-Brown

Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility

UPenn NETS 412: Algorithmic Game Theory Game Theory Practice. Clyde Silent Confess Silent 1, 1 10, 0 Confess 0, 10 5, 5

Normal Form Games: A Brief Introduction

(a) Left Right (b) Left Right. Up Up 5-4. Row Down 0-5 Row Down 1 2. (c) B1 B2 (d) B1 B2 A1 4, 2-5, 6 A1 3, 2 0, 1

Advanced Microeconomics (Economics 104) Spring 2011 Strategic games I

ECON 2100 Principles of Microeconomics (Summer 2016) Game Theory and Oligopoly

DECISION MAKING GAME THEORY

ECO 463. SimultaneousGames

ECON 312: Games and Strategy 1. Industrial Organization Games and Strategy

Homework 5 Answers PS 30 November 2013

Game Theory Lecturer: Ji Liu Thanks for Jerry Zhu's slides

ECO 220 Game Theory. Objectives. Agenda. Simultaneous Move Games. Be able to structure a game in normal form Be able to identify a Nash equilibrium

Game Theory Refresher. Muriel Niederle. February 3, A set of players (here for simplicity only 2 players, all generalized to N players).

Lecture 7: Dominance Concepts

Game Theory. Vincent Kubala

U strictly dominates D for player A, and L strictly dominates R for player B. This leaves (U, L) as a Strict Dominant Strategy Equilibrium.

Game Theory. Vincent Kubala

Game Theory. Wolfgang Frimmel. Dominance

Dominance Solvable Games

Student Name. Student ID

ECON 301: Game Theory 1. Intermediate Microeconomics II, ECON 301. Game Theory: An Introduction & Some Applications

final examination on May 31 Topics from the latter part of the course (covered in homework assignments 4-7) include:

Prisoner 2 Confess Remain Silent Confess (-5, -5) (0, -20) Remain Silent (-20, 0) (-1, -1)

Games. Episode 6 Part III: Dynamics. Baochun Li Professor Department of Electrical and Computer Engineering University of Toronto

EC3224 Autumn Lecture #02 Nash Equilibrium

Microeconomics of Banking: Lecture 4

Reading Robert Gibbons, A Primer in Game Theory, Harvester Wheatsheaf 1992.

Lecture #3: Networks. Kyumars Sheykh Esmaili

CPS 570: Artificial Intelligence Game Theory

February 11, 2015 :1 +0 (1 ) = :2 + 1 (1 ) =3 1. is preferred to R iff

CSC304 Lecture 2. Game Theory (Basic Concepts) CSC304 - Nisarg Shah 1

1\2 L m R M 2, 2 1, 1 0, 0 B 1, 0 0, 0 1, 1

EconS Game Theory - Part 1

THEORY: NASH EQUILIBRIUM

Note: A player has, at most, one strictly dominant strategy. When a player has a dominant strategy, that strategy is a compelling choice.

Games in Extensive Form

Chapter 13. Game Theory

1 Simultaneous move games of complete information 1

Non-Cooperative Game Theory

Finite games: finite number of players, finite number of possible actions, finite number of moves. Canusegametreetodepicttheextensiveform.

Dominant and Dominated Strategies

Economics 201A - Section 5

Japanese. Sail North. Search Search Search Search

CS510 \ Lecture Ariel Stolerman

Exercises for Introduction to Game Theory SOLUTIONS

ECO 5341 Strategic Behavior Lecture Notes 3

Lecture 6: Basics of Game Theory

Game Theory: The Basics. Theory of Games and Economics Behavior John Von Neumann and Oskar Morgenstern (1943)

Basic Game Theory. Economics Auction Theory. Instructor: Songzi Du. Simon Fraser University. September 7, 2016

Minmax and Dominance

Introduction to Game Theory

Multiagent Systems: Intro to Game Theory. CS 486/686: Introduction to Artificial Intelligence

Dominance and Best Response. player 2

LECTURE 26: GAME THEORY 1

Rationality, Dominance and Best Response

Introduction to Game Theory

Computing Nash Equilibrium; Maxmin

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Game Theory

Section Notes 6. Game Theory. Applied Math 121. Week of March 22, understand the difference between pure and mixed strategies.

Introduction to Game Theory I

Game Theory and Algorithms Lecture 3: Weak Dominance and Truthfulness

Asynchronous Best-Reply Dynamics

CMU Lecture 22: Game Theory I. Teachers: Gianni A. Di Caro

Repeated Games. Economics Microeconomic Theory II: Strategic Behavior. Shih En Lu. Simon Fraser University (with thanks to Anke Kessler)

CMU-Q Lecture 20:

ECO 199 B GAMES OF STRATEGY Spring Term 2004 B February 24 SEQUENTIAL AND SIMULTANEOUS GAMES. Representation Tree Matrix Equilibrium concept

Part 1. Midterm exam PS 30 November 2012

Game Theory and Economics Prof. Dr. Debarshi Das Humanities and Social Sciences Indian Institute of Technology, Guwahati

Rationality and Common Knowledge

Problem 1 (15 points: Graded by Shahin) Recall the network structure of our in-class trading experiment shown in Figure 1

Introduction to (Networked) Game Theory. Networked Life NETS 112 Fall 2016 Prof. Michael Kearns

Chapter 3 Learning in Two-Player Matrix Games

RECITATION 8 INTRODUCTION

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India August 2012

Partial Answers to the 2005 Final Exam

NORMAL FORM GAMES: invariance and refinements DYNAMIC GAMES: extensive form

Finance Solutions to Problem Set #8: Introduction to Game Theory

Game Theory and Randomized Algorithms

Solution Concepts 4 Nash equilibrium in mixed strategies

Mixed Strategies; Maxmin

Nash Equilibrium. Felix Munoz-Garcia School of Economic Sciences Washington State University. EconS 503

INSTRUCTIONS: all the calculations on the separate piece of paper which you do not hand in. GOOD LUCK!

RASMUSSEN: chap /9/16 19:22 page 9 #1

CHAPTER LEARNING OUTCOMES. By the end of this section, students will be able to:

Game theory Computational Models of Cognition

1. Introduction to Game Theory

Games and decisions in management

Dominant and Dominated Strategies

Introduction to Industrial Organization Professor: Caixia Shen Fall 2014 Lecture Note 6 Games and Strategy (ch.4)-continue

Microeconomics II Lecture 2: Backward induction and subgame perfection Karl Wärneryd Stockholm School of Economics November 2016

Introduction to (Networked) Game Theory. Networked Life NETS 112 Fall 2014 Prof. Michael Kearns

Adversarial Search and Game Theory. CS 510 Lecture 5 October 26, 2017

Introduction to IO. Introduction to IO

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Algorithmic Game Theory Date: 12/6/18

Multiagent Systems: Intro to Game Theory. CS 486/686: Introduction to Artificial Intelligence

Backward Induction and Stackelberg Competition

Name. Midterm, Econ 171, February 27, 2014

Transcription:

Econ 302: Microeconomics II - Strategic Behavior Problem Set #5 June13, 2016 1. T/F/U? Explain and give an example of a game to illustrate your answer. A Nash equilibrium requires that all players are maximizing their payoffs irrespective of the decisions of the other players. a) A Nash equilibrium requires that all players are maximizing their payoffs irrespective of the decision of the other players. False. A Nash equilibrium requires that all players are maximizing their payoff given the (equilibrium) decisions of the other players. See, e.g., Game 2 in Question 2, where plays Top and gets 3 in the NE (Top, Right) even though s maximal payoff is 6, which is attained if she plays Bottom (and if the other player plays Left). b) An equilibrium in dominant strategies usually maximizes joint payoffs. False. A player has a dominant strategy if al l other strategies yield a lower payoffs regardless of what other players do. This does not imply joint utility maximization. Just take the Prisonner s Dilemma game as an example. The dominant strategy for each player is to confess, yet the joint payoff from (confess, confess) is lower that from (not confess, not confess). 2. Check the following two games for dominance solvability. Find the Nash equilibria. Use Game 3 to explain why it is important to describe an equilibrium by using the strategies employed by other players, not merely the payoffs received in equilibrium. Left Center Right Top 4, 3 2, 7 0, 4 Bottom 5, 5 5, 1 4, 2 Game 1 This game is dominance solvable: player s strategy Right is dominated by Middle. Eliminating Right from the matrix, we see that now player has a dominated strategy: Top (dominated by Bottom). Eliminating Top, Player has the choice between Left and Middle, and chooses Left. There is thus a unique equilibrium (Bottom, Left) which can be found by iterated elimination of dominated strategies. This is also a Nash equilibrium. Suppose plays Bottom. s best response to Bottom is to play Left. And s best response to Left is Bottom, so we have found the Nash equilibrium. Also, there can be no others: if plays Top, s best response to Top is Center. But if plays Center, should play Bottom, not Top. There is therefore no Nash equilibrium where 1

plays Top. Thus, the equilibrium is unique since we ve exhausted all possibilities (either plays Top or plays Bottom). Left Right Top 2, 1 3, 3 Bottom 6, 5 2, 2 Game 2 This game is not dominance solvable. Neither player has a strategy that is worse than some other strategy, regardless of what the other player does: for instance, if plays Left, is better off playing Bottom than Top, but the other way around if plays Right. The same argument can be made for. The game has two NE s: (Bottom, Left) and (Top, Right). To see that, e.g., (Top, Right) is a NE, notice that if plays Right, should play Top, and if plays Top, should play Right. So (Top, Right) are mutually best responses. The same is true for (Bottom, Left). Also note that (Top, Right) is still a NE even though both players are better of in the (Bottom, Left) equilibrium. Left Center Right Top 1, 2 2, 1 1, 0 Middle 0, 5 1, 2 7, 4 Bottom 1, 1 3, 0 5, 2 Game 2 This game is dominance solvable: in this game, s strategy Center is dominated by playing Left. We can thus eliminate Center for. In the remaining game, we can eliminate Bottom which is dominated for by Middle. Finally, we can eliminate Right for which is dominated in the remaining game by Left. So will play Left, and best response to Left is for to play Top. (Top, Left) is the unique NE. Note that in this NE, gets 1 and gets 2. There are other potential outcomes such as (Middle, Right) or (Bottom, Right) which give a higher payoff to each player. Still, these outcomes will not materialize in equilibrium because if were to play Middle, will play Left, not Right and if were to play Right, will play Middle, not Bottom. 3. The following game was actually played between the US and Japan in Word War II. In 1943 the Japanese admiral Imamura was ordered to move a convoy of ships to New Guinea; he had to choose between a stormy northern route and a sunnier southern route, both of which required 3 days sailing time. The American admiral 2

Kenney knew about the convoy and wanted to send bombers, but he did not know which route Imamura would take. He had to send reconnaissance planes, but they only had enough planes to explore one route at a time. If the convoy was on the route first explored by Kenney, he could send bombers right away; if not one day of bombing would be lost. Poor weather of the northern route would also hamper bombing. If Kenney sent the reconnaissance planes the northern route and found the Japanese there, they could expect only 2 out of 3 good bombing days. If they found the Japanese had gone south, they could also expect 2 bombing days. If Kenney went the southern route first, he could expect 3 days of bombing if the Japanese were there, but only 1 day if they instead had taken the northern route. a) Illustrate the situation in a matrix zero-sum game. Named after the place where the actual bombing took place, this game is called The Battle of the Bismarck Sea. Recall that zero-sum means that the sum of the entries in each cell equals zero. Let s represent payoffs by days of bombing. Given the story above, we get: Kenney Imamura North South North 2, 2 2, 2 South 1, 1 3, 3 The Battle of the Bismarck Sea b) Find any equilibria (dominated strategies, Nash). Note that for the Japanese, going North is a weakly dominant strategy (see also below for a definition of weak dominance): it is strictly better than going South if the Americans go South, and just as good if the Americans go North. However, there are no (strictly) dominated strategies for either player, so we can t eliminate any rows/columns from the game matrix there is no equilibrium in dominant strategies. To find the NE s, assume first Imamura goes South, then Kenney will go South, too. But then going South is not a best response for the Japanese, so there is no NE were Imamura goes South. Next, suppose Imamura goes North, then Kenney should go North, too. And given Kenney goes North, Imamura might as well go North, too: he is indifferent between North and South, so him choosing North is one response to Kenney s going North. We thus have a unique NE where the Japanese choose the Northern route and where the Americans sent their reconnaissance planes on the Northern route, too. As a side remark, this is indeed what happened in 1943. 4. (Contributing to a Public Good) Each of n people chooses whether to contribute 3

a fixed amount toward the provision of a public good. The good is provided if and only if at least k people contribute, where 2 k n. If the good is not provided, contributions are not refunded. Each person ranks outcomes from best to worst as follows: (i) any outcome in which the good is provided and she does not contribute (ii) any outcome in which the good is provided and she contributes, (iii) any outcome in which the good is not provided and she does not contribute, (iv) any outcome in which the good is not provided and she contributes. a) formulate this situation as a strategic game. Is the game solvable by iterated elimination of dominated strategies? There are n players, each of which has two strategies: Contribute (C) or don t contribute (D). The payoffs for player i are as follows, given that α other players contribute. First, if n α k, player i is better off not contributing (the good will be provided without her contribution). If α = k 1 people contribute, player i is better off contributing (the good will only be provided with her contribution which she values higher than the good not being provided). If 0 α k 2 people contribute, player i is better off not contributing (the good won t be provided anyway). Clearly, player i best response/optimal strategy does depend what the other players are doing, so there is no dominant strategy/dominated strategy. b) find all Nash equilibria of this game. Is there one where more than k people contribute? One where k people contribute? To answer this question, we just have to go through the various possibilities. First, is there a NE where more than k people contribute? Answer: no, since this means that from the point of view of some player i, α k others already contribute, so the best response for this player is to play D. Second, is there a NE where exactly k people contribute? Yes: from a contributing player i s point of view α = k 1 people play C so he should play C as well. This is true for all players who play C. For all players who play D, α = k, so playing D is optimal as well. Note that we cannot say who contributes. Each possible combination of contributing players/defecting players is a NE. Finally, are there NE were strictly less than k people contribute? Yes, there is one NE where no one contributes: if nobody else contributes a = 0 and it doesn t pay to contribute for player i either. So D for all players is a NE. Are there any NE where a positive number of people, say β > 0 contribute but β < k? No. If β = k 1, then each non-contributing player would have an incentive to deviate and contribute instead. If β < k 1, then each contributing player would want to deviate and play D. Further questions for review: 4

a) how do the payoff entries (a,b,c,d,e,f,g,h) have to be in relation to each other if 1. Consider the following matrix game: Left Right Top a, b c, d Bottom e, f g, h (Top,Left) is a dominant strategy equilibrium? a > e, c > g, b > d and f > h. b) how do the payoff entries (a,b,c,d,e,f,g,h) have to be in relation to each other if (Top,Left) is a Nash equilibrium? a > d and b > d 2. An old lady is looking for help to cross the street. Only one person is needed to help her; more are okay but no better than one. You and I are the only two people in the vicinity who can help; we have to choose simultaneously whether to do so. Each of us will get the pleasure worth 3 from her success (no matter who helps her). But each one who goes to help will bear a cost of 1. Set this up as a game. Write the payoff table, and find all Nash Equilibria. The Payoff Table is: I Help Don t You Help 2, 2 2, 3 Don t 3, 2 0, 0 Helping the old Lady As can easily be verified, the game has two Nash equilibria (in pure strategies). The first NE is (Help,Don t) and the second NE is (Don t, Help). In both NE s, one of us helps the lady. Each of us prefers the other to help her, but given the other is not doing anything, each of us prefers helping her. Helping the lady is providing a public good. In equilibrium, only one of us contributes. Note, however, that in this particular case this is also efficient: the joint surplus is lower if both of us help her. 3. In any game, we say that a player s strategy weakly dominates another strategy if the first strategy is at least as good as the second strategy, no matter what other players do, and is strictly better than the second strategy for some actions of the other players. In other words, weak dominance is like the (strict) dominance we discussed in class (where a player does strictly better with one strategy, regardless what the other player does), except that the player may sometimes be indifferent. Recall the guessing game we played in class, assuming that players can name any real number, not just integers (so fractions are allowed). Argue carefully that it is solvable by iterated elimination of weakly dominated strategies. Give the unique 5

equilibrium outcome one arrives at by this procedure, and argue that this outcome is also the unique Nash equilibrium of this game. The figure below describes the process of iterated elimination of weakly dominated strategies. A rational player should never choose a number strictly above 2 3 100 = 66.6, since any such number it is weakly dominated by choosing 66.6 (because regardless of what the other players do, there can never be a winning number above 66.6). So we can eliminate any choice above 66.6 from the game matrix. But given the new game matrix, nobody should pick number above 2 3 66.6 = 2 3 2 100 = 44.4. In words: if a player is rational, and beliefs that others are rational, he should not expect anyone to pick a number above 66.6, so he should pick nothing above 44.4 because it is weakly dominated by picking 44.4. Eliminating any picks above this number from the game matrix, the new matrix will have everything above 2 3 44.4 = 2 3 3 100 = 29.6 and so on until numbers but zero are eliminated. Equilibrium Iteration... E(4) E(3) E(2) E(1) E(0) 0 13.17 19.75 29.63 44.44 66.66 100 E(0) is the area of dominated choices, E(1) is the area of one iteration of elimination and so on. The outcome where everybody picks 0 is also the unique NE. To show this, we first need to argue that it is a NE: if everybody else picks 0 any one player should pick 2 0 = 0 as well, so we do have a NE at 0. We also have to show that there are no 3 other NE. Again, this is very simple: given everybody else s choice, any one player should pick 2 average of that choice, but then everybody should lower their choice 3 again, so there is no equilibrium in which the average is different from zero. 6