DEFECT SIZING IN PIPE USING AN ULTRASONIC GUIDED WAVE FOCUSING TECHNIQUE

Similar documents
FLEXURAL TORSIONAL GUIDED WAVE PIPE INSPECTION

ULTRASONIC GUIDED WAVE FOCUSING BEYOND WELDS IN A PIPELINE

Ultrasonic Guided Waves for NDT and SHM

Developments in Ultrasonic Guided Wave Inspection

Ultrasonic Guided Wave Testing of Cylindrical Bars

Application of Ultrasonic Guided Waves for Characterization of Defects in Pipeline of Nuclear Power Plants. Younho Cho

Inspection of pipe networks containing bends using long range guided waves

Detection of Protective Coating Disbonds in Pipe Using Circumferential Guided Waves

Penn State University ESM Ultrasonics R&D Laboratory Joseph L. Rose Research Activities

CIRCULAR LAMB AND LINEAR SHEAR HORIZONTAL GUIDED WAVE ARRAYS FOR STRUCTURAL HEALTH MONITORING

PRACTICAL ENHANCEMENTS ACHIEVABLE IN LONG RANGE ULTRASONIC TESTING BY EXPLOITING THE PROPERTIES OF GUIDED WAVES

Application of Ultrasonic Guided Wave to Heat Exchanger Tubes Inspection

Long Range Ultrasonic Testing - Case Studies

Piezoelectric transducer excitation for guided waves propagation on pipeline with flexural wave modes

Hybrid Active Focusing with Adaptive Dispersion for Higher Defect Sensitivity in Guided Wave Inspection of Cylindrical Structures

ULTRASONIC GUIDED WAVE ANNULAR ARRAY TRANSDUCERS FOR STRUCTURAL HEALTH MONITORING

Ultrasonic Guided Wave Applications

HEALTH MONITORING OF ROCK BOLTS USING ULTRASONIC GUIDED WAVES

REFLECTION AND TRANSMISSION OF LAMB WAVES AT DISCONTINUITY IN PLATE Z. Liu NDT Systems & Services AG, Stutensee, Germany

18th World Conference on Non-destructive Testing, April 2012, Durban, South Africa

Use of Lamb Waves High Modes in Weld Testing

THE LONG RANGE DETECTION OF CORROSION IN PIPES USING LAMB WAVES

Hardware Development of Reflection Mode Ultrasonic Tomography System for Monitoring Flaws on Pipeline

Generation Laser Scanning Method for Visualizing Ultrasonic Waves Propagating on a 3-D Object

An Overview Algorithm to Minimise Side Lobes for 2D Circular Phased Array

Simulation of ultrasonic guided wave inspection in CIVA software platform

A Simulation Study of Attenuation Factors in a Gas Pipeline Guided Wave Testing

Feasibility of Detection of Leaking Fuel Rods Using Side Coupled Guided Waves

Fig. 1 Feeder pipes in the pressurized heavy water reactor.

Multiple crack detection of pipes using PZT-based guided waves

Determination of the width of an axisymmetric deposit on a metallic pipe by means of Lamb type guided modes

Sensitivity analysis of guided wave characters for transducer array optimisation on pipeline inspections

Optimized Semi-Flexible Matrix Array Probes for Large Rotor Shafts and DGS Sizing Diagram Simulation Tool

ULTRASONIC SIGNAL CHARACTERIZATIONS OF FLAT-BOTTOM HOLES IN

ASSESSMENT OF WALL-THINNING IN CARBON STEEL PIPE BY USING LASER-GENERATED GUIDED WAVE

Guided Wave Travel Time Tomography for Bends

SPARSE ARRAY TOMOGRAPHY SYSTEM FOR CORROSION EXTENT MONITORING H. Bian, H. Gao, J. Rose Pennsylvania State University, University Park, PA, USA

RELIABILITY OF GUIDED WAVE ULTRASONIC TESTING. Dr. Mark EVANS and Dr. Thomas VOGT Guided Ultrasonics Ltd. Nottingham, UK

ARTICLE IN PRESS. NDT&E International

Table 1 The wheel-set security system of China high-speed railway

The Development of Laser Ultrasonic Visualization Equipment and its Application in Nondestructive Inspection

1831. Fractional derivative method to reduce noise and improve SNR for lamb wave signals

ULTRASONIC GUIDED WAVES FOR AGING WIRE INSULATION ASSESSMENT

A Modified Synthetic Aperture Focussing Technique Utilising the Spatial Impulse Response of the Ultrasound Transducer

INSPECTION OF THERMAL BARRIERS OF PRIMARY PUMPS WITH PHASED ARRAY PROBE AND PIEZOCOMPOSITE TECHNOLOGY

Multi Level Temperature Measurement Using a single 90 bend waveguide

ANNULAR ARRAY SEARCH UNITS AND THEIR POTENTIAL APPLICATION IN CONVENTIONAL ULTRASONIC TESTING SYSTEMS ABSTRACT

BINDT Telford. Guided Wave Testing and Monitoring Over Long and Short Ranges

Electromagnetic Eddy Current Sensors for Evaluation of Sea-Cure and 2205 Duplex Condenser Tubing

Developments in Ultrasonic Phased Array Inspection III

Simulation of Ultrasonic Testing of Rail Wheel Face using Phased Array and DDF technique

Time Reversal FEM Modelling in Thin Aluminium Plates for Defects Detection

Reduction of Dispersive Wave Modes in Guided Wave Testing using Split-Spectrum Processing

Testing of Buried Pipelines Using Guided Waves

Ultrasonic Phased Array Crack Detection Update

LASER GENERATION AND DETECTION OF SURFACE ACOUSTIC WAVES

VIBRATIONAL MODES OF THICK CYLINDERS OF FINITE LENGTH

Ultrasonic Imaging of Tight Crack Surfaces by Backscattered Transverse Wave with a Focused Transducer

A NOVEL HIGH SPEED, HIGH RESOLUTION, ULTRASOUND IMAGING SYSTEM

EFFECT OF SURFACE COATINGS ON GENERATION OF LASER BASED ULTRASOUND

Professor Emeritus, University of Tokyo, Tokyo, Japan Phone: ;

Available online at ScienceDirect. Physics Procedia 70 (2015 )

APPLICATION OF ULTRASONIC GUIDED WAVES FOR INVESTIGATION OF COMPOSITE CONSTRUCTIONAL COMPONENTS OF TIDAL POWER PLANTS

Development of the air-coupled ultrasonic vertical reflection method

Rayleigh Wave Interaction and Mode Conversion in a Delamination

DAMAGE DETECTION IN PLATE STRUCTURES USING SPARSE ULTRASONIC TRANSDUCER ARRAYS AND ACOUSTIC WAVEFIELD IMAGING

Change in Time-of-Flight of Longitudinal (axisymmetric) wave modes due to Lamination in Steel pipes

Transducer degradation and high amplitude behavior of broadband piezoelectric stack transducer for vibrothermography

A Breakthrough in Sputtering Target Inspections: Ultra-High Speed Phased Array Scanning with Volume Focusing

KAERI Feeder Tube Inspection Using EMAT Generated Circumferential Guided Waves

Quantitative Crack Depth Study in Homogeneous Plates Using Simulated Lamb Waves.

Guided Wave Testing - Maximizing Buried Pipe Corrosion Knowledge from each Excavation

NDI Techniques Supporting Steel Pipe Products

Measurement of phase velocity dispersion curves and group velocities in a plate using leaky Lamb waves

Ultrasonic Guided Waves in Structural Health Monitoring Joseph L. Rose

SURFACE ACOUSTIC WAVE STUDIES OF SURFACE CRACKS IN CERAMICS. A. Fahr, S. Johar, and M.K. Murthy

Long Range Guided Wave Monitoring of Rail Track

Multi-Mode and Multi-Frequency Differential Lamb Wave Imaging with in situ Sparse Transducer Arrays

A Novel Crack Location Method Based on the Reflection Coefficients of Guided Waves

Multi-spectral acoustical imaging

STUDY ON SAW ATTENUATION OF PMMA USING LASER ULTRASONIC

Structural Integrity Monitoring using Guided Ultrasonic Waves

MEASUREMENT OF SURFACE ACOUSTIC WAVE USING AIR COUPLED TRANSDUCER AND LASER DOPPLER VIBROMETER

Further Developments in Ultrasonic Phased Array Inspection of Aging Aircraft

ACOUSTO-ULTRASONIC EVALUATION OF HYBRID COMPOSITES USING

Nondestructive Evaluation Tools to Improve the Inspection, Fabrication and Repair of Bridges

Detecting 1 st and 2 nd Layer Simulated Cracks in Aircraft Wing Spanwise Splice Standards Using Remote-Field Eddy Current Technique

Application of Guided Wave Technology to Tube Inspection

Keywords: Ultrasonic Testing (UT), Air-coupled, Contact-free, Bond, Weld, Composites

NDT 2010 Conference Topics

PAUT as Tool for Corrosion Damage Monitoring

Ginzton Laboratory, W. W. Hansen Laboratories of Physics Stanford University, Stanford, CA 94305

DETECTION AND SIZING OF SHORT FATIGUE CRACKS EMANATING FROM RIVET HOLES O. Kwon 1 and J.C. Kim 1 1 Inha University, Inchon, Korea

Curved arrays for improved horizontal sizing in small pipe welds

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

Research on An Inspection Method for De-bond Defects in Aluminum. Skin-Honeycomb Core Sandwich Structure with Guided Waves

Retrospective Transmit Beamformation. Whitepaper. ACUSON SC2000 Volume Imaging Ultrasound System. Answers for life.

A SHEAR WAVE TRANSDUCER ARRAY FOR REAL-TIME IMAGING. R.L. Baer and G.S. Kino. Edward L. Ginzton Laboratory Stanford University Stanford, CA 94305

A STUDY ON NON-CONTACT ULTRASONIC TECHNIQUE FOR ON-LINE INSPECTION OF CFRP

FATIGUE CRACK CHARACTERIZATION IN CONDUCTING SHEETS BY NON

Transcription:

DEFECT SIZING IN PIPE USING AN ULTRASONIC GUIDED WAVE FOCUSING TECHNIQUE Jing Mu 1, Li Zhang 1, Joseph L. Rose 1 and Jack Spanner 1 Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 168 EPRI NDE Center, 1 WT Harris Blvd., Charlotte, NC 86 ABSTRACT. Defect circumferential location, circumferential length and depth are studied with an ultrasonic guided wave focusing inspection technique. Differently shaped defects, such as a planar saw cut, a volumetric through-wall hole, and a volumetric spherical shape corrosion are studied. By focusing on 44 circumferential positions around the pipe at a specific distance, the maximum amplitude of the defect echo is recorded with respect to each circumferential focal position. Circumferential lengths of the planar saw cut and volumetric through-wall hole are then measured by comparing the experimental results with theoretical calculations. It is shown that this measurement technique works well with the planar saw cut and volumetric through-wall hole defects. In addition, it is shown that reflections from defects with the same cross sectional area (CSA), but different shapes, might be very different. Keywords: circumferential defect sizing, ultrasonic guided waves, focusing. Pacs: 4..Mv, 4..Ks, 4..Ye. INTRODUCTION Guided waves have been widely used for over ten years. Guided waves can propagate a long distance and are excellent in screening and defect location analysis. The state of the art of guided waves utilization defect sizing is limited. A beautiful result of D defects in a plate has already been obtained [1]. Similar results are also expected in pipes. However, since the somewhat ellipsoidal corrosion in pipe is D, defect sizing in pipes is more complicated. The focusing technique developed by Li and Rose [] is used to increase the detection potential and to achieve a sizing possibility. In this paper, guided wave experiments were performed to detect and study defect circumferential location, circumferential length and depth. The recently developed phased array focusing system [-] was utilized to focus on 44 circumferential positions around the pipe at a specific axial distance (defect location). This is called a circumferential scan. The pulse echo waveform for each focused position in one circumferential scan was then recorded. Since there is a focal zone, multiple defects lying in a focal zone were able to be detected in one circumferential scan. A gate could be set according to the focal zone in each circumferential scan. The maximum amplitude in the gate in each of these waveforms was plotted with respect to the circumferential focused position. This produced an experimental circumferential profile. 7

The profile was further used to study the defect s circumferential location, length and depth. The reflected energy from a defect was considered to be proportional to the energy impinged on that defect. For each focused position, the energy impinged on a defect was calculated through the focused angular profile, which was obtained through the Normal Mode Expansion (NME) technique [4]. In this way, the impinging energy was able to be plotted with respect to the circumferential focused position. This gave us a theoretical energy impingement profile. The theoretical profiles for defects with different circumferential sizes were calculated and compared with the experimental pulse echo profile. Thus, the circumferential size of the defect could be measured. with different depths was also studied. The reflected energy showed an overall increasing potential of defect sizing analysis. EXPERIMENTAL SETUP Ultrasonic guided wave inspection was performed to detect and to study the circumferential location, length and depth of the defects in a 16 Schedule pipe. The multi-channel commercial system TeleTest, segmented over four quadrants or eight octants, as shown in Figure 1, was used to apply the phased array focusing technique. The defects are listed in Table 1. Ultrasonic energy was focused at z 1 =1 11, z =15 5 and z =19 by controlling input time delays and amplitudes for the 4 excitation channels. The frequency of the ultrasonic guided waves considered in the study varied over khz to 45 khz. LOCATING MULTIPLE DEFECTS IN ONE CIRCUMFERENTIAL SCAN When ultrasonic guided wave energy is focused at a particular axial position, there is a focal zone, over which the energy is always focused on a predetermined circumferential location. For example, when we focus on at the distance z=15 5 using the T [, 1] wave mode group at 5 khz, the ultrasonic energy is focused at over the axial range: 11 ~19 6. Based on this phenomenon, it is easy to verify a defect signal and then to axially locate the defect by arrival time analysis. A time gate can be set for the received signals and the maximum amplitude within this gate can be recorded when guided waves FIGURE 1. TeleTest tool mounted on a 16 Schedule steel pipe for quantification of the circumferential sizes of various defects. Quadrant designations (left) and the circumferential distributions of defects (right) are shown for reference. 761

TABLE 1. Descriptions of all defects used in the study. Defect Type Position from transducer Circumferential position (CW) depth 1 4 Throughwall hole Saw cut 1 Saw cut Saw cut Saw cut 4 11in (1 11 ) 11in (1 11 ) 11in (1 11 ) 11in (1 11 ) 185in (15 5 ) 1in (19 ) 1in (19 ) 1in (19 ) 1in (19 ) Circumferential length Axial length CSA 1%.89in (6.4 ) 1.9in.1% % 1.66in.11in.68% (11.8 ) 5%.51in.66in 1.71% (18 ) 7%.51in.66in.4% (18 ) 1%.5in.5in 1% 9 7% 9 7% 9 7% 9 7% 119mm, 4.69in (.6 ).1in 4.18% 9mm, 9.4in.1in 11% (66 ) (9 ).1in (1 ).1in are used to focus on at a particular circumferential angle. The variation of the maximum signal amplitude will show the circumferential locations of the defects located within the focal zone. In this study, we set a gate included signals arriving from the 1 5 ~ 8 range. By sweeping the focal point along the circumferential direction, the experimental data clearly show that there are two defects over this distance range (the simulated corrosion was introduced later): one was ~ ; and the other was ~ 15 (Figures and ). As can be seen in Table 1, the through-wall hole at z = 15 5 ft is located at and the saw cut defect at z = 19 is located at 15. Hence, by sweeping the circumferential focal position, we can verify and locate all defects within the focal zone. 1.8 Through wall hole 1 Through wall hole.8.6.4.6.4.. 9 7 9 7 Saw cut 1 FIGURE. Maximum reflected echoes within the distance range: 1 5 ~ 8 when 4-channel phased-array was used to focus on the through-wall hole distance. The circumferential length of each excitation channel was 9. The T [, 1] wave group at 5 khz was focused at 15 4 and sequenced through 44 different circumferential locations. Saw cut 1 FIGURE. Maximum reflected echoes within the distance range: 1 5 ~ 8 when 4-channel phased-array was used to focus on the saw cut distance. The circumferential length of each excitation channel was 9. The T [, 1] wave group at 4 khz was focused at 19 and sequenced through 44 different circumferential locations. 76

DEFECT CIRCUMFERENTIAL AND DEPTH SIZING ANALYSIS When a 4-channel phased array is used to achieve focusing, the circumferential excitation length of each channel would be approximately 9. If the focal position is swept along the circumferential direction, the profiles of the energy impinging on the defect versus the focal angle can be obtained theoretically via the angular profile. For a planar defect, most of the impinging energy is reflected. Thus, a comparison of the experimental reflection profile and the theoretical energy impingement profiles provides us with the information on the circumferential size of the defect. The angular profile at 45 khz is given in Figure 4 and the corresponding theoretical energy impingement profiles are given in Figure 5. It can be seen that the energy impingement profiles depend not only on the size of the defect but also on the shape of the corresponding angular profiles. If the angular profile exhibits a broad beam width or big side lobes, the corresponding energy impingement profiles will also exhibit a broad beam width or big side lobes. This is not good for sizing. However, since the shape of the angular profile changes with the distance, a certain frequency might be good for defect sizing at a certain distance. In this study, by moving the focal point in the circumferential direction, 44 line of sight echoes from a defect could be recorded. The maximum amplitudes of the echoes are plotted versus the focal angles. This experimental reflection profile gave the variation of the reflected energy with respect to the focusing angle. The experimental and theoretical profiles for saw cuts with different circumferential sizes were compared as in Figure 6. The maximum amplitudes of the theoretical and experimental profiles of º circumferential length were normalized to the same value and the other profiles were normalized according to them. It s shown in Figure 6 that the profiles of the 66º circumferential length saw cut had larger amplitudes and wider circumferential coverage than that of the º circumferential length saw cut. This is obvious since for a longer saw cut, more energy is reflected and the 66º circumferential length saw cut can be seen from more focal positions out of the 44 used than the º circumferential length saw cut does. The corresponding 1.8.6.4. 9 7 1.8.6.4. 9 7 º circumferential length, theoretical º circumferential length, theoretical 66º circumferential length, theoretical 9º circumferential length, theoretical 1º circumferential length, theoretical FIGURE 4. Theoretical angular profile of 45kHz focusing on 1in (saw cut distance). FIGURE 5. The corresponding theoretical energy impingement profiles for saw cuts with different circumferential sizes. 76

6 4 1 1.8.6.4. 9 7 9 7 1 4 15 1 18 saw cut 1, theoretical 66 saw cut, theoretical 9 saw cut, theoretical 1 saw cut 4, theoretical saw cut 1, experimental 66 saw cut, experimental FIGURE 6. Comparison between theoretical and experimental profiles. The experimental profiles were obtained by applying 4-channel phased-array focusing. The T [, 1] wave group at 45 khz was focused on 44 different circumferential locations at 1 in. saw cut 1, theoretical 66 saw cut, theoretical 9 saw cut, theoretical 1 saw cut 4, theoretical saw cut 1, experimental 66 saw cut, experimental FIGURE 7. The experimental profiles of the defect echoes for saw cuts with different circumferential sizes are compared with the theoretical energy impingement profiles after normalization. normalized profiles of Figure 6 are shown in Figure 7. It can be seen that the normalized theoretical profiles and the normalized experimental profiles match very well. Figure 7 can give a fairly good estimation on the circumferential size of a transverse crack. For planar defects, the reflected energy is proportional to the energy impingement. To obtain quantitative defect sizing, the maximum amplitudes of the profiles can be calculated and plotted versus different circumferential sizes of the defects. This relation for saw cuts is shown in Figure 8. The theoretical results in Figure 8 were obtained from the theoretical energy impingement profiles in Figure 6. The maximum amplitude of each profile was recorded and plotted versus the corresponding circumferential size. This gave the theoretical result in Figure 8. The experimental results in Figure 8 were obtained from the experimental profiles in Figure 6. The maximum amplitude of the experimental defect echo profile in Figure 6 was recorded and plotted versus the corresponding circumferential size. The saw cuts with two different circumferential sizes º and 66º were measured, so two points were obtained, as shown in Figure 8. It can be seen that the experimental results match the theoretical calculations very well. The theoretical maximum amplitude increases monotonically with the increasing of the circumferential length. The relation is approximately linear. The slope of the line is related to the defect shape and the test frequency. The difference between the theoretical calculations and the experimental results is less than 1%. The relation of the maximum amplitudes of the experimental profiles versus different depths of corrosion is plotted in Figure 9. For corrosion, there is a trend line that increases monotonically with corrosion defect depth. Note that the corrosion data is not perfectly linear because all corrosion is of slightly different shape. (If a transverse crack, the relationship would be more linear.) 764

Maximum amplitude 6 18 14 1 theoretical experimental 6 5 7 9 11 1 circumferential length (degree) FIGURE 8. Monotonic increasing amplitude versus circumferential length for a fixed depth transverse saw cut at 45kHz. FIGURE 9. Possible variation of amplitude with depth for different corrosion defects at 5kHz. 4 9 1 7 9 7 (a) (b) 1.5 (a). 16 Channels,.5 loading length 9.5 7 (b). 8 Channels, 45 loading length (c). 4 Channels, 9 loading length (c) FIGURE 1. Sample theoretically focused 4kHz T(,1) angular profiles at z=18.5ft in a 16 sched steel pipe by using the phased array focusing technique with different loading lengths. The focused angular profiles for different circumferential loading lengths are shown in Figure 1. Usually, the size of a focused beam is reduced with a decrease of 765

circumferential length of the excitation channels (Figure 1). It can be seen that the smallest defect size that can be determined by this technique depends on the focused energy beam characteristics. A narrower profile energy beam is able to be used to measure smaller defects. CONCLUSIONS AND DISCUSSIONS In this study, a long range ultrasonic guided wave test system was used to measure the circumferential size of volumetric corrosion defects and a transverse saw cuts by sweeping the focal position around the pipe. The circumferential location was determined very accurately for both saw cuts and corrosion defects. More precise circumferential length measurements can be obtained by comparing the experimental profiles with the theoretical energy impingement profiles. The maximum amplitude of the circumferential distribution profile matched the theoretical slope very well. It showed a monotonically increasing trend with circumferential length. The error was less than 1%. For the depth study, the maximum amplitude of the circumferential distribution profile of a corrosion defect did not increase monotonically with depth since all the corrosion defects had different shapes. However, it did show a possible overall increasing trend with depth. A narrower focal beam could make measurements more accurate. Both the shape of a defect and the shape of the angular profile will influence the predicted sizing results. Angular profiles with large side lobes are not good for defect sizing. ACKNOWLEDGMENTS Thanks are given to Peter Mudge at Plant Integrity, Ltd. for use of the Teletest system, for support of the project to Mike J. Avioli of FBS, Inc., and to EPRI for financial support. REFERENCES 1. Zhao, X. and Rose J. L., "Boundary element modeling for defect characterization potential in a wave guide," International Journal of Solids Structures, 4, 645-658,.. Li, J., and Rose, J.L., 1, Excitation and Propagation of Non-axisymmetric Guided Waves in a Hollow Cylinder, JASA, 19, pp. 457-464.. Li, J., and Rose, J. L.,, Angular-Profile Tuning of Guided Waves in Hollow Cylinders Using a Circumferential Phased Array, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49, pp. 17-179. 4. Ditri, J. J., and Rose, J. L., 199, Excitation of guided elastic wave modes in hollow cylinders by applied surface tractions, J. Appl. Phys., 7, 589-597. 766