NZQA unit standard version 2 Page 1 of 6. Demonstrate and apply fundamental knowledge of digital and analogue electronics for IMC technicians

Similar documents
NZQA registered unit standard version 1 Page 1 of 6

NZQA registered unit standard version 7 Page 1 of 5. Demonstrate knowledge of basic electronic components

Analogue Electronic Systems

ELECTRONICS ADVANCED SUPPLEMENTARY LEVEL

NZQA registered unit standard version 2 Page 1 of 8. Demonstrate knowledge of theory for registration of electrical installers

PESIT BANGALORE SOUTH CAMPUS BASIC ELECTRONICS

NZQA registered unit standard version 1 Page 1 of 8

NZQA registered unit standard version 3 Page 1 of 5. Demonstrate and apply fundamental knowledge of electrical circuit engineering principles

BASIC ELECTRONICS CERTIFICATION COMPETENCIES

multivibrator; Introduction to silicon-controlled rectifiers (SCRs).

NZQA registered unit standard version 4 Page 1 of 5. Plan, construct, modify, and report on an electronic prototype

NZQA unit standard version 2 Page 1 of 5. Demonstrate and apply intermediate knowledge of instrumentation and control system engineering

Preface... iii. Chapter 1: Diodes and Circuits... 1

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. ELECTRONIC PRINCIPLES AND APPLICATIONS

PESIT - BANGALORE SOUTH CAMPUS PART A

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7

Contents. Acknowledgments. About the Author

Veer Narmad South Gujarat University, Surat

V-LAB COMPUTER INTERFACED TRAINING SET

Unit/Standard Number. LEA Task # Alignment

Revised April Unit/Standard Number. Proficiency Level Achieved: (X) Indicates Competency Achieved to Industry Proficiency Level

Electronic Component Applications

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

Electrical, Electronic and Communications Engineering Technology/Technician CIP Task Grid

Electronics I Circuit Drawings. Robert R. Krchnavek Rowan University Spring, 2018

Revised April Unit/Standard Number. High School Graduation Years 2016, 2017 and 2018

S-[F] NPW-02 June All Syllabus B.Sc. [Electronics] Ist Year Semester-I & II.doc - 1 -

Analytical Chemistry II

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification:

Lecture Note on Switches Marc T. Thompson, 2003 Revised Use with gratefulness for ECE 3503 B term 2018 WPI Tan Zhang

Other Electronic Devices

Solid State. Prerequisit. cies. Minimum. interviews. In research, the. A. Safety 3. PPE

TRANSISTOR TRANSISTOR

SEMESTER SYSTEM, A. PROPOSED SCHEME FOR B.Sc. ELECTRONICS (PASS) COURSE. B.Sc. (ELECTRONICS MAINTENANCE) COURSE

Perkins Statewide Articulation Agreement. Documentation item: Secondary Competency Task List Coversheet

Syllabus for: Electronics for F Y B Sc (Electronics) Semester- 1 (With effect from June 2014) PAPER I: Basic Electrical Circuits

Gujarat University B. Sc. Electronics Semester I: ELE (Effective from: )

Microelectronic Circuits

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS

Semiconductor analyser AS4002P User Manual

Basic Electronics SYLLABUS BASIC ELECTRONICS. Subject Code : 15ELN15/25 IA Marks : 20. Hrs/Week : 04 Exam Hrs. : 03. Total Hrs. : 50 Exam Marks : 80

Devices and Op-Amps p. 1 Introduction to Diodes p. 3 Introduction to Diodes p. 4 Inside the Diode p. 6 Three Diode Models p. 10 Computer Circuit

Lecture 9 Transistors

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

6.111 Lecture # 15. Operational Amplifiers. Uses of Op Amps

UNIT I PN JUNCTION DEVICES

Scheme & Syllabus. New. B.Sc. Electronics. (Pass /Maintenance) Course. I st to IV th Semester. w.e.f. July Devi Ahilya Vishwavidyalaya,

GATE SOLVED PAPER - IN

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N

Dhanalakshmi College of Engineering Manimangalam, Tambaram, Chennai

Dhanalakshmi College of Engineering Manimangalam, Tambaram, Chennai

LESSON PLAN. SUBJECT: LINEAR IC S AND APPLICATION NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE. Portions to be covered

Demonstrate knowledge of electronic components and their application in the automotive industry

NZQA registered unit standard version 2 Page 1 of 5. Demonstrate and apply knowledge of single-phase and three-phase transformers

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS

ELT 215 Operational Amplifiers (LECTURE) Chapter 5

CRN: MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin

Analog to digital and digital to analog converters


UNIVERSITY QUESTIONS. Unit-1 Introduction to Power Electronics

visit website regularly for updates and announcements

WINTER 14 EXAMINATION

Power Semiconductor Devices

NZQA registered unit standard version 5 Page 1 of 5. Apply electromagnetic theory to a range of problems

-SQA-SCOTTISH QUALIFICATIONS AUTHORITY HIGHER NATIONAL UNIT SPECIFICATION GENERAL INFORMATION INTRODUCTION TO ANALOGUE AND DIGITAL CIRCUITS

Analog and Telecommunication Electronics

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION JULY-2012 SCHEME OF VALUATION

THE METAL-SEMICONDUCTOR CONTACT

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

POS Perkins Statewide Articulation Agreement Documentation Coversheet

Semiconductors, ICs and Digital Fundamentals

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

Careers in Electronics Using a Calculator Safety Precautions Dc Circuits p. 1 Fundamentals of Electricity p. 3 Matter, Elements, and Compounds p.

Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru

CLD Application Notes Connection Options

CS302 - Digital Logic Design Glossary By

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester

EE : ELECTRICAL ENGINEERING Module 8 : Analog and Digital Electronics INDEX

4. Forward bias of a silicon P-N junction will produce a barrier voltage of approximately how many volts? A. 0.2 B. 0.3 C. 0.7 D. 0.

LINEAR IC APPLICATIONS

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

BASIC ELECTRONICS/ ELECTRONICS

INSTRUCTOR S COURSE REQUIREMENTS

REV. B. NOTES 1 At Pin 1. 2 Calculated as average over the operating temperature range. 3 H = Hermetic Metal Can; N = Plastic DIP.

GCSE Electronics. Scheme of Work

ET475 Electronic Circuit Design I [Onsite]

Figure 1.1 Mechatronic system components (p. 3)

DEPARTMENT OF ELECTRONICS

Course Outline Cover Page

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) Summer 2016 EXAMINATIONS.

SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS. Class XII : PHYSICS WORKSHEET

Lab 1 - Revisited. Oscilloscope demo IAP Lecture 2 1

Field Effect Transistors

Digital Electronic Concepts

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

Transcription:

Page 1 of 6 Title Demonstrate and apply fundamental knowledge of digital and analogue electronics for IMC technicians Level 3 Credits 12 Purpose This unit standard covers an introduction to digital and analogue electronic devices and circuits for IMC technicians. People credited with this unit standard are able to: demonstrate knowledge of number systems used in digital electronics; demonstrate knowledge of simple logic circuits; demonstrate and apply knowledge of A/D and D/A conversion; demonstrate fundamental knowledge of semiconductor switching devices and their applications; demonstrate fundamental knowledge of operational amplifiers and their applications; and demonstrate fundamental knowledge of d.c. power supplies and electronic regulators. Classification Industrial Measurement and Control > Industrial Measurement and Control - Theory Available grade Achieved Guidance Information 1 References Health and Safety at Work Act 2015 and associated regulations; and all subsequent amendments and replacements. 2 Definitions A/D analogue to digital. ASCII American Standard Code for Information Interchange. BCD binary coded decimal. D/A digital to analogue. BJT bipolar junction transistor. d.c. direct current. db decibels. Fundamental knowledge for the purposes of this unit standard means having some relevant theoretical knowledge of the subject matter with the ability to use that knowledge to interpret available information. gfs forward transconductance. hfe (SAT) d.c. forward current gain at saturation.

Page 2 of 6 Industry practice those practices that competent practitioners within the industry recognise as current industry best practice. ICmax maximum collector current. IDmax maximum drain current. LED light emitting diode. MOSFET metal oxide semiconductor field effect transistor. PCmax maximum collector power dissipation. RDS (ON) static drain to source on-state resistance. SCR silicon controlled rectifier. VCEO collector-emitter voltage with base open. VCEsat collector emitter voltage at saturation. VDSS drain-source saturation voltage. 3 a Electrical, radiation, and workshop or laboratory safety practices are to be observed at all times. b All measurements are to be expressed in Système Internationale (SI) units and multipliers. c Use of non-programmable calculators is permitted during assessments. d All activities and evidence presented for all outcomes and performance criteria in this unit standard must be in accordance with legislation, policies, procedures, ethical codes, Standards, applicable site and industry practice; and, where appropriate, manufacturers instructions, specifications, and data sheets. Outcomes and performance criteria Outcome 1 Demonstrate knowledge of number systems used in digital electronics. 1.1 Convert signed and unsigned numbers to and from the decimal number system to signed binary, two s-complement binary, octal, hexadecimal, and binary coded decimal. maximum of 8 bit binary, 4 digit octal, and 4 digit hexadecimal numbers. 1.2 Add and subtract binary numbers. evidence of three different additions and three different subtractions is required. 1.3 Add and subtract hexadecimal numbers. evidence of three different additions and three different subtractions is required.

Page 3 of 6 1.4 Describe special binary code formats. may include but is not limited to 8421, ASCII, BCD to seven segment, Gray code; evidence of two codes is required. Outcome 2 Demonstrate knowledge of simple logic circuits. 2.1 Obtain Boolean expressions from given logic diagrams and truth tables. maximum of ten terms and limited to three variables. 2.2 Develop logic diagrams from Boolean expressions. maximum of three variables. 2.3 Describe common logic parameters. switching voltage thresholds, power supply requirements, sink and source capabilities. 2.4 Explain handling precautions when using logic components. 2.5 Describe uses of simple logic devices. latch, counter, shift register. Outcome 3 Demonstrate and apply knowledge of A/D and D/A conversion. 3.1 Explain terms associated with A/D and D/A converters. may include but are not limited to D/A conversion, A/D conversion, flash, successive approximation, dual slope, resolution, quantisation error, conversion time, clock pulse, linearity, delay, sampling, zero cross error, oversampling, filter coefficient, multiplier; evidence of twelve is required. 3.2 Identify A/D and D/A converter types from schematic diagrams. evidence of four A/D and two D/A converters required. 3.3 Describe one A/D application and one D/A converter application.

Page 4 of 6 3.4 Explain A/D conversion with the aid of diagrams. may include but is not limited to characteristics, sample and hold, conversion time, clock, sampling, cut-off frequency, multiplier, accumulator; evidence of six required. 3.5 Explain D/A conversion with the aid of diagrams. may include but is not limited to converter characteristics, conversion time, clock, sampling, cut-off frequency, multiplier; evidence of five required. 3.6 Apply one A/D converter and one D/A converter to a given specification in accordance with industry practice. Outcome 4 Demonstrate fundamental knowledge of semiconductor switching devices and their applications. 4.1 Describe three types of two terminal semiconductor devices in terms of their basic operation, characteristics, and application. may include but is not limited to rectifier diodes, Schottky diodes, Zener diodes, LEDs. 4.2 Describe typical configurations, operating parameters, and applications of optocouplers and opto-isolators. may include but is not limited to photo diode, phototransistor, photo-darlington, triac optocouplers; evidence of two devices and two applications for each device is required. 4.3 Compare bipolar and enhancement-mode field effect transistors in terms of construction, operating characteristics, and applications in switching circuits. devices pnp and npn transistors, n-channel and p-channel MOSFETs. Operating characteristics: BJT hfe (SAT), VCEO, ICmax, PCmax, VCEsat; MOSFET gfs, IDmax, VDSS, RDS (ON). Applications evidence of two designs each for both BJTs and MOSFETs is required. 4.4 State advantages and disadvantages of solid state switches.

Page 5 of 6 4.5 Describe power semiconductor devices in terms of their basic operation, characteristics, and application. devices SCRs, triacs, MOSFET, IGBT; evidence of three is required; applications controlled rectifiers, inverters. Outcome 5 Demonstrate fundamental knowledge of operational amplifiers and their applications. 5.1 Describe the function of operational amplifiers in terms of electronic building blocks with examples of typical applications. typical applications audio pre-amplifier, transducer signal amplifier, buffer. 5.2 Compare parameters for an idealised and a typical practical operational amplifier. parameters differential gain, input impedance, output impedance, maximum output amplitude in relation to supply voltage, slew rate, bandwidth (3dB and unity gain), offset, common mode rejection. 5.3 Sketch typical operational amplifier configurations and explain their practical operation and features. configurations may include but are not limited to voltage follower (unity gain buffer), inverting, non-inverting, inverting summing, differential, differentiator, integrator, comparator, voltage to current converter, current to voltage converter; evidence of four configurations is required. 5.4 Explain the operation and application of an instrumentation amplifier as a transducer signal amplifier. Outcome 6 Demonstrate fundamental knowledge of d.c. power supplies and electronic regulators. 6.1 Explain the operation of half-wave and full-wave rectification for d.c. power supplies. single and bridge, simple capacitor filter. 6.2 Explain three-terminal series regulators, and analyse and experimentally evaluate typical circuits based on manufacturers' data sheets.

Page 6 of 6 6.3 Explain the concepts, operation, and application of switch-mode power supplies. Planned review date 31 December 2021 Status information and last date for assessment for superseded versions Process Version Date Last Date for Assessment Registration 1 28 November 2013 N/A Rollover and Revision 2 28 June 2018 N/A Consent and Moderation Requirements (CMR) reference 0003 This CMR can be accessed at http://www.nzqa.govt.nz/framework/search/index.do. Comments on this unit standard Please contact reviewcomments@skills.org.nz if you wish to suggest changes to the content of this unit standard.