Design and Implementation of Fuzzy Sliding Mode Controller for Switched Reluctance Motor

Similar documents
Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller

A Fuzzy Sliding Mode Controller for a Field-Oriented Induction Motor Drive

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER

CHAPTER 4 FUZZY LOGIC CONTROLLER

SPEED CONTROL OF SINUSOIDALLY EXCITED SWITCHED RELUCTANCE MOTOR USING FUZZY LOGIC CONTROL

Permanent Magnet Brushless DC Motor Control Using Hybrid PI and Fuzzy Logic Controller

A Brushless DC Motor Speed Control By Fuzzy PID Controller

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL

Investigations of Fuzzy Logic Controller for Sensorless Switched Reluctance Motor Drive

International Journal of Advance Engineering and Research Development. PI Controller for Switched Reluctance Motor

Adaptive Fuzzy Logic PI Control for Switched Reluctance Motor Based on Inductance Model

Performance analysis of Switched Reluctance Motor using Linear Model

TRACK VOLTAGE APPROACH USING CONVENTIONAL PI AND FUZZY LOGIC CONTROLLER FOR PERFORMANCE COMPARISON OF BLDC MOTOR DRIVE SYSTEM FED BY CUK CONVERTER

Performance Analysis of Fuzzy Logic And PID Controller for PM DC Motor Drive Khalid Al-Mutib 1, N. M. Adamali Shah 2, Ebrahim Mattar 3

Abstract: PWM Inverters need an internal current feedback loop to maintain desired

Comparative Study of PID and Fuzzy Controllers for Speed Control of DC Motor

USED OF FUZZY TOOL OR PID FOR SPEED CONTROL OF SEPRATELY EXCITED DC MOTOR

A Novel Fuzzy Control Approach for Modified C- Dump Converter Based BLDC Machine Used In Flywheel Energy Storage System

Application of Fuzzy Logic Controller in Shunt Active Power Filter

Improved direct torque control of induction motor with dither injection

High Efficiency DC/DC Buck-Boost Converters for High Power DC System Using Adaptive Control

Fuzzy Sliding Mode Control of a Parallel DC-DC Buck Converter

SPEED CONTROL OF BRUSHLESS DC MOTOR USING FUZZY BASED CONTROLLERS

Fuzzy Controllers for Boost DC-DC Converters

A Comparative Study on Speed Control of D.C. Motor using Intelligence Techniques

Simulation of BLDC motor control with Reduced Order Model of the System with Observer State using SMC technique

Fuzzy Logic Controller on DC/DC Boost Converter

Modelling and Control of Hybrid Stepper Motor

VARIABLE STRUCTURE CONTROL DESIGN OF PROCESS PLANT BASED ON SLIDING MODE APPROACH

CHAPTER 6 OPTIMIZING SWITCHING ANGLES OF SRM

Speed Control of Brushless DC Motor Using Fuzzy Based Controllers

Fuzzy logic control implementation in sensorless PM drive systems

Comparison of Adaptive Neuro-Fuzzy based PSS and SSSC Controllers for Enhancing Power System Oscillation Damping

Design and Simulation of a Solar Regulator Based on DC-DC Converters Using a Robust Sliding Mode Controller

IN MANY industrial applications, ac machines are preferable

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE

OPTIMAL TORQUE RIPPLE CONTROL OF ASYNCHRONOUS DRIVE USING INTELLIGENT CONTROLLERS

BECAUSE OF their low cost and high reliability, many

A Sliding Mode Controller for a Three Phase Induction Motor

SVM-DTC OF AN INDUCTION MOTOR BASED ON VOLTAGE AND STATOR FLUX ANGLE USING FUZZY LOGIC CONTROLLER

Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control of DC Motor

Voltage Control of Variable Speed Induction Generator Using PWM Converter

A DUAL FUZZY LOGIC CONTROL METHOD FOR DIRECT TORQUE CONTROL OF AN INDUCTION MOTOR

Mitigation of Cross-Saturation Effects in Resonance-Based Sensorless Switched Reluctance Drives

Page ENSC387 - Introduction to Electro-Mechanical Sensors and Actuators: Simon Fraser University Engineering Science

DC Motor Speed Control: A Case between PID Controller and Fuzzy Logic Controller

Speed control of Permanent Magnet Synchronous Motor using Power Reaching Law based Sliding Mode Controller

ADVANCED DC-DC CONVERTER CONTROLLED SPEED REGULATION OF INDUCTION MOTOR USING PI CONTROLLER

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 3, MAY A Sliding Mode Current Control Scheme for PWM Brushless DC Motor Drives

Simulation of Fuzzy Controller based Isolated Zeta Converter fed BLDC motor drive

A Novel Harmonics-Free Fuzzy Logic based Controller Design for Switched Reluctance Motor Drive

EEE, St Peter s University, India 2 EEE, Vel s University, India

Control of PMSM using Neuro-Fuzzy Based SVPWM Technique

Time Response Analysis of a DC Motor Speed Control with PI and Fuzzy Logic Using LAB View Compact RIO

Controlling of Permanent Magnet Brushless DC Motor using Instrumentation Technique

PREDICTIVE CONTROL OF INDUCTION MOTOR DRIVE USING DSPACE

Design and implementation of Open & Close Loop Speed control of Three Phase Induction Motor Using PI Controller

CHAPTER 3 VOLTAGE SOURCE INVERTER (VSI)

Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

A Robust Fuzzy Speed Control Applied to a Three-Phase Inverter Feeding a Three-Phase Induction Motor.

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

P. Sivakumar* 1 and V. Rajasekaran 2

ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER

An Induction Motor Control by Space Vector PWM Technique

Sensorless Control of BLDC Motor Drive Fed by Isolated DC-DC Converter

Speed control of sensorless BLDC motor with two side chopping PWM

Stability Analysis of Multiple Input Multiple Output System Using Sliding Mode Controller

Induction Motor Drive Using Indirect Vector Control with Fuzzy PI Controller

Digital Simulation and Analysis of Sliding Mode Controller for DC-DC Converter using Simulink

CONTROL OF THE DOUBLY SALIENT PERMANENT MAGNET SWITCHED RELUCTANCE MOTOR. David Bruce Merrifield. Masters of Science In Electrical Engineering

Fuzzy Logic Controller Based Three-phase Shunt Active Filter for Line Harmonics Reduction

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL

A Performance Study of PI controller and Fuzzy logic controller in V/f Control of Three Phase Induction Motor Using Space Vector Modulation

Digital Control of MS-150 Modular Position Servo System

Applying POWERSYS and SIMULINK to Modeling Switched Reluctance Motor

Speed Control of BLDC Motor-A Fuzzy Logic Approach

Voltage-MPPT Controller Design of Photovolatic Array System Using Fuzzy Logic Controller

Fuzzy Logic Controller Based Four Phase Switched Reluctance Motor

Control of DC-DC Buck Boost Converter Output Voltage Using Fuzzy Logic Controller

Speed control system of induction motor with fuzzy-sliding mode controller for traction applications

Modeling and Sliding Mode Control of Dc-Dc Buck-Boost Converter

Analysis of Voltage Source Inverters using Space Vector PWM for Induction Motor Drive

International Journal of Modern Engineering and Research Technology

High Frequency Soft Switching Boost Converter with Fuzzy Logic Controller

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June ISSN

Fuzzy Logic Control of APF for Harmonic Voltage Suppression in Distribution System

Speed control of Induction Motor Using Push- Pull Converter and Three Phase SVPWM Inverter

3. What is the difference between Switched Reluctance motor and variable reluctance stepper motor?(may12)

LINEAR MODELING OF SWITCHED RELUCTANCE MOTOR BASED ON MATLAB/SIMULINK AND SRDAS ENVIRONMENT

Speed Control of Switched Reluctance Motor Drive Based on PID Controller

MAGNETIC LEVITATION SUSPENSION CONTROL SYSTEM FOR REACTION WHEEL

Sinusoidal Control of a Single Phase Special Topology SRM, Without Rotor Position Sensor

Fuzzy Logic Based Speed Control System Comparative Study

PWM Control of Asymmetrical Converter Fed Switched Reluctance Motor Drive

Modeling and Simulation of Induction Motor Drive with Space Vector Control

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System

Simulation of Synchronous Machine in Stability Study for Power System: Garri Station as a Case Study

Extended Speed Current Profiling Algorithm for Low Torque Ripple SRM using Model Predictive Control

Transcription:

Proceedings of the International MultiConference of Engineers and Computer Scientists 8 Vol II IMECS 8, 9- March, 8, Hong Kong Design and Implementation of Fuzzy Sliding Mode Controller for Switched Reluctance Motor M. A. A. Morsy M. Said A. Moteleb H. T. Dorrah Abstract: This paper presents a fuzzy sliding mode controller used for switched reluctance motor speed regulation. Based on the technique of variable structure control (VSC) with sliding mode, we can construct the controller that possesses the merits of both fuzzy controller and variable structure controller. It is called a fuzzy sliding mode controller (). It provides a simple way to solve the main drawback of VSC by reducing the amount of chattering effect using a fuzzy control part in the proposed controller. Also, the VSC part makes the system stable which treats the main disadvantage of fuzzy controller when being used alone. The speed control simulation results are obtained by using the proposed and the traditional controller under different operating conditions. Also, sensitivity analyses simulation results for parameter variations are obtained to check the robustness of the system when using the proposed controller. Finally, the expermintal controlled system is illustrated for closed loop and experimental results are presented which show the validity and effectiveness of the proposed. Key Words: Fuzzy control, Sliding mode control, SRM drives. Introduction Nowadays, switched reluctance motors (SRM) attract more and more attention. The SRM is simple to construct. It has not only a salient pole stator with concentrated coils, but also a salient pole rotor without any conductors or magnets. Simplicity makes the SRM inexpensive and reliable, and together with its high speed capacity and high torque to inertia rotor ratio make it a superior choice in different applications. References [-] show the implementations of the control of the SRM is not an easy task. The motor s double salient structure makes its magnetic characteristic highly nonlinear. Therefore, its mathematical model is too complex to be analytically developed. Since the 96 s, with the advent of power electronics and high power semiconductor switches, control of the SRM become much easier and there has been a renewed interest in SRM drives [3]. Variable structure systems (VSS) theory was first proposed in the early 95 s and has been extensively developed in the beginning of 97 s. However, due to the implementation difficulties of high speed switching where the usage of high speed control devices is applied starting from 98 s. Variable structure control provides a systematic solution to the problem of maintaining stability and consistent performance in the face of external disturbances. The most popular operation regime associated with VSS is known as sliding mode control (SMC) [4-6]. The main important advantages of sliding mode control, especially for application in the power electronics area, are high accuracy, fast dynamic response, good stability, simplicity of design implementation, and beside to its robustness or low sensitive to variation of system parameters and external disturbances. [4-5]. In practical application, a pure SMC suffers from chattering problem. Chattering phenomenon is high frequency oscillations of the control output due to high speed switching to establish the sliding mode. Chattering is highly undesirable in practice implementation because it may excite unmodeled high frequency plant dynamics, and consequently result in unforeseen instability [7]. To treat these difficulties, several modifications to the original sliding control law have been proposed, the most popular being the boundary layer approach [4, 8]. Fuzzy logic is a technology based on engineering experience and observations. In fuzzy logic, an exact mathematical model is not necessary because linguistic variables are used to define system behavior rapidly [9-]. A fuzzy logic controller (FLC) based on VSC with sliding mode concept is used to control the speed of SRM drives. The design of a sliding mode controller incorporating fuzzy control helps in achieving reduced chattering, simple rule base, and robustness against load disturbance and nonlinearities. The simulation of nonlinear model SRM using the proposed technique is carried out and the results are compared with those obtained using the conventional controller. Also, the experimental setup, interfacing between control algorithm software and experimental hardware are verified. Both simulation and experimental results with the proposed algorithm show that, the system performance is improved significantly in the presence of load disturbance and is insensitive to some parameters variations of the system.. SRM Nonlinear Modeling. Electrical System SRM has salient poles on both stator and rotor. Only the stator poles carry windings, and there are no windings or magnetic materials on the rotor. The windings on the stator are of particularly simple form, where each two opposite stator pole windings are connected in series to form one phase. [-3]. The simulation of SRM requires solving sets of differential equations of all phases. The state of SRM phase is expressed as follows: dφ ( θ, i) = V ( θ ) R i dt () Where Ф(θ, i) is the flux, V(θ) is the supply voltage, R is the phase resistance, and i is the phase current. Two cases are used to model the SRM, the first one is modeling each phase operation which calculates the rotor position angle from a fixed reference speed, and the other is dynamic model operation which calculates the rotor position angle from an actual motor speed. Both two cases ISBN: 978-988-7--3 IMECS 8

Proceedings of the International MultiConference of Engineers and Computer Scientists 8 Vol II IMECS 8, 9- March, 8, Hong Kong the simulation procedure is based on the data of the motor static characteristics. These characteristics include the flux linkage, co-energy and static torque curves where some of these curves are determined experimentally and others are completed analytically [3]... Flux Linkage Current Curves Two flux linkage current curves at aligned and unaligned rotor positions are measured experimentally, and the intermediate curves are obtained analytically. Therefore, the vector of flux linkage can be obtained from the last estimated curves for any values of rotor position angle and stator current by interpolation if it lies between any two closest curves as shown in fig. (). Then, all data are stored in a look-up table matrix i(θ, Ф). In this matrix, the current values are arranged such that the flux linkage values represent the row index and rotor position angles represent the column index as shown in fig. () [3]... Static Torque Curves Since, the phase static torque value illustrated in fig. (3) is obtained for any value of both current and rotor position angle. All data are stored in a look-up table matrix T(θ, i) by arranging the static torque values such that the current values give the row index, and the rotor position angles give the column index. Fig. (4) shows the block diagram of one phase for SRM.. Mechanical System The motor torque and speed will be affected by the sudden changes of operating point, so mechanical equations must be included for a complete modeling of SRM. The model of SRM for dynamic analysis consists of two sets of differential equations, the first one is the electrical differential equations () of the three phases, and the second is the mechanical differential equation described below [7]. dω 3 = [ τ j ( θ j, i j ) τ l fω] dt J () j = Where ω is angular speed, τ l is load torque, f is viscose fraction coefficient and J is the inertia constant respectively. The system dynamics of SRM drives can be modeled as: x& x u Tl x = + a + x b b (3) & Where a = f / J, b = / J, x = ω d - ω is speed error, ω d is desired reference speed, and x = dω / dt. Flux linkage (Web.).5.5 θ =45o 4 6 8 4 Current (Amp.) θ = o θ =36 o θ =4 o θ = o Fig. () Flux linkage-current curves of 6/4 SRM. ω ref Flux linkage (Web.) Current (Amp.) Position (Deg.) Fig. () 3D of flux, current, and position angle curves. Static torque (N.m.) Current (Amp.) Position angle (Deg.) Fig. (3) 3D of static torque, current, and position curves. V dc Integrator /S θ on θ j θ off Inverter phase switches and its logic Vj θon θoff θd θ θ Periodicity One phase block model R Current table Torque table Look Look Ф j up up /S Table i j Table Integrator i(θ, Ф) T(θ, i) θ j Phase shifting ( j-) θ s Fig. (4) The block diagram of one phase for SRM. 3. Control System 3. Sliding Mode Control If the speed error between the desired speed and actual rotor speed is: x = e = ω d ω (4) Selecting the switching function (S). Since, the switching function is selected based on the system states as [4, 4]: S ( x, t) = ( λ e + e& ) (5) The design parameter (λ), which is the slope of the sliding line is selected such that (λ > ) to ensure the asymptotic stability of the sliding mode [6]. Computing the time derivative for S (x, t), then S & = λ x& + x& (6) To find the equivalent control law, put eqn. (6) equal to zero ueq = [( λ + a) x + cτ l ] (7) b The tracking problem ω = ω d can be considered as the state vector e remaining on the sliding surface S (x, t) = θ j τ j ISBN: 978-988-7--3 IMECS 8

Proceedings of the International MultiConference of Engineers and Computer Scientists 8 Vol II IMECS 8, 9- March, 8, Hong Kong for all time. Lyapunov s second method could be used to obtain the control law that would maintain this goal and a candidate function is defined as [4]: V ( S) = S (8) It is aimed that the derivative of the Lyapunov function is negative definite. An efficient condition for the stability of the system described in eqn. (3) can be satisfied if one can assure that [5]: d V & ( S) = S η S dt, η (9) Obtaining the inequality in (9) means that the system is stable and controlled in such a way that the system states always move towards the sliding surface and hits it. Therefore, inequality (9) is called the reached condition for the sliding surface. Thus: S S & η S or, () [ ( λ + a) x cτ l ] sign( S) + bu sign(s) η () To achieve the sliding mode eqn. (8), the controller output must be chosen such that: u = ueq K sign(s) () To avoid the severe changes of the manipulated variable mentioned above, replace function sign(s) by sat(s) in eqn. (). 3. Fuzzy Sliding Controller The combination between FLC and VSC is achieved to include their merits and avoid their disadvantages. This approach is used to implement fuzzy logic control based on variable structure technique which is called fuzzy sliding mode controller and applied for controlling the speed of SRM. Referring to the controller output of the VSC with sliding mode u stated in eqn. (), which is expressed as equivalent control u eq and corrective control u c. u = u eq + u c (3) The proposed is divided into calculating equivalent control eqn. (7) and generating corrective control u c with fuzzy logic to maintain balance between robustness and chattering elimination. The process input state variables are chosen as: the error signal e between the actual and the desired speeds and the change in the error signal Δe. The fuzzy output variable is chosen as: the corrective control signal u c..5 NB NM NS PS PM PB Z -.5 - -.5.5.5 Fig. (5) MSFs of inputs and output variables. 3.. Fuzzification The error signal e and the change in error signal Δe are fuzzified using seven symmetrical triangular membership functions for simplicity. These membership functions are labeled NB, NM, NS, Z, PS, PM, and PB as shown in fig. (5). 3.. Rule Evaluation The control rules must be designed such that the actual trajectory of the states always turns toward and does not cross the sliding surface on phase plane to satisfy existence condition. The control rules can be extracted from table (). The min-max composition is chosen as a fuzzy inference method. Table : The rule data base for -like fuzzy controller. Δe, e NB NM NS Z PS PM PB NB NB NB NB NB NM NS Z NM NB NB NB NM NS Z PS NS NB NB NM NS Z PS PM Z NB NM NS Z PS PM PB PS NM NS Z PS PM PB PB PM NS Z PS PM PB PB PB PM Z PS PM PB PB PB PB 3..3 Defuzzification The output of the fuzzy controller is fuzzy sets, so it is necessary to convert these fuzzy sets to numerical values. Center of gravity (COG) algorithm is used to perform the defuzzification process. The selected membership functions of the output u c are seven symmetrical triangular shape as shown in fig. (5). 4. Simulation Results The simulation study of the system, as shown in fig. (6), was implemented using matlab/simulink soft ware packages using the parameters of a typical three phase 6/4 pole SRM drive stated in reference [3]. The drive system is simulated with fixing the motor load and rpm constant reference speed. Fig. (7) shows the speed responses under using the proposed and controller. It is clear that the is better than controller in terms of all performance indexes. The motor speed traces the reference one when using without any overshoot and the settles faster than the controller. The total developed torque by the motor is shown in fig. (8) when applying. The controllers outputs are illustrated in fig. (9). limiter ω d + - ω - + 8 6 4 Fig. (6) Closed loop of SRM using proposed..5.3.45.6.75.9.5..35 Fig. (7) Speed response with reference speed rpm. i dc V dc Applied voltage SRM ω.5 ISBN: 978-988-7--3 IMECS 8

Proceedings of the International MultiConference of Engineers and Computer Scientists 8 Vol II IMECS 8, 9- March, 8, Hong Kong Developed torque (N.m.) 8 6 4.3.6.9..5 F ig (8) Develoved motor torque. 8 6 4.5.5.5 3 Fig. (3) Motor speed and reference speed responses. Controllers outputs (Amp.) 9 6 3-3.3.6.9..5 Fig. (9) Fuzzy controller output. The phase excitation voltage, three phases instantaneous currents, and the total dc-link current via rotor position angle are shown in figures (,, and ) respectively, when using. The drive system is simulated with changing the speed reference step from to 4 rpm and again up to rpm and fixing the motor load as shown in fig. (3). It is observed that the motor speed response gives a good tracking for the reference one without overshooting under using the proposed controller. Phase voltage (V.) Phases currents (Amp.) Total dc current (Amp.) 33 - - -33 7 3 6 9 5 8 3 34 3 - - 3.5.5.5 Position angle (Deg.) Fig. () Phase voltage excitation. i i i3 i i i3 i i i3 7 3 6 9 5 8 3 34 Position angle (Deg.) Fig. () Instantaneous three phases currents. -3 7 3 6 9 5 8 3 34 Position angle(deg.) Fig. () The total dc-link current. Load step (N.m.).5.5.5.5.5 3 9 6 3 ig. (4) Changing step load disterbance..5.5.5 3 Fig. (5) Speed responses with reference speed 9 rpm. The simulation is carried out using the and the controller when changing the load disturbance. The step load changing is shown in fig. (4). The speed responses of the motor are noted at reference speed 9 rpm as shown in fig. (5). It is clear that both the and the controller introduce excellent performance where the controlled variables track their reference values exactly in a very short time. 4. Sensitivity Analyses Sensitivity analyses are carried out to compare the dynamic performance of the system, using to some parameter variations of the motor. Considering 5% variation of significant system parameters such as moment of inertia coefficient, friction viscous coefficient, and motor phase resistance. Fig. (6) shows the speed responses with 6 rpm reference speed for the, when changing the inertia and friction coefficients. This figure indicates that, the system speed response is insensitive to the parameter variations when applying the. However, fig. (7) shows the speed responses but with varying the motor phase resistance by ±5% for 8 rpm reference speed. The performance response illustrates that the is more robust and insensitive to phases resistance variations. 8 7 6 5 4 3...3.4.5.6.7.8.9 5% J, f % J, f 5% J, f F ISBN: 978-988-7--3 IMECS 8

Proceedings of the International MultiConference of Engineers and Computer Scientists 8 Vol II IMECS 8, 9- March, 8, Hong Kong Fig. (6) The speed responses with changing moment of inertia, and friction viscous coefficients using. Speed (r.p.m) 8 6 4.5..5..5.3 5% R % R 5% R Fig. (7) The speed responses with changing motor phase resistance using. 5. Experimental Results The closed loop control of SRM consists of an outer speed control loop and an inner current limitation control loop. The outer speed control loop is used to control the motor speed using the proposed. The actual rotor speed is obtained by estimating the rotor position angles through a software program, then it is compared with the reference command speed 9 rpm. By measuring the rotor position angles, the full switching signal patterns are generated. The speed error is processed through the proposed to produce a torque command. Form the torque command, the current reference command signal is obtained using the torque time constant. Consequently, the motor dc-link current is compared with the current command to get the current error. Then, this error is passed through a PWM circuit. Fig. (8) shows the practical output of the PWM circuit, where ch represents the triangular carrier signal with frequency of 3.3 KHz, ch represents the analog control signal (current error control signal) generated by the software, and ch3 shows the result of the instantaneous comparison between the two previous channels form of a logical train of pulses. AND gates to produce the final chopped PWM full pulses for each power switch. Fig. (9) shows the chopped full pulses that are applied for the base-gate of the IGBTs power switches of the inverter. Fig. () illustrates the chopped voltage of one phase produced from the power inverter that is applied to one phase of the motor. The corresponding chopped phase current is shown in fig. (). Finally, fig. () shows a typical step response using the proposed fuzzy sliding mode speed controller. Ch Ch Ch Ch 5 Volt/div. Time 4 msec./div. Fig. () Practical chopped phase voltage. Ch.3 Amp./div. Time 4 msec./div. Fig. () Chopped phase current waveform. Ch Ch Ch 3 r.p.m./div. Time msec./div. Fig. () Measured speed response of the motor. Ch3 Ch Ch Ch3 Ch,, 3 Volt/div. Time µsec./div. Fig. (8) Practical output of the PWM circuit. Ch,, 3 5 Volt/div. Time 4 msec./div. Fig. (9) The chopped phases gate pulses. The current error is compared with a triangular carrier with frequency (3.3 KHz) to generate the required pulse width modulation (PWM) control signal as channel 3 shows in fig. (8). These logical PWM trains of pulses, and the produced full switching signal pattern are passed through 6. Conclusions This paper discusses the implementation of fuzzy sliding mode speed control for 6/4 poles SRM fed from classical inverter circuit. The paper visualizes both fuzzy logic control and variable structure control aspects, and definitions characterizing the fuzzy sliding mode controller. Full design procedure steps and its implementation of the proposed controller are obtained. Both simulation and experimental results are presented which show the validity and effectiveness of the proposed. The proposed fuzzy sliding mode controller, used for regulating the speed of SRM, has the following advantages: fast and smooth response, robustness, insensitivity to disturbance variations, and good tracking response. The closed loop speed control is achieved experimentally using the proposed. C-language program is used to simulate the to perform both read and write functions in addition to the controller simulation. ISBN: 978-988-7--3 IMECS 8

Proceedings of the International MultiConference of Engineers and Computer Scientists 8 Vol II IMECS 8, 9- March, 8, Hong Kong Experimental results show flexibility of when used for speed control of SRM. 7. References [] M. Spong, R. Marino, S.Peresada, and D.G. Taylor, Feedback Linearizing Control of Switched Reluctance Motors IEEE Trans. A.C. Contr., Vol. AC-3, pp. 37-379, May 987. [] R. S. Wallace, and D. G. Taylor, A Balance Commutator for Switched Reluctance Motors to Reduce Torque Tipple, IEEE Trans. Power Electron., Vol. 7, pp. 67-66, Oct. 987. [3] R. Krishnan, Switched Reluctance Motor Drives, CDC press,. [4] J. Slotine, and W. Li, Applied Nonlinear Control Englewood Cliffs, NJ: prentice Hall, 99. [5] V. I. Utkin, Variable Structure Control Systems with Sliding Mode IEEE Trans. Automat. Contr., Vol. AC-, pp. -, April 977. [6] J. Y. Hung, W. Gao, and J.C. Hung, Variable Structure Control : A Survey IEEE Trans. Ind. Electron., Vol. 4, No., pp. -, Feb. 993. [7] K. D. Young, V. I. Utkin, U. Ozguner, A Control Engineer s Guide to Sliding Mode Control, IEEE Trans. on Control Systems Technology, Vol. 7, No. 3, pp. 38-34, May 999. [8] V. I. Utkin, Sliding Mode in Control Optimization, New York: Springer Verlag, 99. [9] L. A. Zadeh, Outline of a New Approach to Analysis of Complex Systems and Decision Process, IEEE Trans. Sys., man, sybernetics, Vol. SMC-3, No., pp. 8-44, Jan. 973. [] C. C. Lee, Fuzzy Logic in Control Systems : Fuzzy Logic Controller, Part II, IEEE Trans. on Systems, Man, and Cybernetics, Vol., No., pp. 49-435, March / April 99. [] G. Chen, T. Pham, J. Weiss, Fuzzy Modeling of Control Systems, IEEE Trans. on Aerospace and Electronic Systems, Vol. 3, No., Jan. 995. [] D. Torrey, and J. Lang, Modeling A Nonlinear Variable Reluctance Motor Drive, IEE Proceedings, Pt. B, Vol. 37, No. 5, Sept. 99. [3] M. Morsy, Design and Implementation of Fuzzy Sliding Mode Controller for Switched Reluctance Motor, PhD. Thesis, Egypt, Jan., 7. ISBN: 978-988-7--3 IMECS 8