Musical Acoustics, C. Bertulani. Musical Acoustics. Lecture 14 Timbre / Tone quality II

Similar documents
Musical Acoustics, C. Bertulani. Musical Acoustics. Lecture 13 Timbre / Tone quality I

A-110 VCO. 1. Introduction. doepfer System A VCO A-110. Module A-110 (VCO) is a voltage-controlled oscillator.

INDIANA UNIVERSITY, DEPT. OF PHYSICS P105, Basic Physics of Sound, Spring 2010

UIUC Physics 406 Acoustical Physics of Music. Tone Quality Timbre

2. When is an overtone harmonic? a. never c. when it is an integer multiple of the fundamental frequency b. always d.

Acoustics and Fourier Transform Physics Advanced Physics Lab - Summer 2018 Don Heiman, Northeastern University, 1/12/2018

Physics 115 Lecture 13. Fourier Analysis February 22, 2018

Advanced Audiovisual Processing Expected Background

COMP 546, Winter 2017 lecture 20 - sound 2

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves

A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium.

Review of Standing Waves on a String

L 5 Review of Standing Waves on a String

Principles of Musical Acoustics

Structure of Speech. Physical acoustics Time-domain representation Frequency domain representation Sound shaping

MUSC 316 Sound & Digital Audio Basics Worksheet

Sound, acoustics Slides based on: Rossing, The science of sound, 1990.

Spectrum. Additive Synthesis. Additive Synthesis Caveat. Music 270a: Modulation

Music 270a: Modulation

Copyright 2009 Pearson Education, Inc.

ALTERNATING CURRENT (AC)

Complex Sounds. Reading: Yost Ch. 4

What is Sound? Part II

Physics 101. Lecture 21 Doppler Effect Loudness Human Hearing Interference of Sound Waves Reflection & Refraction of Sound

Sound is the human ear s perceived effect of pressure changes in the ambient air. Sound can be modeled as a function of time.

Physics I Notes: Chapter 13 Sound

Math and Music: Understanding Pitch

Lecture 7: Superposition and Fourier Theorem

Linear Frequency Modulation (FM) Chirp Signal. Chirp Signal cont. CMPT 468: Lecture 7 Frequency Modulation (FM) Synthesis

Chapter 2. Meeting 2, Measures and Visualizations of Sounds and Signals

Hearing and Deafness 2. Ear as a frequency analyzer. Chris Darwin

Music. Sound Part II

Lecture PowerPoints. Chapter 12 Physics: Principles with Applications, 7 th edition Giancoli

CMPT 468: Frequency Modulation (FM) Synthesis

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 5: 12 Feb A. Faulkner.

Lab 9 Fourier Synthesis and Analysis

CHAPTER 12 SOUND ass/sound/soundtoc. html. Characteristics of Sound

ACOUSTICS. Sounds are vibrations in the air, extremely small and fast fluctuations of airpressure.

Lecture PowerPoints. Chapter 12 Physics: Principles with Applications, 6 th edition Giancoli

Resonance and resonators

Fundamentals of Music Technology

CS 591 S1 Midterm Exam

Chapter 16. Waves and Sound

PHYSICS LAB. Sound. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY

Perception of pitch. Importance of pitch: 2. mother hemp horse. scold. Definitions. Why is pitch important? AUDL4007: 11 Feb A. Faulkner.

Unit 6: Waves and Sound

UNIVERSITY OF TORONTO Faculty of Arts and Science MOCK EXAMINATION PHY207H1S. Duration 3 hours NO AIDS ALLOWED

VIBRATO DETECTING ALGORITHM IN REAL TIME. Minhao Zhang, Xinzhao Liu. University of Rochester Department of Electrical and Computer Engineering

In Phase. Out of Phase

YAMAHA. Modifying Preset Voices. IlU FD/D SUPPLEMENTAL BOOKLET DIGITAL PROGRAMMABLE ALGORITHM SYNTHESIZER

Physics in Entertainment and the Arts

Unit 6: Waves and Sound

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics

Final Exam Study Guide: Introduction to Computer Music Course Staff April 24, 2015

describe sound as the transmission of energy via longitudinal pressure waves;

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence

Acoustic Phonetics. How speech sounds are physically represented. Chapters 12 and 13

Spectrum Analysis: The FFT Display

Modulation. Digital Data Transmission. COMP476 Networked Computer Systems. Sine Waves vs. Square Waves. Fourier Series. Modulation

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb A. Faulkner.

Acoustics, signals & systems for audiology. Week 4. Signals through Systems

SECTION A Waves and Sound

MUS 302 ENGINEERING SECTION

PHYSICS. Sound & Music

Whole geometry Finite-Difference modeling of the violin

I have been playing banjo for some time now, so it was only natural to want to understand its

Chapter 18. Superposition and Standing Waves

SECTION A Waves and Sound

ABC Math Student Copy

Sound Interference and Resonance: Standing Waves in Air Columns

Computer Audio. An Overview. (Material freely adapted from sources far too numerous to mention )

Sound Synthesis Methods

Understanding the Relationship between Beat Rate and the Difference in Frequency between Two Notes.

Introduction. Physics 1CL WAVES AND SOUND FALL 2009

Waves and Sound Practice Test 43 points total Free- response part: [27 points]

Date Period Name. Write the term that corresponds to the description. Use each term once. beat

Definition of Sound. Sound. Vibration. Period - Frequency. Waveform. Parameters. SPA Lundeen

INTRODUCTION TO ACOUSTIC PHONETICS 2 Hilary Term, week 6 22 February 2006

Laboratory Assignment 4. Fourier Sound Synthesis

An introduction to physics of Sound

Linguistics 401 LECTURE #2. BASIC ACOUSTIC CONCEPTS (A review)

Synthesis Techniques. Juan P Bello

EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE MUSICAL BEHAVIOR OF TRIANGLE INSTRUMENTS

Section 1 Sound Waves. Chapter 12. Sound Waves. Copyright by Holt, Rinehart and Winston. All rights reserved.

BASIC SYNTHESIS/AUDIO TERMS

SAMPLING THEORY. Representing continuous signals with discrete numbers

RS380 MODULATION CONTROLLER

Lab week 4: Harmonic Synthesis

Name: SPH 3U Date: Unit 4: Waves and Sound Independent Study Unit. Instrument Chosen:

Acoustic Resonance Lab

A-126 VC Frequ. Shifter

Extraction of Musical Pitches from Recorded Music. Mark Palenik

The Multiplier-Type Ring Modulator

SPEECH AND SPECTRAL ANALYSIS

Fundamentals of Digital Audio *

NAME STUDENT # ELEC 484 Audio Signal Processing. Midterm Exam July Listening test

Lab 8. ANALYSIS OF COMPLEX SOUNDS AND SPEECH ANALYSIS Amplitude, loudness, and decibels

Test Review # 7. Physics R: Form TR7.17A. v C M = mach number M = C v = speed relative to the medium v sound C v sound = speed of sound in the medium

Lab 10 The Harmonic Series, Scales, Tuning, and Cents

E40M Sound and Music. M. Horowitz, J. Plummer, R. Howe 1

Transcription:

1 Musical Acoustics Lecture 14 Timbre / Tone quality II

Odd vs Even Harmonics and Symmetry Sines are Anti-symmetric about mid-point If you mirror around the middle you get the same shape but upside down f(t) = N A N Fourier series sin( 2πNf 1 t + φ ) N Sines are anti-symmetric Cosines are symmetric 2

3 n=1 Odd à even But symmetry depends on choice of origin n=3 Odd à even n=2 Evenà odd Additional symmetry of odd sines if you consider reflection at the red line. About this line, odd harmonics are symmetric but even ones are antisymmetric

Symmetry of the triangle wave 4 Obeys same symmetry as the odd harmonics so cannot contain even harmonic components Both triangle waves and square waves contain odd Fourier components. amplitude f 3f 5f 7f frequency

5 Sawtooth wave What overtones are present in this wave? Use its symmetry to guess the answer.

Spectrum of a sawtooth wave 6 All integer harmonics are present. The additional symmetry about the ¼ wave that both triangle and square wave have is not present in the sawtooth.

Summary: Synthesis of a square wave 7 Fourier Analysis is the decomposition of a wave into the sine wave components from which it can be built up. A Fourier Analysis is a representation of all the components that comprise a waveform, amplitude versus frequency and phase versus frequency.

Sound Spectrum of Musical Instruments 8 Each musical instrument has its own characteristic sounds - quite complex! Any note played on an instrument has fundamental + harmonics of fundamental. Higher harmonics - brighter sound Less harmonics - mellower sound Harmonic content of note can/does change with time: Takes time for harmonics to develop - attack (leading edge of sound) Harmonics don t decay away at same rate (trailing edge of sound) Higher harmonics tend to decay more quickly Sound output of musical instrument is not uniform with frequency Details of construction, choice of materials, finish, etc. determine resonant structure (formants) associated with instrument - mechanical vibrations!

9 Formants Musical instrument may have formant. The human voice has formant regions determined by the size and shape of the the vocal tract. Formant regions are not directly related the fundamental frequency and may remain more or less constant as the fundamental changes. If the fundamental is well below or low in the formant range, the quality of the sound is rich, but if the fundamental is above the formant regions the sound is thin and in the case of vowels may make them impossible to produce accurately - the reason singers often seem to have poor diction on the high notes. Spectrum of the vowel "ah" showing three formant regions. Vertical lines are harmonics produced by vibration of the vocal cords and based on a low fundamental. The vowel has a characteristic spectral shape.

Noise 10 Blowing gently across a microphone

Hypothetical instrument s timbre 11 Resonance curve Noise spectrum Fourier spectrum (Resonance minus noise)

12 Blowing into open tube tube

Frequency Modulation and Vibrato 13 Vibrato - Periodic variation of frequency A simple signal: sin[2πf(t)t] with vibrato f(time) = freq 1 + vib wid sin(2π.vib rate.time) vib wid = vibrato width amount of vibrato vib rate = vibrato rate frequency of vibrato Typical vibrato values: vib rate = 5 Hertz normal range: 1-6 Hertz, with slight acceleration during tone vib wid minimum: 0 (none) usual maximum for instruments:.01*freq 1 (1%) usual maximum for voices:.05*freq 1 (5%)

Example: Tenor Voice Vibrato 14 Tenor voice has 5 Hertz vibrato rate and vibrato width of 4.5% slow vibrato fast vibrato Vibrato rate vib rate = 0 -----> 10 Hertz (over 10 seconds) vib wid =.01 * freq 1 (1%)

Vibrato Amount small vibrato large vibrato vib rate = 5 Hertz vib wid = 0 ----->.05 * freq 1 (0-5% over 0:10 s) A sine wave with vibrato becomes a full spectrum when vib rate is in the audio range (above 20 Hz), especially as vib rate approaches freq 1. Since it is no longer vibrato, we use the term modulation frequency instead of vibrato rate. When vib rate is above 20 Hz: freq mod = vib rate Vibrato à FM With FM, we may not get the frequency out that we put in.we call the base frequency of the outer sine wave the carrier frequency f car : f(time) = f car + vib wid sin(2π.f mod.time) 15

16 Vibrato à FM FM uses a modulation index as well as the vibrato width to describe the amount of modulation. The relationship between them is vib wid = Index * freq mod or Index = vib wid / freq mod Typical values for modulation index: 0 <= Index <= 10 Example freq mod = 1 ---> 6 Hz ---> 261.6 Hz (= vib rate ) (vib) (FM) Index =.02 (vib wid =.02 * freq mod ) When the frequency of the modulator reaches 6 Hertz (at 5 seconds), the effect changes from vibrato to FM. The frequency changes of all the harmonics get much faster during FM.

Guitar E4 string plucked near its midpoint. The nearly symmetric disturbance created results in a spectrum of mostly odd harmonics. 17

Guitar E4 string struck while lightly touched at its midpoint, producing a spectrum of even harmonics only. 18

Plucked at Midpoint Touched at Midpoint 19

Guitar E4 string struck and touched at the midpoint, but with the microphone placed over the soundhole, rather than behind the bridge. 20

High resolution spectrum of the second partial of E4, with additional peaks from the harmonics of the E2 and A2 strings, caused by energy transfer through the bridge. 21

Consonance, dissonance, and beats Harmony is the study of how sounds work together to create effects desired by the composer. When we hear more than one frequency of sound and the combination sounds good, we call it consonance. When the combination sounds bad or unsettling, we call it dissonance. Consonance and dissonance are related to beats. When frequencies are far enough apart that there are no beats, we get consonance. When frequencies are too close together, we hear beats that are the cause of dissonance. Beats occur when two frequencies are close, but not exactly the same. 22

How we hear pitch High frequency sounds selectively vibrate the basilar membrane of the inner ear near the entrance port (the oval window). Lower frequencies travel further along the membrane before causing appreciable excitation of the membrane. cross section of the cochlea 23

Consonance, dissonance, and roughness 24 1. Ear can t distinguish too close frequencies. An average frequency is heard, as well as the beats. 2. Lower frequency fixed and the higher raised slowly à frequencies were still indistinguishable, but the beat frequency too high to make out à a roughness to the total sound. 3. Dissonance continues until the higher frequency becomes distinguishable from the lower. 4. 1. and 2. are within the critical band. Critical band around some central frequency will be stimulated by frequencies within about 15% of that central frequency.

25 Subjective tones The response of a system is linear when the output is directly proportional to the input, that is, any change in the input produces a proportional change in the output. When plotted on a graph, a straight line results. A non-linear system is one where such a proportional relationship between input and output does not hold, as shown in the corresponding graph. The result of the non-linear characteristics of the ear is the addition of harmonics when the incoming sound is of sufficient intensity.

Subjective and Combination tones When two tones are perceived simultaneously, other tones often appear, because of distortion effects in the ear. Relatively high intensity levels are required for combination tones to be heard, and strong differences exist between individuals as to how many are heard. If two sine tones are played at a sufficient intensity level, one high (x) and the other low (y), the combination tones usually heard are the difference tones, at frequencies equal to (x - y), (2y - x) and (3y - 2x). The summation tones of frequencies (x + y) and (2x + y) are seldom if ever heard, even when in the audible range, possibly because of masking effects. The threshold of such tones varies greatly between individuals, since it depends on non-linear characteristics of the inner ear, but generally it lies between 50 and 60 db. Beats, on the other hand, can be heard at low intensities. When a single tone is played loudly enough, additional harmonics will be heard that are not present in the original tone. These added tones, being frequency multiples of the original tone, are called aural harmonics. 26